
metals

Article

Prediction of Longitudinal Curvature Radius of 3D
Surface Based on Quadratic Relationship between
Strain and Coordinates in Continuous Roll Forming

Jiaxin Gao 1,2, Dongye He 2,*, Lirong Sun 1,2, Xi Zhang 1,2 and Zhongyi Cai 1,2,*
1 College of Materials Science and Engineering, Jilin University, Changchun 130025, China;

gaojx1106@163.com (J.G.); sunlr92@163.com (L.S.); zhan9x1@126.com (X.Z.)
2 Roll Forging Research Institute, Jilin University, Changchun 130025, China
* Correspondence: hedy@jlu.edu.cn (D.H.); caizy@jlu.edu.cn (Z.C.); Tel.: +86-0431-8509-4340 (D.H. & Z.C.)

Received: 17 July 2020; Accepted: 14 September 2020; Published: 17 September 2020
����������
�������

Abstract: Continuous roll forming (CRF) is a new method for the rapid forming of three-dimensional
(3D) surfaces developed in recent years, and the significant advantage of CRF compared with
traditional die forming is that the longitudinal dimension of the sheet metal is not limited.
By controlling the curvature radius and gap shape of upper and lower bending rolls, three-dimensional
parts with different shapes and sizes can be precisely formed. When the elastic deformation is ignored
during the forming process, the transversal curvature radius of the three-dimensional surface is
consistent with the radius of the roll gap centerline. Therefore, the calculation of longitudinal
curvature radius is the key to improve the accuracy of the 3D surface in CRF. In this paper, the basic
principle of CRF is described. The modified formulas for calculating the longitudinal curvature radius
of convex and saddle surfaces based on the quadratic relationship between the strain and coordinates
are deduced in detail, and the corresponding design method of the roll gap is derived. Furthermore,
the mathematical equations of convex and saddle surfaces are given. Through numerical simulation
and theoretical analysis, it is found that the relative errors of the longitudinal centerline radius are
reduced from 13.67% before modification to 4.35% after modification for a convex surface and 6.81%
to 0.41% for a saddle surface when the transversal curvature radius is 800 mm and the compression
ratio is 5%. The experimental and measured results indicate that the shapes of formed parts are
more consistent with the target parts after modification, which further proves the applicability of the
modified formulas.

Keywords: continuous roll forming; three-dimensional surface; curvature radius; numerical
simulation; roll gap

1. Introduction

With the rapid development of manufacturing industry, the market demand for three-dimensional
sheet metal is increasing. Automotive skins, hull outer panels, human skull prostheses, building plates
and so forth are all composed of three-dimensional sheet metals with different shapes and sizes [1–4].
Single piece and small batch production is the current popular production mode. Obviously, due to
the long manufacturing cycle, high maintenance cost and single production type, the application
of traditional production is greatly limited. Instead, flexible forming has received more attention.
The idea of multi-point flexible forming was proposed by Japanese scholars in the 20th century. In this
process, the die surface with the same shape as the target surface is formed by controlling the closely
arranged and height-adjustable basic units, and then the sheet is formed into a three-dimensional
surface under the pressure of the die surface. Li et al. successfully applied multi-point technology to
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actual production and combined it with traditional methods such as stretch forming [5–7]. However,
when the size of the target part is large, more basic units are needed and this will lead to great processing
cost. The continuous forming method is introduced so as to solve this problem. In the continuous
forming process, a simple tool is used to gradually form the sheet into a desired shape. Rolling [8] and
roll bending [9] are typical processes of continuous forming and are widely used at present. Yoon and
Yang [10] tried to combine the idea of flexible forming and continuous forming in the early stage.
They put forward the method of flexible incremental roll forming (FIRF), which uses the adjustable roll
set including one upper center roll and two pairs of lower support rolls to form a three-dimensional
curved surface. In order to improve the low efficiency of the FIRF process, Shim et al. [11] proposed a
new technology called the line array roll set (LARS) process. This process uses three pairs of controllable
rolls as forming tools, and each working roll is composed of several discrete small rolls. A doubly
curved surface can be formed by one pass under the action of friction. Cai et al. [12–14] subsequently
developed a continuous flexible forming (CFF) method, which greatly improved the forming quality
of 3D curved surfaces.

In the last few years, Li et al. [15,16] advanced the CRF method to form 3D curved surfaces by
applying flexible forming to rolling technology. The transversal bending of sheet metal is due to
bending rolls, while the longitudinal bending is caused by the uneven thinning principle of rolling.
The theory and formability of CRF have been studied deeply by researchers. Li et al. [17] studied
the influence of different parameters such as reduction, forming velocity and friction on the shape of
formed parts. Ku et al. [18] proposed the NURBS control method to determine the roll gap distribution.
Liu et al. [19] suggested that adding two auxiliary rolls to the original two work rolls would make the
forming process more stable. Park et al. [20] established a regression model and an artificial neural
network model to predict the longitudinal curvature radius, and it was found that the regression
model is more suitable for the prediction of convex parts, and the artificial neural network model is
more suitable for the prediction of saddle parts. Ghiabakloo et al. [21] used the finite element method
and genetic algorithm to calculate the longitudinal curvature radius. Cai et al. [22–24] analyzed the
mechanism of the longitudinal bending deformation of the sheet metal from a mechanics perspective,
and put forward the necessary condition of CRF; that is, the longitudinal strain is the first-order function
of coordinates. Based on this condition, the calculation formula of the longitudinal curvature was
derived. In order to improve the prediction accuracy and facilitate practical application, a new method
for predicting the longitudinal curvature radius of 3D surface based on the quadratic relationship
between the strain and coordinates is proposed in this paper.

