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Abstract: Electron beam melting (EBM) is a relatively new process in three-dimensional (3D) printing
to enable rapid manufacturing. EBM can manufacture metallic parts with thin walls, multi-layers,
and complex internal structures that could not otherwise be produced for applications in aerospace,
medicine, and other fields. A 3D transient coupled thermomechanical finite element (FE) model
was built to simulate the temperature distribution, distortion, and residual stresses in electron beam
additive manufactured Ti-6Al-4V parts. This research enhances the understanding of the EBM-based
3D printing process to achieve parts with lower levels of residual stress and distortion and hence
improved quality. The model used a fine mesh in the layer deposition zone, and the mesh size was
gradually increased with distance away from the deposits. Then, elements are activated layer by
layer during deposition according to the desired material properties. On the top surface, a Gaussian
distributed heat flux is used to model the heat source, and the temperature-dependent properties
of the powder and solid are also included to improve accuracy. The current simulation has been
validated by comparing the FE distortion and temperature results with the experimental results and
other reported simulation studies. The residual stress results calculated by the FE analysis were also
compared with the previously reported simulation studies on the EBM process. The results showed
that the finite element approach can efficiently and accurately predict the temperature field of a part
during the EBM process and can easily be extended to other powder bed fusion processes.

Keywords: additive manufacture; Ti-6Al-4V; finite element analysis; temperature distribution;
distortion; residual stress; experimental validation

1. Introduction

Due to current rapid changes in technology, manufacturing engineering is receiving a lot of
attention. Manufacturing methods and designs have been improved to make life easier and more
straightforward, especially concerning technologies that allow for accurate and fast manufacturing.
Electron beam melting (EBM) is a relatively new additive manufacturing technology based on the
powder bed fusion process [1]. The components can be produced on a layer-by-layer basis by melting
the powder metal using an electron beam. The energy density of an electron beam is high enough to
melt a wide variety of metals and alloys. The material then cools and solidifies to form a fully dense
geometry [2]. A unique feature of EBM is its ability to fabricate complex geometries and structures
(e.g., meshed, porous, cellular). Schwerdtfeger et al. used electron beam melting to manufacture a
unique structure that exhibited “auxetic behavior” a negative Poisson’s ratio, and high impact and
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shear resistance [3]. EBM processes have the potential to work with many material classes, for example,
aluminum alloys [4], steel (H13) [5], cobalt-based super-alloys [6], and titanium alloys [7]. The material
used in this study is Ti-6Al-4V, which has many applications, such as medical and aerospace, due to
its properties, including good biocompatibility and corrosion resistance, low density, human allergic
response, and mechanical strength [8].

Despite a great interest in obtaining part accuracy using the electron beam melting process [9],
there have been only a few studies reporting on the geometric aspects of electron beam melting.
The accuracy of the EBM parts is greatly affected by the residual stresses and thermal distortions
resulting from rapid heating and cooling cycles [10], which are not well understood. These are
important issues because they severely degrade the dimensional accuracy and mechanical performance
of the components. It is crucial to study, understand, and control distortion and residual stresses
through the simulation of the additive manufacturing process. Some methods have been applied to
decrease distortion and residual stresses in parts produced by similar processes (e.g., welding). These
methods include the use of appropriate design approaches, such as presetting/offsetting, mechanical
restraint, preheating, limiting heat input, controlling process parameters, and applying mechanical
stress relief techniques [11].

Research work has been undertaken to investigate the thermal phenomena of the EBM process
with the help of finite element (FE) modeling. Some studies have been carried out on this issue,
such as Denlinger et al. [12] developed a FE model for predicting the in situ thermomechanical
response of Ti-6Al-4V during the electron beam melting process. The 3D thermomechanical analysis is
performed to model the distortion, residual stress in the workpiece, and experimental temperature in
situ. The distortion measurements were performed during the deposition of a single-bead-wide of
16 layers to validate the model. Both in situ deformation and post-process residual stress measurements
indicate that stress relaxation occurs during Ti-6Al-4V deposition. The results showed that failure to
apply stress relaxation in the constituent model leads to errors in residual stress and situ deformation
predictions of more than 500% when compared to experimental measurements. Cheng et al. [13]
developed a FE model to simulate the thermomechanical process in EBM to build overhanging
parts. A two-dimensional thermomechanical model was developed by using ABAQUS to simulate
residual stress distribution, temperature, and overhanging part model distortions. The process
parameters included in the FE model were beam scanning speed, beam diameter, and beam current.
Thermomechanical characteristics such as thermal gradients and thermal stresses around the overhang
build were evaluated and analyzed. The main results showed that the overhang areas have a higher
maximum temperature, higher tensile stress, and greater distortion than the areas above the solid
base plate.

