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Abstract: AZ91 alloy is a widely applied commercial magnesium alloy due to its good castability,
balanced mechanical properties and acceptable price, and lanthanum alloying has been proven
to be one of the most effective methods to further improve its mechanical properties. Therefore,
we reveal the evolution of microstructure, mechanical properties and fracture behavior with increasing
lanthanum content in AZ91 alloy in this study. The magnesium matrix was significantly refined
by lanthanum content, and this effect became more evident with increasing addition of lanthanum.
The presence of Al3La precipitates significantly reduced the grain mobility and suppressed the
formation of Mg17Al12 discontinuous precipitates along the grain boundaries. The rheo-cast alloys
exhibited improved and balanced tensile strength and ductility after aging treatment. The fracture
type of AZ91-La alloys could be classified as ductile fracture due to the presence of less quasi-cleavage
planes and more dimples with a mixture of tear ridges and micropores. Due to the fully refined
microstructure and the balanced mechanical properties, the AZ91–1.0La (mass%) alloy presented the
greatest potential for industrial applications among the three studied AZ91-La alloys.
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1. Introduction

Magnesium alloys have been widely applied in automotive, aerospace and biomedical industries,
which can be attributed their low density, high specific strength and good castability [1–3].
The application of magnesium alloys also appropriately meets the demand for lightweight heat
dissipation materials including electronic components, vehicle parts and heat sink components,
which has increased in recent years [4–6]. Among the various cast magnesium alloys, AZ91 alloy
became one of the most widely used cast magnesium alloys due to its outstanding castability and aging
hardenability [7,8]. Despite these advantages, AZ91 alloy still has some other limitations, including low
ductility, insufficient formability, low Young’s modulus and poor corrosion resistance, which narrow
its industrial applications [9,10]. Thus, the improvement of AZ91 alloy’s comprehensive performance,
especially its mechanical properties, has become a research focus in recent years.
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The continuous network morphology of the Mg17Al12 phases along the grain boundaries in AZ91
alloy matrix was the main reason for its lower ductility. Many studies have been conducted in the
past few years to improve the microstructural stability of AZ91 by deformation, heat treatment and
alloying. Among the various methods, alloying was proven to be one of the most effective routes
to adjust the microstructure and improve the mechanical properties of AZ91 alloy. Sn, Sb, Bi, etc.
are usually introduced in the alloying of AZ alloys to improve their mechanical performance [11–13].
Previous results indicated that rare earth elements were relatively more effective in optimizing AZ91’s
mechanical performance than other elements [8,14]. In AZ91 alloy matrix, rare earth elements (RE)
could form Al-RE intermetallics, which increase its ultimate strength and its creep resistance [15,16].
It is well known that lanthanum is a low-cost RE element, which ensures its potential in large scale
industrial applications [17,18]. Moreover, the thermal conductivity of magnesium alloys will not be
greatly influenced by the addition of lanthanum content due to its low solid solubility in the magnesium
matrix, which is crucial for heat sink products [6,19].

Another advantage of lanthanum alloying is that Al-La intermetallics could be formed in the alloy
matrix, which maintain the high thermal conductivity of the alloys [20]. After aging treatment, both the
Al-La intermetallics and the Mg17Al12 phases further strengthened the alloy matrix by precipitation.
Mg17Al12 continuous precipitates (CPs) with plate-shaped morphology and Mg17Al12 discontinuous
precipitates (DPs) with lamellar morphology were formed as partially divorced precipitates during the
aging treatment [21,22]. Although the CPs and the DPs both have a bcc structure, they play distinct
roles in the improvement of mechanical properties [12,22]. Jain et al. reported that both CPs and DPs
could effectively conduct precipitation strengthening at different temperatures [23]. Stanford et al.
studied the effect of CPs on the tensile behavior of AZ91 alloy and found that that the age hardening
was conducted by both twinning deformation and the precipitation of CPs [24]. We also revealed
the strengthening mechanism of the CPs and the DPs in AZ91-Sn alloys in our previous studies [12].
However, there is still a lack of understanding regarding the precipitate distribution and its influence
on the mechanical properties of AZ91 alloy with lanthanum alloying. Therefore, we carried out this
study to investigate the evolution of microstructure, mechanical properties and fracture behavior with
increasing lanthanum content in AZ91 alloy.