This work reports on the further investigation for prediction of longitudinal curvature radius
after the previous research [22–24] studied by Cai et al. In this study, the principle of CRF is explained,
and the cause of longitudinal bending of sheet metal is further analyzed. The previous argument that
the longitudinal strain is a linear function of coordinates is extended to the argument of this paper that
the longitudinal strain is a quadratic function of coordinates. Based on this point of view, the original
formula for calculating the longitudinal curvature radius of sheet metal is modified in the range of
transversal curvature radii of 800~1000 mm and compression ratios of 3~7%. The design method of
the roll gap for a three-dimensional surface is proposed according to the new formulas. In addition,
the mathematical equations for convex and saddle surfaces are given. Through numerical simulation
and experimental analysis, it is found that the prediction accuracy of longitudinal curvature radius is
greatly improved after the formula is modified.

2. Forming Theory of CRF Based on Two Bending Rolls

2.1. Continuous Roll Forming Process

The most important tool for CRF is a pair of small diameter work rolls with low bending rigidity
and high torsional rigidity. They are straight in their free state and can be slightly bent by external
force [17]. Under the control of shape-adjusting and supporting assembly, the work rolls can maintain
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the bending state and rotate around their own axes. In the CRF process, the flat sheet metal is turned
into a three-dimensional sheet with certain curvatures in both transversal and longitudinal directions
by controlling the bending profiles of upper and lower work rolls and the roll gap size. In order to
form an uneven gap which is the key to the three-dimensional surface forming, the bending profiles
of the two rolls should be a little different. Due to the large plastic deformation during the rolling
process, the effect of elastic deformation can be ignored. Therefore, the curvature radius of the roll gap
centerline is the same as the transversal curvature radius of the target. The longitudinal curvature
is formed by the non-uniform roll gap. When the roll gap is small in the middle and large on both
sides, the sheet metal is bent upward to form a convex part with positive Gaussian curvature [19].
When the roll gap is uniform, the deformation process degenerates into a normal rolling process and
a cylindrical part with zero Gaussian curvature (2D surface) is formed. Furthermore, when the roll
gap is small on both sides and large in the middle, a saddle part with negative Gaussian curvature is
formed, as shown in Figure 1.

Metals 2020, 10, x FOR PEER REVIEW 3 of 17 

 

metal is turned into a three-dimensional sheet with certain curvatures in both transversal and 

longitudinal directions by controlling the bending profiles of upper and lower work rolls and the 

roll gap size. In order to form an uneven gap which is the key to the three-dimensional surface 

forming, the bending profiles of the two rolls should be a little different. Due to the large plastic 

deformation during the rolling process, the effect of elastic deformation can be ignored. Therefore, 

the curvature radius of the roll gap centerline is the same as the transversal curvature radius of the 

target. The longitudinal curvature is formed by the non-uniform roll gap. When the roll gap is small 

in the middle and large on both sides, the sheet metal is bent upward to form a convex part with 

positive Gaussian curvature [19]. When the roll gap is uniform, the deformation process degenerates 

into a normal rolling process and a cylindrical part with zero Gaussian curvature (2D surface) is 

formed. Furthermore, when the roll gap is small on both sides and large in the middle, a saddle part 

with negative Gaussian curvature is formed, as shown in Figure 1. 

 

Figure 1. Schematic diagram of continuous roll forming. 

Figure 2 shows the process of continuous roll forming. First, the bending radii of upper and 

lower rolls are adjusted according to the transversal curvature radius of the target surface, and the 

sheet to be formed is placed between the two rolls. Then, the upper roll moves vertically downward, 

and the lower roll remains stationary, thereby forming an uneven roll gap. Next, the two work rolls 

rotate reversely around their own bending axes at the same angular speed. The sheet metal is 

continuously formed under the effect of rolling force and friction, and finally becomes a 

three-dimensional surface with double curvatures. 

 

Figure 2. Continuous roll forming process. 

2.2. Theoretical Model and Formulas Derivation of CRF 

The theoretical model and formulas derived in this paper are based on the following 

conditions: (1) because of the large plastic deformation in the rolling process, the influence of elastic 

deformation is ignored; (2) the thickness of the sheet is much smaller than the width, so the strain in 

the width direction is ignored, and the strain in the thickness direction is thought to be uniformly 

distributed. Therefore, the continuous roll forming can be treated as a plane strain problem [16]; (3) 

it is considered that the deformation process no longer follows the plane assumption, that is, the 

plane cross section becomes a curved surface after deformation. Figure 3 is the illustration of roll 

gap at the exit section. The size of the roll gap ( g ) at different positions is expressed in ( )h v , 

where v is the parameter coordinate in the transversal direction. In order to facilitate the analysis, 

the centerline of the roll gap described by ( )z g v  is simplified as an arc, and the radius of the arc 

Figure 1. Schematic diagram of continuous roll forming.