Ninggang [14] utilized a 3D FE model in ABAQUS to study the complex thermal process of
Electron-beam additive manufacturing (EBAM). The finite element model was developed to simulate
the transfer of transit heat in one part during EBAM under a moving heat source. The selected
parameters in the FE model included efficiency coefficient, voltage, current, penetration, and beam
diameter. The key findings include the following: (1) concerning the state of the powder layer, the size
of the melt pool is greater with higher maximum temperature compared to a solid layer, which indicates
the importance of taking powder into account for the accuracy of the model. (2) The diameter of the
larger electron beam will reduce the maximum temperature in the melting trough, and temperature
gradients can be much smaller, which gives a lower cooling rate. In another study [15], a 3D transient
fully coupled thermomechanical model was built to study the deformation and residual stress in the
EBM of Ti-6Al-4V plates. Single-layer, 6-layers, and 11-layers were optimized using both simulations
and experiments to ensure the model accuracy and provide confidence in using simulations to optimize
the process. The process parameters used in this study were current, voltage, and speed. The results
showed that preheating at least twice is an effective way to reduce both distortion and residual stresses.
The results also showed that, instead of distortion accumulating in a monotonous manner as more



Metals 2020, 10, 1151 3 of 29

layers are added, the distortion increases as the first 2–3 layers are deposited, and then decreases with
the deposition of additional layers.

Umer et al. [16] used a two-dimensional thermomechanical FE model to predict the stresses
and distortions associated with the manufacture of overhang structures by EBM for Ti-6Al-4V alloys.
The EBM process parameters were (Beam current, speed, voltage and etc.). Various support structure
geometries were designed and evaluated. The key findings of this study are as follows. (1) Temperature
predictions during each accumulated layer could be useful in determining the phase transform from
powder to the liquid and from liquid to solid. (2) The residual stress patterns of the deposited layers
with supports were found to be completely different from the unsupported model. Also, the overhang
regions showed fluctuating stresses from tensile to compression.

It can be seen from the reviewed literature that very few papers have reported on the modeling
of the electron beam melting process. It is worth mentioning that all the reported FE models on the
EBM are focused on thick parts (>1 mm). At the same time, thin-walled parts (<1 mm) show different
behavior during EBM as compared to the thick parts. Furthermore, none of the reported models
consider the combined effect of real conditions, such as preheating temperature, the energy of the
electron beam, cooling time, beam scanning path, and beam speed, when applying the FE modeling
approach. The current study takes into consideration the real conditions, which were not incorporated
into the previous finite element based model for analyzing the EBM process. The objective of this work
is to develop a finite element model to study and understand the thermomechanical characteristics
of the thin-walled Ti-6Al-4V parts during the electron beam melting process. According to previous
studies, the thin-walled EBM parts have good stability to control the surface roughness [17,18]. The thin
wall EBM parts were selected due to their significant applications such as biomedical implants with a
very limited filling area [19]. A three-dimensional (3D) fully coupled temperature-displacement finite
element model is developed to simulate the thermomechanical behavior in the electron beam melting
of thin-walled Ti-6Al-4V components.

2. Materials and Methods

2.1. Finite Element Modeling

Finite element analysis was run using the commercial software ABAQUS 6.13 (Dassault
Systèmes, Paris, France) to simulate the temperature history, residual stresses distribution,
and distortion in multi-layer raster scanning and deposition during EBM of thin-walled Ti-6Al-4V
parts. The thermomechanical analysis was performed using a 3D transient, fully coupled
temperature-displacement approach. The finite element analysis package Abaqus/Standard was
used to simulate the electron beam melting process.