2. Materials and Methods

AZ91 alloy with 0.5 mass%, 1.0 mass% and 1.5 mass% lanthanum addition (nominal chemical
composition) were investigated as the experimental materials, which were designated AZ91–0.5La,
AZ91–1.0La and AZ91–1.5La, respectively. The AZ91 alloy (AZ91D, Zhongtai, China) and Mg-La
master alloy (10 mass%, Boyue, China) were weighed, mixed and melted under protective atmosphere
(Ar + 1.5 vol.% SF6) at 690 ◦C and processed into semi-solid slurry using a rheo-treatment machine [12].
The melt was then held at 685 ◦C for 30 min in a steel crucible, and the solidification process was
performed by immersing the crucible in cooling water. The chemical compositions of the AZ91-La alloys
were analyzed by an inductively coupled plasma-atomic emission spectroscope (ICP-OES, ICP Pro,
Thermo Fisher, MA, USA). The rheo-cast alloys were then processed sequentially by solid solution
treatment and aging treatment. The solution treatment was performed at 380 ◦C for 8 h with water
quenching, and the aging treatment was conducted at 180 ◦C for 48 h under protective atmosphere.

Optical microscopy (OM, LV150N, Nikon, Japan) was applied to observe the microstructure
evolution of the AZ91 alloy with different amounts of lanthanum content, and a scanning electron
microscope (SEM, JCM-5000, Nikon, Kyoto, Japan) fitted with an energy dispersive X-ray spectrometer
(EDS, Ametek, San Diego, CA, USA) was used to identify the distribution and composition of the
precipitates. The phase identification was further performed by using an X-ray diffractioner (XRD,
Bruker, Madison, WI, USA) with Cu Kα radiation at 40 kV.

The tensile tests were carried out according to ASTM standard, and the dimensions of the
specimens are depicted in Figure 1. Specimens were tested by a tension tester (CMT5305; MST, Jinan,
China) with a stretching rate of 3.0 mm·min−1. An automatic extensometer (Sinotest, Changchun,
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China) was employed to record the strain values. The measurements were performed in ten duplicates,
and the results are presented as mean value ± standard deviation (SD). One-way analysis of variance
test was applied for comparisons of the means between different groups, with confidence intervals of
95.0% (*, p < 0.05) and 99.0% (**, p < 0.01), whilst NS stands for no significant difference. The fracture
morphology and mechanism were analyzed by means of SEM (JCM-5000, Nikon, Kyoto, Japan) fitted
with an energy dispersive X-ray spectrometer (Ametek, San Diego, CA, USA).
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Figure 1. The scheme and dimensions of the samples for tensile tests.

3. Results and Discussion

3.1. Microstructure Evolution

The experimentally measured chemical compositions of AZ91-La alloys are summarized in
Table 1. The optical micrographs of the AZ91 alloy and the AZ91-La alloys are shown in Figure 2.
The magnesium matrix was significantly refined by lanthanum content, and this effect became more
evident with increasing amounts of added lanthanum. The second phase particles mostly distributed
along grain boundaries, whose sizes were significantly homogenized and reduced with increasing
amounts of lanthanum as well. With 0.5 mass% addition of lanthanum, the grain size was decreased
from 160.2 ± 15.1 µm in AZ91 alloy to 87.0 ± 7.5 µm, while a dendritic structure still existed in the
matrix. When the content of lanthanum increased to 1.0 mass% and 1.5 mass%, the average grain size
was reduced to 65.0 ± 4.5 µm and 60.3 ± 6.2 µm, respectively.

Table 1. The experimentally measured chemical composition (mass fraction) of AZ91-La alloys.

Alloy Mg Al Zn La Mn Si Cu

AZ91 Balance 9.23 0.86 0 0.21 0.03 0.01
AZ91–0.5La Balance 9.19 0.86 0.48 0.21 0.03 0.01
AZ91–1.0La Balance 9.15 0.84 0.97 0.20 0.02 0.01
AZ91–1.5La Balance 9.10 0.84 1.46 0.20 0.03 0.01