Figure 2 shows the process of continuous roll forming. First, the bending radii of upper and lower
rolls are adjusted according to the transversal curvature radius of the target surface, and the sheet to be
formed is placed between the two rolls. Then, the upper roll moves vertically downward, and the
lower roll remains stationary, thereby forming an uneven roll gap. Next, the two work rolls rotate
reversely around their own bending axes at the same angular speed. The sheet metal is continuously
formed under the effect of rolling force and friction, and finally becomes a three-dimensional surface
with double curvatures.
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2.2. Theoretical Model and Formulas Derivation of CRF

The theoretical model and formulas derived in this paper are based on the following conditions:
(1) because of the large plastic deformation in the rolling process, the influence of elastic deformation
is ignored; (2) the thickness of the sheet is much smaller than the width, so the strain in the width
direction is ignored, and the strain in the thickness direction is thought to be uniformly distributed.
Therefore, the continuous roll forming can be treated as a plane strain problem [16]; (3) it is considered
that the deformation process no longer follows the plane assumption, that is, the plane cross section
becomes a curved surface after deformation. Figure 3 is the illustration of roll gap at the exit section.
The size of the roll gap (Ωg) at different positions is expressed in h(v), where v is the parameter
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coordinate in the transversal direction. In order to facilitate the analysis, the centerline of the roll
gap described by z = g(v) is simplified as an arc, and the radius of the arc is indicated by ρT.
The longitudinal curvature of three-dimensional sheet metal at different position is denoted by ρl

−1(v),
and ρL = ρl(v)|v=0 . Furthermore, ρT and ρL are the principal curvature radii in the transversal and
longitudinal directions, respectively.

The previous formulas are derived based on plane assumption [16,23], and the longitudinal strain
is divided into membrane strain and bending strain. The longitudinal strain εl can be denoted as

εl = a0 + a1y + a2z (y, z ∈ Ωg) (1)

From Equation (1), a0, a1 and a2 can be easily found [23,24], that is
a0 = εm − a1y0 − a2z0

a1 = ρl
−1 sinα

a2 = ρl
−1 cosα

(2)

where y0 =
∫

Ωg
ydA/

∫
Ωg

dA, z0 =
∫

Ωg
zdA/

∫
Ωg

dA, and α is the angle between the bending neutral axis
and the y-axis.

The expression of membrane strain is

εm =

∫
A
εldA/A (3)

where A is the area of the roll gap.
When the roll gap is symmetrical about the z-axis, α = 0. Thus, Equation (1) can be written as

εl = a0 + ρl
−1z(y, z ∈ Ωg) (4)

According to Equation (4), the longitudinal strain is a linear function of height coordinate z.
The constant term is the membrane strain, which represents the overall translation of the cross section.
The first-order term is the bending strain representing the overall rotation of the cross section around
the neutral axis. The slope of εl − z line is the longitudinal curvature of the three-dimensional surface.
It can be seen that the longitudinal curvature calculated by Equation (4) is a fixed value. However,
for a three-dimensional surface formed by continuous roll forming, the longitudinal curvature varies at
different positions of the cross section, so the formula derived in view of plane assumption has a large
error in most cases. On this basis, the formula is modified in this paper. The longitudinal curvature is
assumed to be a linear function varying with the coordinates rather than a constant, and then more
practical formulas are deduced.
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2.3. Modification of the Formula for Calculating the Longitudinal Curvature Radius of Convex Surface

For convex surface before modification, the longitudinal strain is a linear subtraction function of
the height coordinate, as shown in the black dotted line in Figure 4. Subscript e represents a convex
surface. Thus, Equation (4) can be written as

εle = εmax −
1
ρl

z (5)

Suppose that the longitudinal curvature is a linear function of the height coordinate, that is

ρle
−1(v) = bz + c (6)

Taking Equation (6) into Equation (5), the expression of longitudinal strain can be denoted by

εle = −bz2
− cz + εmax (7)

The relationship between the longitudinal curvature and the longitudinal strain can be expressed as

ρle
−1(v) = −

1
2
εle
′ +

1
2

c (8)

It can be seen from Equation (7) that the longitudinal strain is a quadratic function of the height
coordinate, which shows that the plane assumption is not tenable. The longitudinal strain can not
only be divided into membrane strain and bending strain, but also includes a secondary compensation
strain, which together with the first-order bending strain determines the longitudinal bending of
surfaces. The εle − z curve is shown as a black solid line in Figure 4. On the cross section of sheet metal,
the maximum strain difference and the maximum height difference are given by{

εd = εmax − εmin
zd = zmax − zmin

(9)

where εmax and εmin are the maximum and minimum values of longitudinal strain on the cross section,
respectively.

The point on the symmetry axis of quadratic function curve is a characteristic point. The symmetry
axis of the εle − z curve is represented by z = nzd(n < 0).
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For convex surfaces, the longitudinal curvature radius at the center of the sheet metal is the largest,
and the closer to the edge, the smaller the longitudinal curvature radius. Therefore, b > 0 and c > 0 can
be inferred. The longitudinal strain at the center and edge are expressed as
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{
εle = εmax, z = zmin = 0
εle = εmin, z = zmax = ρT(1− cosθ0)

(10)

where θ0 is the longitudinal bending angle.
From Equation (7) to Equation (10), the parameters b and c can be solved as follows: b = −

εd
(2n−1)zd

2

c = 2nεd
(2n−1)zd

(11)

Substituting Equation (11) into Equation (7), the longitudinal strain can be written as

εle =
εd

(2n− 1)zd
2 z2
−

2nεd

(2n− 1)zd
z + εmax (12)

At the same time, the longitudinal curvature radius can be obtained by

ρle(v) =
2nzd − zd
2nzd − z

ρl
∗ (13)

where ρl
∗ = zd/εd is the expression of the longitudinal curvature radius before correction.