The model was divided into two sections; the stainless-steel base-plate (also known as the
substrate) and the powder layers of Ti-6Al-4V. Figure 1 shows a view of the FE model of the electron
beam melting process consisting of a base-plate and some layers of Ti-6Al-4V. The dimensions of
the base plate are 10 mm (length) × 3.6 mm (width) × 1.5 mm (height). The dimensions of each
powder layer are 5 mm (length) × 0.6 mm (width) × 0.05 mm (thickness). It should be noted that,
after the deposition of several layers, the width of the layers will become the thickness of the final
part. Further, the minimum thickness of a part that can be produced in the ARCAM AB machine is
0.6 mm. Furthermore, the thickness of 0.05 mm (50 µm) is the recommended layer deposition thickness
from ARCAM AB for producing Ti-6Al-4V parts. The 5 mm length of each layer was based on the
previous FE modeling studies reported on the EBM of Ti-6Al-4V [20]. The FE model was developed in
two configurations for studying the thermomechanical behavior of the thin-walled parts. In the first
configuration, the FE model consists of five EBM layers and was used to study the residual stresses and
temperature distributions in the deposited layers. In the second configuration, the FE model comprises
of fifteen EBM layers to study the distortion and variation of thermal gradient in the deposited layers.
It should be noted that the initial plan was to run the second configuration of the FE model with fifty
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EBM layers so that the distortion simulated in the FE model can be directly compared with the 2.5 mm
height EBM fabricated parts (50 layers).Metals 2020, 10, x FOR PEER REVIEW 4 of 28 
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Figure 1. FE model of the EBM process, (a) with five layers, (b) with fifteen layers.

2.1.1. Material Properties

It should be noted that the EBM process is a thermomechanical process, so the temperature- dependent
properties of the material must be used. In the current model, the temperature-dependent thermal and
mechanical properties of the base plate and Ti-6Al-4V are considered, as listed in Tables 1 and 2, respectively.
It should be noted that the main difference in the powder and solid Ti-6Al-4V is between the thermal
conductivity (see Table 2), other properties are almost the same as mentioned in [21]. Also, it can be
noticed in Table 2 that the thermal conductivity at T = 1950 K is quite high because the Ti-6Al-4V
transform to the liquid phase and exists as a liquid between 1950 < T < 2700 K, as reported by [22].
The thermal conductivity of the liquid Ti-6Al-4V is quite high as compared to the solid-state [22–24].
It should be noted that the melt pool dynamics depend on the EBM process parameters as well as
on the properties of the material used. However, the melt the pool is most sensitive to the thermal
conductivity for Ti-6Al-4V, as explained by [25].
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Table 1. Material properties for the 304 stainless steel base plate [26].

Temperature
(K)

Density
(kg/m3)

Heat Capacity
(J/(kg K))

Thermal Conductivity
(W/(m K))

Thermal Expansion
Coefficient (m/(m K))

Yield Strength
(MPa)

Young’s
Modulus (GPa) Poisson’s Ratio

273 0.0079 462 0.0146 1.7× 10−5 265 198.5 0.294
373 0.00788 496 0.0151 1.7× 10−5 218 193 0.295
473 0.00783 512 0.0161 1.8× 10−5 186 185 0.301
573 0.00779 525 0.0179 1.9× 10−5 170 176 0.31
673 0.00775 540 0.018 1.9× 10−5 155 167 0.318
873 0.00766 577 0.0208 2.0× 10−5 149 159 0.326

1073 0.00756 604 0.0239 2.0× 10−5 91 151 0.333
1473 0.00737 676 0.0322 2.1× 10−5 25 60 0.339
1573 0.00732 692 0.0337 2.1× 10−5 21 20 0.342
1773 0.00732 935 0.12 2.2× 10−5 10 10 0.388

Table 2. Material properties for Ti-6Al-4V [15,27].