In the SEM micrographs of the AZ91 alloy and the AZ91-La alloys (Figure 3), the precipitates
manifested two different morphologies after aging treatment. Apart from the coarse, fully divorced
precipitates, continuous precipitates (CPs) with plate-shaped morphology and discontinuous
precipitates (DPs) with lamellar morphology were both observed as partially divorced precipitates.
Similar morphologies were also observed in previous studies on AZ91 alloys [10,12]. According to
the EDS results, both the CPs and the DPs were composed by eutectic Mg17Al12, while the isolated
needle-like precipitates were identified as Al3La. The optical and SEM micrographs demonstrated that
the addition of lanthanum content to AZ91 alloy could simultaneously refine the magnesium matrix
and the Mg17Al12 precipitates. The average size of the fully divorced precipitates was decreased from
32.3 µm in AZ91 alloy to 7.4 µm in AZ91–1.5La alloy. Due to the precipitation of Al3La, the formation
of DPs and CPs was suppressed [25]. Grain boundary mobility is considered the primary determinant
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in the precipitation of DPs [26]. In our investigation, the grain boundary density was increased with
increasing addition of lanthanum content due to its grain refinement effect [17]. Moreover, the presence
of Al3La particles also reduced the grain mobility. As a result, the DPs could hardly precipitate along
the grain boundaries.Metals 2020, 10, x FOR PEER REVIEW 4 of 11 
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The XRD analysis results of the alloys are shown in Figure 4. α-Mg and Mg17Al12 as the primary
species were identified in all the alloys, and the Al3La phase was analyzed in all three AZ91-La
alloys [25]. The intensity of the signal peak was in direct proportion to the content of lanthanum in the
alloy. The TEM investigation (Figure 5) further confirmed the phase identification results from the
XRD analysis. It is notable that, besides the coarse Al3La precipitates observed in Figure 3, smaller
sized Al3La phases were also found in the Mg matrix. Figure 5 also depicts the indexed [100] zone of
bcc Al3La [18]. According to the microstructure observation and phase identification results, it can be
concluded that lanthanum content existed in two forms in the alloy matrix, the isolated needle-like
precipitates with an average size of 13.4 µm and the dispersed precipitates in micro scale.
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3.2. Solidification Behavior and Mechanical Properties

Al3La were mostly observed together with Mg17Al12 phases according to the microstructure
results, indicating that the Al3La phase with higher melting point provided heterogeneous nucleation
points for the Mg17Al12 phases. Therefore, more fully divorced Mg17Al12 precipitates formed while
less partially divorced CPs and DPs generated with increasing lanthanum content. During the
solidification process, the α-Mg matrix first solidified. Then, La element enriched at the solid–liquid
interfaces, and Al3La phases were formed with the decreasing temperature (Figure 6). Previous
research has successfully identified the habit plane between Mg matrix and Al3La phases [18,25].
Mg17Al12 preferentially solidified along the habit plane (2112)Mg//(011)Al3La and further grew via
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the heterogeneous nucleation points provided by Al3La phases. Figure 6 depicts the model of the
solidification process of AZ91-La alloys.
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Figure 7 presents the grain size and the tensile properties of the aged AZ91 and AZ91-La alloy.
With increasing lanthanum content, the average grain size decreased significantly (significance level
p < 0.01). Due to the grain refinement strengthening, both the tensile strength and the elongation
showed pronounced increases. The AZ91–1.5La alloy gained ca. 54.8% increase in ultimate tensile
strength compared to AZ91 alloy, from 225.5 ± 6.7 to 349.0 ± 5.0 MPa. Due to the refined matrix,
the high density grain boundaries bore more stress [9]. According to the stress–strain curve, both the
yield strength and strain hardening exhibited positive stress dependence (Figure 7b). This effect became
more evident with increasing lanthanum content. Furthermore, the precipitation of Al3La suppressed
the formation of dendrites. As a result, the refined non-dendritic microstructure was observed in the
AZ91–1.5La alloy (Figure 2), which led to the improved mechanical properties.Metals 2020, 10, x FOR PEER REVIEW 7 of 11 
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It is evident that the AZ91-La alloys showed more significant work hardening effect than the AZ91
alloy. Previous studies proved that higher dislocation density and decreasing dynamic recovery of
dislocations due to more solute atoms and fine precipitates could significantly enhance work hardening
ability [27]. Our results confirmed that the high work hardening ability of AZ91-La alloys was primarily
ascribed to the soluted La atoms in the alloy matrix [28]. Moreover, the high and balanced mechanical
properties of the AZ91-La alloys were also attributed to the well-dispersed Al3La precipitates in
micro scale, which increased the dislocation storage capability while suppressing the recovery of
dislocations [8].

It is notable that 1.5 mass% lanthanum addition led to a significant decrease (significance level
p < 0.01) in elongation while it did not significantly improve the tensile strength. The primary reason
for this phenomenon was the increased amount of brittle intermetallics brought about by the high
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content of La (Figures 3 and 4). Although the intermetallics were also attributed to the improvement in
tensile strength, the difference in hardness between the matrix and the intermetallics caused stress
concentration at their interfaces [3]. Thus, the highest ultimate tensile strength but lower elongation
were overserved in the AZ91–1.5La alloy [15].