The longitudinal curvature radius at z = 0 can be expressed as

ρL = (1−
1

2n
)ρl
∗ (14)

To determine the value of n, a large number of numerical simulations have been carried out on
convex surfaces. The transversal curvature radii are taken as 800~1000 mm, and the compression
ratios are taken as 3~7%. The curvature radius of the longitudinal centerline ρL is measured and the
longitudinal radius before correction ρl

∗ is calculated. It is found that the ratio of the two is close to a
constant under the condition of different compression ratios and transversal curvature radii. Let ke be
the ratio, then ke = 1.110 is determined through numerical simulation and calculation, as shown in the
black solid line in Figure 5. The compression ratio is expressed as δ. Thus, the value of n is determined
as −4.55. Substituting n into Equations (12) and (13), the calculation formulas of longitudinal strain
and longitudinal curvature radius under the condition of transversal curvature radii of 800~1000 mm
and compression ratios of 3~7% are as follows:

εle = −0.099
εd

zd
2 z2
− 0.901

εd
zd

z + εmax (15)

ρle(v) =
zd

0.901zd+0.099z
ρl
∗ (16)

Neglecting the strain in the width direction and elastic deformation, together combining with the
volume invariance law of plastic deformation, the roll gap can be expressed as

h(v) = H exp(−εl) (17)

where H is the original thickness of the sheet.
Taking Equation (15) into Equation (17), the expression of the roll gap for convex surface is

as follows:
he(v) = H exp(0.099

εd

zd
2 z2 + 0.901

εd
zd

z− εmax) (18)
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2.4. Modification of the Formula for Calculating the Longitudinal Curvature Radius of Saddle Surface

Before modification, the longitudinal strain of a saddle surface is a linear increasing function of
the height coordinate, as shown by the red dotted line in Figure 4. Subscript s represents the saddle
surface. Thus, Equation (4) can be rewritten as

εls = εmin +
1
ρl

z (19)

It is still assumed that the longitudinal curvature of saddle surface is a linear function of the z
coordinate, which can be denoted by

ρls
−1(v) = pz + q (20)

Therefore, the expression of longitudinal strain is

εls = pz2 + qz + εmin (21)

For saddle-shaped surfaces, the relationship between the longitudinal strain and the longitudinal
curvature can be expressed as

ρls
−1(v) =

1
2
εls
′ +

1
2

q (22)

The actual εls − z curve is shown as a red solid line in Figure 4. Let the symmetry axis of εls − z
curve be z = mzd(m > 0).

The longitudinal curvature radius at the center of saddle surface is the smallest, and the closer to
the edge of the sheet, the greater the longitudinal curvature radius. Hence, it can be inferred that p < 0
and q > 0. The longitudinal strain at the center and edge of the sheet metal is given as{

εls = εmin, z = zmin = 0
εls = εmax, z = zmax = ρT(1− cosθ0)

(23)

From Equation (21) to Equation (23), it is found that the expressions of p and q can be written
as follows:  p = −

εd
(2m−1)zd

2

q =
2mεd

(2m−1)zd

(24)

Thus, the longitudinal strain and curvature radius can be given by

εls = −
εd

(2m− 1)zd
2 z2 +

2mεd

(2m− 1)zd
z + εmin (25)
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ρls(v) =
2mzd − zd
2mzd − z

ρl
∗ (26)

The longitudinal curvature radius at z = 0 for saddle surface can be expressed as

ρL == (1−
1

2m
)ρl
∗ (27)

A lot of numerical simulations are carried out by setting the transversal curvature radii of saddle
surface as 800~1000 mm and the compression ratios as 3~7%. The radius of the longitudinal centerline
ρL is measured and the theoretical value ρl

∗ is calculated using the formula before modification. Let ks

be the ratio of ρL and ρl
∗, and it is found that ks is close to a constant of 0.913 under different transversal

curvature radii and compression ratios, as shown in the red solid line in Figure 5. Thus, it can be
inferred that m = 5.75. Therefore, the final expressions of longitudinal strain and longitudinal curvature
radius for saddle surface under the condition of transversal curvature radii of 800~1000 mm and
compression ratios of 3~7% can be expressed as

εls = −0.095
εd

zd
2 z2 + 1.095

εd
zd

z + εmin (28)

ρls(v) =
zd

1.095zd − 0.095z
ρl
∗ (29)

Taking Equation (28) into Equation (17), the formula of roll gap for saddle surface can be given
as follows:

hs(v) = H exp(0.095
εd

zd
2 z2
− 1.095

εd
zd

z− εmin) (30)

3. Numerical Simulations for Convex and Saddle Surfaces

3.1. Finite Element Model

In order to verify the applicability of the modified formulas of longitudinal curvature radius,
the finite element models of convex and saddle surfaces are established by ABAQUS/explicit software,
and the relevant explicit dynamic analysis is carried out. It can be seen from Figure 6 that the upper
and lower work rolls are composed of segmented small rigid rolls, and a local coordinate system
is established for each rigid roll to ensure that the bending rolls can rotate around their own axes.
Each small roll with a radius of 7.5 mm and a width of 6 mm is meshed using bilinear quadrilateral
three-dimensional rigid element with four nodes, and the size of each unit is 0.5 mm × 0.5 mm.
The length, width and thickness of the sheet to be formed are 300, 270, and 2 mm, respectively, and the
material used in the simulation is 08 AL. The mechanical properties of 08 AL shown in Table 1 are
determined by the uniaxial tensile test. It is considered that the material follows Mises yield criterion
and conforms to the elastoplastic constitutive relationship with isotropic hardening. The friction
coefficient is taken as 0.2. For the purpose of making the results more accurate, the C3D8R element is
used to mesh the sheet metal. A large number of simulation results show that although the sheet metal
is a deformable body, the forming effect is better when its element size is larger than that of the rigid
work roll, so the element size of the sheet metal is set as 1.5 mm × 1.5 mm × 1 mm. Since the thickness
of the sheet is small, the strain value of each point in the cross section can be accurately captured by
using two elements in the thickness direction. In order to save computing resources, considering the
symmetry of the model, only 1/2 of the finite element model is established for calculation and analysis.

The difference between the finite element models of convex surface and saddle surface is only
that the roll gap is not the same. As mentioned before, the roll gap is small in the middle and large
on both sides for a convex surface, while the distribution of the roll gap for a saddle surface is the
opposite. Before and after the modification of the calculation formula of the longitudinal curvature
radius, the size of the roll gap changes slightly, as shown in Figure 7. Cases 1–3 are for convex surfaces
and Case 4 is for saddle surfaces.
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3.2. Simulation Results and Analysis for Convex Surface

In this study, the forming results of convex surfaces with a transversal curvature radius of
ρT = 800 mm and compression ratios of 5%, 6% and 7% are analyzed. The equation of the formed
convex surface can be expressed as

Se(u, v) =


{
ρL − ρT

[
(1− cos( v

ρT
)
]}

sin( u
ρL
)

ρT sin( v
ρT
)

ρL −
{
ρL − ρT

[
(1− cos( v

ρT
)
]}

cos( u
ρL
)

 (31)

where u is the parameter coordinate in the longitudinal direction.
The theoretical values of longitudinal curvature radius are calculated by the formula before and

after correction, respectively, and compared with the actual forming results. The results are shown in
Table 2.
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Table 2. Error comparison of longitudinal curvature radius for convex surface.

δ z/mm
Before Modification After Modification

Calculated
Value/mm

Simulated
Value/mm Error Calculated

Value/mm
Simulated
Value/mm Error

0.05 0 227.46 263.48 13.67% 252.45 263.94 4.35%
0.05 5.74 221.73 256.78 13.65% 239.31 256.58 6.73%
0.05 11.47 215.99 252.41 14.43% 227.46 248.16 8.34%
0.06 0 189.21 218.13 13.26% 209.99 222.23 5.50%
0.06 5.74 183.47 211.60 13.29% 199.06 211.41 5.84%
0.06 11.47 177.74 208.32 14.68% 189.21 207.30 8.73%
0.07 0 161.88 182.12 11.11% 179.67 186.16 3.49%
0.07 5.74 156.15 179.36 12.94% 170.31 180.35 5.56%
0.07 11.47 150.41 176.18 14.63% 161.88 175.91 7.97%

It can be seen from Table 2 that the relative error after correction is significantly reduced compared
with that before correction, and the error of each position of the surface is controlled within 9%,
which indicates that the corrected formula is more in line with the actual forming results. Figure 8
shows the error nephograms under different compression ratios (δ). Both before and after the correction,
the error at the end region of the convex surface formed by continuous roll forming is significantly
greater than that at the middle region, which is caused by the straight edge effect. Specifically,
the longitudinal bending of sheet metal is the result of the interaction of longitudinal stresses with
different magnitude in the transversal direction. At the beginning and end of forming, due to the law
of minimum resistance, the metal in the stressed area flows to the respective adjacent end, so that the
interaction of longitudinal stresses is not enough to make both ends of sheet metal reach the bending
degree of the middle region.
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The simulated convex surfaces deviate from the target to a large extent before modification,
and the modified formula makes the shape and size of the formed surfaces more consistent with
the target, as shown in Figure 8, in which the proportion of the green area of the surfaces increases
obviously. In addition, it is found that the longitudinal curvature radius decreases with the increase
in the compression ratio, which can be explained by the modified Formula (16). With the increase in
compression ratio, the longitudinal strain difference εd between the center and the edge of the sheet
increases and a smaller ρl∗ is obtained, thus the longitudinal curvature radius decreases.
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In order to verify the relationship between strain and coordinate, the z-coordinate and longitudinal
strain values of each node on the transversal centerline of the convex surface before and after
modification are extracted, as shown in Figure 9a. Since the roll gap has little change before and after
correction, the strain before and after correction is very close when the compression ratio is the same.
The strain points in the diagram are distributed near the blue quadratic curve, which proves that the
strain is indeed a quadratic function of coordinates.
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3.3. Simulation Results and Analysis for Saddle Surface

The formation of saddle surfaces with a compression ratio of 5% and transversal curvature radii
of 800, 850 and 900 mm are studied. The equation for the target saddle surface can be written as

Ss(u, v) =


{
ρL + ρT

[
(1− cos( v

ρT
)
]}

sin( u
ρL
)

ρT sin( v
ρT
){

ρL + ρT
[
(1− cos( v

ρT
)
]}

cos( u
ρL
) − ρL

 (32)

The theoretical values of the longitudinal curvature radius of saddle surfaces before and after
correction are calculated and compared with the values obtained from the simulation. The results are
shown in Table 3.

Table 3. Error comparison of longitudinal curvature radius for saddle surface.