3.3. Fracture Behavior

To study the fracture behavior of all the alloys, SEM fractographs of the tensile samples were
analyzed (Figure 8). Twin boundary fracture was observed in all the tensile samples. As one of the main
deformation forms of magnesium alloy, twinning deformation could suppress the dislocation motion
by changing the favorable crack paths along the twin boundaries [29]. Due to the low deformation
absorbed energy, the fracture morphology of AZ91 was primarily composed by river patterns and
cleavage plans (Figure 8a). Given the high density cleavage steps and tearing edges which were
observed in the river patterns, cleavage fracture was the primary fracture type in AZ91. With increasing
lanthanum content, denser and deeper dimples were more often observed in the AZ91-La alloys,
hinting that the alloys underwent ductile failure (Figure 8). Therefore, the fracture type of AZ91-La
alloys could be classified as ductile fracture due to the presence of less quasi-cleavage planes and
more dimples with a mixture of tear ridges and micropores (Figure 8) [30]. Due to the higher density
dimples, shorter and more curved river patterns presented in the fracture morphology of AZ91-La
alloys. The cleavage planes had an inclination angle of ca. 45◦, with the tensile axis reflecting the
maximum shear stress planes in tension and the typical cleavage length was ca. 15 µm, which was
commonly observed in magnesium alloys after twinning deformation [31].Metals 2020, 10, x FOR PEER REVIEW 8 of 11 
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Greater lanthanum addition led to a refined alloy matrix and therefore effectively hindered the
generation and growth of cleavage cracks, due to which the AZ91–1.0La showed the least density of
cleavage plane on the fracture surface and the highest elongation among the three AZ91-La alloys [32].
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Apart from the normal ductile fracture morphology, we also found two kinds of fractured particles
with bright contrast (Figure 8). The particles mostly segregated along the grain boundaries and
were identified as Zn containing intermetallics (Mg4Zn7 and MgZn2) by EDS analysis. The fracture
morphology analysis hinted that fracture initiation sites mainly distributed around these intermetallics,
which resulted in the transgranular ruptures and the decrease in elongation in AZ91–1.5La alloy.

It can be concluded from the SEM longitudinal section fractographs of the tensile samples that
the interfaces between coarse Mg17Al12 DPs and the Mg matrix were the primary fracture initiation
sites of the AZ91 alloy (Figure 9a). Further intergranular fractures were conducted by the growth and
propagation along the grain boundaries [33]. Lanthanum addition improved the tensile strength of
AZ91 alloy by refining the matrix and generating micro-sized precipitates with random orientations.
As a result, more twins rather than cracks were found in the longitudinal sections of fractured AZ91-La
alloys (Figure 9). Attributed to the refined matrix, the formation and propagation of cleavage cracks
were effectively suppressed. As a result, microcracks formed around Mg17Al12 CPs took the place of
cleavage cracks around Mg17Al12 DPs and led to ductile fracture [34].Metals 2020, 10, x FOR PEER REVIEW 9 of 11 
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image, and the circled areas display the fracture initiation sites.

Another crucial effect brought about by more microcracks and twins induced by La alloying was
the release of the stress concentration during the deformation process [9,12]. At the final tensile stage,
the high tensile strength of the AZ91-La alloys was attributed to the specific orientations of the grains
and the elevating density of the grain boundaries, while the activation of basal glide contributed to the
improved ductility of the AZ91-La alloys [35]. Thus, the alloy withstood lager deformation and higher
load with greater content of lanthanum. Our results regarding the fracture behavior demonstrated that
the addition of lanthanum could simultaneously improve the tensile strength and the ductility of AZ91
alloy, and the improvement in ductility is especially crucial for the manufacture of thin-wall products.
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Among the three AZ91-La alloys, the AZ91–1.0La alloy presented the greatest potential for industrial
applications due to the fully refined microstructure and the balanced mechanical properties.

4. Conclusions

(1) The magnesium matrix was significantly refined by lanthanum content, and this effect became
more evident with increasing amounts of added lanthanum. When the content of lanthanum increased
to 1.0 mass% and 1.5 mass%, the average grain size was reduced to 65.0 ± 4.5 and 60.3 ± 6.2 µm,
respectively. The presence of Al3La precipitates significantly reduced the grain mobility and suppressed
the formation of Mg17Al12 DPs along the grain boundaries.

(2) The precipitation of Al3La suppressed the formation of dendrites, so the refined non-dendritic
microstructure was observed in the AZ91-La alloys. Due to the grain refinement strengthening, both the
tensile strength and the elongation showed pronounced increases. The AZ91–1.5La alloy gained
ca. 54.8% increase in ultimate tensile strength compared to AZ91 alloy, from 225.5 to 349.0 MPa, whilst
the AZ91–10La alloy showed the highest elongation value.

(3) The fracture type of AZ91-La alloys could be classified as ductile fracture due to the presence of
less quasi-cleavage planes and more dimples with a mixture of tear ridges and micropores. The fracture
analysis results suggested that the interfaces between coarse Mg17Al12 DPs and the Mg matrix were
the primary fracture initiation sites of the AZ91 alloy. Due to the fully refined microstructure and the
balanced mechanical properties, the AZ91–1.0La alloy presented the greatest potential for industrial
applications among the three AZ91-La alloys.
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