Transversal
Radius/mm

z/mm
Before Modification After Modification

Calculated
Value/mm

Simulated
Value/mm Error Calculated

Value/mm
Simulated
Value/mm Error

800 0 227.46 212.97 6.81% 207.73 208.58 0.41%
800 5.74 233.20 219.00 6.48% 217.15 215.84 0.61%
800 11.47 238.93 224.78 6.30% 227.46 221.70 2.60%
850 0 213.91 199.89 7.02% 195.35 194.81 0.28%
850 5.39 219.30 205.51 6.71% 204.21 201.76 1.21%
850 10.79 224.70 210.79 6.60% 213.91 208.43 2.63%
900 0 201.89 177.83 13.53% 184.37 172.59 6.83%
900 5.09 206.98 183.69 12.68% 192.73 181.52 6.18%
900 10.18 212.07 188.06 12.76% 201.89 188.13 7.31%

Due to the slight difference in roll gap, the simulated longitudinal curvature radius of saddle
surfaces after correction is different from that before correction, but the change is small. From Table 3,
it can be seen that the relative error of the longitudinal curvature radius is evidently reduced after
correction, from the original 6.30~13.53% to 0.28~7.31%. Figure 10 shows the error nephograms
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under different transversal curvature radii, indicating the error change more intuitively. As shown in
Figure 10, saddle surfaces also have a straight edge effect. The modified saddle surface is closer to the
target, and this can significantly increase the material utilization. With the increase in the transversal
curvature radius, the longitudinal curvature radius decreases correspondingly, which can be explained
by the modified Formula (29) as follows: the larger the transversal curvature radius is, the smaller
the height difference zd between the center and the edge of the sheet metal is, thus the smaller the
longitudinal curvature radius is. Figure 9b shows that the strain is a quadratic function of coordinates
for saddle surface. Due to the small change in roll gap, the strain before and after modification is very
close. The strain points under each transversal curvature radius are distributed near the blue quadratic
curve. Therefore, there is a certain error in calculating the longitudinal curvature radius by using the
linear relationship between strain and coordinates before modification.Metals 2020, 10, x FOR PEER REVIEW 13 of 17 
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The simulations of convex and saddle surfaces show that the modified formulas are more
suitable for continuous roll forming. If the transversal curvature and longitudinal curvature of the
three-dimensional surface are given for CRF, the ideal surface can be obtained by the following steps.
First, adjust the centerline radius of the roll gap to the transversal curvature radius of the target surface,
and then calculate the size of the roll gap according to the Equation (18) or Equation (30) to control the
position of the upper and lower work rolls. Finally, continuous rolling is carried out in order to get the
ideal surface.

4. Experimental Verifications

4.1. Experimental Equipment of CRF

The experimental equipment for continuous roll forming is shown in Figure 11. There are
31 shape adjusting units on the top and bottom of the equipment, respectively, which are used to
adjust the bending shapes of the work rolls and keep the shapes unchanged during the process.
The diameter of each roll is 10 mm. Such a small diameter allows the roll to rotate around its own
bending axis. The power source is a three-phase asynchronous motor, which makes the work rolls
rotate synchronously and reversely. The width of the sheet that can be formed with this equipment is
more than 500 mm.
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In order to verify the validity of the modified formulas, convex and saddle surfaces with a
transversal curvature radius of 800 mm and a compression ratio of 5% are formed. The theoretical
values of the longitudinal curvature radius are calculated by the formulas before and after modification,
respectively, and compared with the actual forming results. The formed convex part and saddle part
are shown in Figure 12. It can be seen that the forming effect of three-dimensional parts is good and
there are no wrinkles, dimples or other defects.Metals 2020, 10, x FOR PEER REVIEW 14 of 17 
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4.2. Analysis of Experimental Results

The three-dimensional point cloud of the experimental part is obtained by a binocular stereo
vision measurement device. The difference between the actual forming part and the target part can
be compared by importing the point cloud into the reverse engineering software Geomagic Qualify.
The profiles at different positions in the transversal and longitudinal directions are taken for analysis.
Figure 13 shows the location of different profiles of convex and saddle surfaces. Among them, BB1,
AA1, and CC1 correspond to x = 0 and x = ±100 mm, respectively, while DD1 and EE1 correspond to
y = 0 and y = −90 mm, respectively. The normal absolute errors can be seen from Figure 14, in which
AA1*~EE1* indicate the errors before modification, and AA1~EE1 show the errors after modification.

Figure 14 indicates that the normal absolute errors of longitudinal profiles DD1 and EE1 are
significantly reduced after correction. The error range of DD1 for convex surface is reduced from
0.0583~7.9917 mm to−1.1956~2.9969 mm, and the error range of EE1 is changed from 0.9971~10.4136 mm
to −0.2572~5.1413 mm. For saddle surface, the error range of DD1 is reduced from −0.1509~4.7866 mm
to −2.2852~1.8914 mm, and that of EE1 is changed from 1.5844~5.6089 mm to 0.0699~3.2534 mm.
The decrease in error fluctuation illustrates that the forming results are more stable. It can also be seen
from the figure that the errors of the transversal profiles are prominently reduced, and the transversal
error at each position after correction is controlled within 3.7260 mm for convex surfaces and 3.8668 mm
for saddle surfaces. Similarly to the simulation results, the error in the end region is larger than that
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in the middle region. The above error sources may be the elastic deformation of the rolls and the
imprecise adjustment of the roll gap.
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5. Conclusions

CRF is a new technology for forming 3D curved surface in recent years. In order to predict the
longitudinal curvature radius of the sheet in this process more accurately, the theoretical derivation
is carried out, and the applicability of the formulas is verified by the numerical simulation and
experimental analysis. The specific conclusions can be summarized as follows:

(1) The principle of CRF is discussed, and the mechanism of longitudinal bending of sheet metal in
the forming process is explained. It is proposed that the longitudinal strain of sheet metal can be
divided into not only membrane strain and first-order bending strain, but also a secondary-order
compensation strain which together with bending strain determines the longitudinal curvature
of the sheet.
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(2) The formulas for calculating the longitudinal curvature radius of convex and saddle surfaces
with the range of transversal curvature radii of 800~1000 mm and compression ratios of 3~7%
are derived, and the mathematical equations of the convex and saddle surfaces to be formed
are given.

(3) The roll gap is the key factor to determine the forming quality and precision of 3D surface in
CRF. When the roll gap is small in the middle and large on both sides, the sheet metal is bent
upward to form a convex surface, and a saddle surface will be formed if the distribution of the
roll gap is the opposite. According to the new calculation formulas of longitudinal curvature
radius, the design method of the roll gap for convex and saddle surfaces is deduced, and the roll
gap dimensions at different positions are quantitatively given based on the new method.

(4) The superiority of the new formulas is verified by numerical simulation. From the numerical
simulation results, it is found that for convex surfaces, the error of the longitudinal centerline is
reduced from 13.67%, 13.26% and 11.11% to 4.35%, 5.50% and 3.49% when the transversal curvature
radius is 800 mm and the compression ratios are 5%, 6% and 7%, respectively. For saddle-shaped
parts, when the compression ratio is 5% and the transversal curvature radii are 800, 850 and
900 mm, respectively, the error of the longitudinal centerline is reduced from the original 6.81%,
7.02%, and 13.53% to 0.41%, 0.28% and 6.83%, respectively.

(5) The viewpoint of this paper is further verified by the CRF experiment. When the transversal
curvature radius is 800 mm and the compression ratio is 5%, the normal absolute error ranges
of the profile at 90 mm from longitudinal centerline (y = −90 mm) for convex and saddle
surfaces are reduced from 0.9971~10.4136 mm and 1.5844~5.6089 mm before modification
to −0.2572~5.1413 mm and 0.0699~3.2534 mm after modification, which shows that the new
calculation formulas of longitudinal curvature radius are of great significance for continuous
roll forming.

Author Contributions: Conceptualization, J.G., Z.C. and L.S.; methodology, J.G. and Z.C.; software, J.G. and
X.Z.; validation, J.G., Z.C. and D.H.; investigation, J.G., Z.C. and D.H.; writing—original draft preparation, J.G.;
writing—review and editing, J.G. and D.H.; funding acquisition, Z.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No. 51975248).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abebe, M.; Park, J.W.; Kim, J.; Kang, B.S. Numerical verification on formability of metallic alloys for skin
structure using multi-point die-less forming. Int. J. Precis. Eng. Manuf. 2017, 18, 263–272.

2. Kim, D.K.; Park, D.K.; Kim, J.H.; Kim, S.J.; Kim, B.J.; Seo, J.K.; Paik, J.K. Effect of corrosion on the ultimate
strength of double hull oil tankers—Part I: Stiffened panels. Struct. Eng. Mech. 2012, 42, 507–530. [CrossRef]

3. Saidi, B.; Moreau, L.G.; Mhemed, S.; Cherouat, A.; Adragna, P.-A.; Nasri, R. Hot incremental forming of
titanium human skull prosthesis by using cartridge heaters: A reverse engineering approach. Int. J. Adv.
Manuf. Technol. 2019, 101, 873–880. [CrossRef]

4. Waldmann, D.; May, A.; Thapa, V.B. Influence of the sheet profile design on the composite action of slabs
made of lightweight woodchip concrete. Constr. Build. Mater. 2017, 148, 887–899. [CrossRef]

5. Li, M.Z.; Cai, Z.Y.; Sui, Z.; Yan, Q.G. Multi-point forming technology for sheet metal. J. Mater. Process. Technol.
2002, 129, 333–338. [CrossRef]

6. Xing, J.; Li, M.Z.; Cheng, Y.Y.; Wang, B.L.; Yang, Z.; Wang, Y. Effect of the arrangement of the punch units in
multi-point stretch forming process. Int. J. Adv. Manuf. Technol. 2016, 86, 2309–2317. [CrossRef]

7. Yu, J.Q.; Li, Y.; Teng, F.; Liang, J.C.; Lin, X.F.; Liang, C.; Chen, G.Y.; Sun, G.P. Research on the cross section
forming quality of three-dimensional multipoint stretch forming parts. Adv. Mater. Sci. Eng. 2018, 2018,
4265617. [CrossRef]

8. Tsuji, N.; Saito, Y.; Utsunomiya, H.; Tanigawa, S. Ultra-fine grained bulk steel produced by accumulative
roll-bonding (ARB) process. Scr. Mater. 1999, 40, 795–800. [CrossRef]

http://dx.doi.org/10.12989/sem.2012.42.4.507
http://dx.doi.org/10.1007/s00170-018-2975-9
http://dx.doi.org/10.1016/j.conbuildmat.2017.04.193
http://dx.doi.org/10.1016/S0924-0136(02)00685-4
http://dx.doi.org/10.1007/s00170-016-8367-0
http://dx.doi.org/10.1155/2018/4265617
http://dx.doi.org/10.1016/S1359-6462(99)00015-9


Metals 2020, 10, 1249 16 of 16

9. Lin, Y.H.; Hua, M. Influence of strain hardening on continuous plate roll-bending process. Int. J.
Non-Linear Mech. 2000, 35, 883–896. [CrossRef]

10. Yoon, S.J.; Yang, D.Y. Development of a highly flexible incremental roll forming process for the manufacture
of a doubly curved sheet metal. CIRP Ann.-Manuf. Technol. 2003, 52, 201–204. [CrossRef]

11. Shim, D.S.; Yang, D.Y.; Kim, K.H.; Han, M.S.; Chung, S.W. Numerical and experimental investigation into
cold incremental rolling of doubly curved plates for process design of a new LARS (line array roll set) rolling
process. CIRP Ann.-Manuf. Technol. 2009, 58, 239–242.

12. Cai, Z.Y.; Lan, Y.W.; Li, M.Z.; Hu, Z.Q.; Wang, M. Continuous sheet metal forming for doubly curved surface
parts. Int. J. Precis. Eng. Manuf. 2012, 13, 1997–2003. [CrossRef]

13. Cai, Z.Y.; Li, M.Z.; Lan, Y.W. Three-dimensional sheet metal continuous forming process based on flexible
roll bending: Principle and experiments. J. Mater. Process. Technol. 2012, 212, 120–127. [CrossRef]

14. Gong, X.P.; Li, M.Z.; Hu, Z.Q.; Cai, Z.Y. Research on continuous multi-point forming technology for
three-dimensional sheet metal. Int. J. Mater. Prod. Technol. 2010, 38, 210–222. [CrossRef]

15. Li, M.Z.; Cai, Z.Y.; Li, R.J.; Lan, Y.W.; Qiu, N.J. Continuous forming method for three-dimensional surface
parts based on the rolling process using bended roll. J. Mech. Eng. 2012, 48, 44–49. [CrossRef]

16. Cai, Z.Y.; Li, M.Z. Mechanical mechanism of continuous roll forming for three-dimensional surface parts and
the calculation of bending deformation. J. Mech. Eng. 2013, 49, 35–41.

17. Li, R.J.; Li, M.Z.; Qiu, N.J.; Cai, Z.Y. Surface flexible rolling for three-dimensional sheet metal parts. J. Mater.
Process. Technol. 2014, 214, 380–389.

18. Liu, P.; Ku, T.W.; Kang, B.S. Shape error prediction and compensation of three-dimensional surface in
flexibly-reconfigurable roll forming. J. Mech. Sci. Technol. 2015, 29, 4387–4397. [CrossRef]

19. Liu, K.; Fu, W.Z.; Li, M.Z.; Li, Y.; Yi, Z. Research on flexible rolling process of three-dimensional surface part
using auxiliary rolls. Int. J. Adv. Manuf. Technol. 2019, 103, 1433–1442. [CrossRef]

20. Park, J.W.; Kang, B.S. Comparison between regression and artificial neural network for prediction model of
flexibly reconfigurable roll forming process. Int. J. Adv. Manuf. Technol. 2019, 101, 3081–3091.

21. Ghiabakloo, H.; Park, J.W.; Kil, M.G.; Lee, K.; Kang, B.S. Design of the flexibly-reconfigurable roll forming
process by a progressively-improving goal seeking approach. Int. J. Mech. Sci. 2019, 157–158, 136–149.
[CrossRef]

22. Cai, Z.Y.; Li, M.Z. Principle and theoretical analysis of continuous roll forming for three-dimensional surface
parts. Sci. China-Technol. Sci. 2013, 56, 351–358. [CrossRef]

23. Cai, Z.Y.; Wang, M.; Li, M.Z. Study on the continuous roll forming process of swept surface sheet metal part.
J. Mater. Process. Technol. 2014, 214, 1820–1827. [CrossRef]

24. Cai, Z.Y.; Guan, D.B.; Wang, M.; Li, M.Z. A novel continuous roll forming process of sheet metal based on
bended rolls. Int. J. Adv. Manuf. Technol. 2014, 73, 1807–1814. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0020-7462(99)00065-7
http://dx.doi.org/10.1016/S0007-8506(07)60565-4
http://dx.doi.org/10.1007/s12541-012-0263-4
http://dx.doi.org/10.1016/j.jmatprotec.2011.08.014
http://dx.doi.org/10.1504/IJMPT.2010.032114
http://dx.doi.org/10.3901/JME.2012.18.044
http://dx.doi.org/10.1007/s12206-015-0937-9
http://dx.doi.org/10.1007/s00170-019-03644-y
http://dx.doi.org/10.1016/j.ijmecsci.2019.04.020
http://dx.doi.org/10.1007/s11431-012-5081-5
http://dx.doi.org/10.1016/j.jmatprotec.2014.03.033
http://dx.doi.org/10.1007/s00170-014-5976-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Forming Theory of CRF Based on Two Bending Rolls 
	Continuous Roll Forming Process 
	Theoretical Model and Formulas Derivation of CRF 
	Modification of the Formula for Calculating the Longitudinal Curvature Radius of Convex Surface 
	Modification of the Formula for Calculating the Longitudinal Curvature Radius of Saddle Surface 

	Numerical Simulations for Convex and Saddle Surfaces 
	Finite Element Model 
	Simulation Results and Analysis for Convex Surface 
	Simulation Results and Analysis for Saddle Surface 

	Experimental Verifications 
	Experimental Equipment of CRF 
	Analysis of Experimental Results 

	Conclusions 
	References