Temperature
(K)

Density
(kg/m3)

Heat Capacity
(J/(kg K))

Thermal Conductivity
(W/(m K)) Solid

Thermal Conductivity
(W/(m K)) Powder [21]

Thermal Expansion
Coefficient (m/(m K))

Yield
Strength (MPa)

Young’s
Modulus (GPa)

Poisson’s
Ratio

293 4420 546 7 0.2 9× 10−6 850 102 0.345
400 4402 567 7.8 - 9.16× 10−6 720 101 0.35
500 4391 591 8.9 - 9.31× 10−6 680 95 0.355
600 4376 611 10.5 - 9.46× 10−6 630 91 0.36
700 4361 636 11.7 - 9.61× 10−6 590 85 0.365
800 4345 656 13 - 9.76× 10−6 540 80 0.37
900 4331 679 14.5 - 9.90× 10−6 490 75 0.375

1000 4319 699 16.2 - 1.01× 10−5 450 70 0.385
1100 4303 719 18.4 - 1.02× 10−5 400 65 0.395
1200 4289 733 20.1 - 1.04× 10−5 360 60 0.405
1300 4278 647 19.7 - 1.05× 10−5 315 35 0.43
1400 4264 664 21.7 - 1.06× 10−5 268 20 0.43
1950 4189 790 72 28.3 1.10× 10−5 20 10 0.43
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2.1.2. Initial and Boundary Conditions

The preheating temperature of 1003 K was applied as an initial condition to the base plate at t = 0
s as shown in Figure 2a. The preheating temperature was 1003 K, as reported in previous studies [13].
Moreover, all the external surfaces of the base plate and the deposited layers were assigned radiation
boundary conditions. Equation (1) shows the heat loss by radiation surrounding the layers

Q = −A·σ·ε
(
T4
− T4

a

)
(1)

where A is the surface area, σ is the Stefan–Boltzmann constant, ε is the emissivity, and Ta is the ambient
temperature. The negative sign indicates the heat loss due to radiation. The transient temperature
field T (x y z t) throughout the domain was obtained by solving the 3D heat conduction equation,
Equation (2)

ρC
∂T
∂t

=
∂
∂x

(
k
∂T
∂x

)
+

∂
∂y

(
k
∂T
∂y

)
+
∂
∂z

(
k
∂T
∂z

)
+ Q (2)

where T is the temperature, ρ is the density, C is the specific heat, k is the heat conductivity, and Q is
the internal heat generation per unit volume. For thermoelasticity, the materials expand or contract as
temperature changes; therefore thermal strain, which depends on current and initial temperatures,
is an important part of the total strain. The total strain in the component, εTotal can be represented as

εTotal = εp + εe + εT (3)

where εTotal,εp,εe, and εT are the total strain, plastic strain, elastic strain, and thermal strain, respectively.
However, the plastic strain (εp) was not computed in the current model, as the FE model was set to
perform the elastic thermal analysis during the EBM process. The constitutive equation for the stress
can be written as

a = C
(
εe + εT) (4)

where a is the stress and C is the fourth-order material stiffness tensor. To better illustrate the constitutive
law, the equation can be written in indicial notation as follow:

Qi j =
E

(1 + V)(1− 2V)
(Vδi jεkk+(1+v)ε j j −(1+v)α∆Tδi j

) (5)

where (i, j, k = 1, 2, 3), v is Poisson’s ratio, E is Young’s modulus, and δi j is the Kronecker delta.
The elastic behavior was modeled using the isotropic generalized Hooke’s law.
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The temperature-dependent material properties have been used to improve accuracy. Thermal
radiation is considered as the boundary condition, described by Newton’s law of cooling and the
Stefan-Boltzmann law, as the part is produced by EBM in a full vacuum. The ARCAM AB vacuum
system provides a basic pressure of 5 × 10−5 mbar or better throughout the entire building cycle.
During the process, the partial pressure of He is 4 × 10−3 mbar. This confirms a clean and controlled
building environment, which is important for maintaining the chemical specifications of building
materials. However, the convection between the environment and the powder layers due to the
vacuum is not included. Hence, the radiation is taken to be the heat transfer between part/powder and
the surroundings. Radiation from the side of the base plate, sides of layers, and any free surfaces on
the model have been used, as shown in Figure 2b.

2.1.3. Electron Beam Modeling

The heat distribution from the electron beam was simulated as a conical moving heat source with
a Gaussian distributed intensity at each depth [14]. In this research, the heat source was modeled as
Equation (6). The intensity decreases with an increase in penetration depth.

S(x, y, z) = f (z)
8yUIb

πΦ2
E

exp

−8(x− xs)
2 + (y− ys)

2

Φ2
E

 (6)

whereas f(z) is given by Equation (7)

f (z) =
2
h

(
1−

z
h

)
(7)

The terms used in Equations (3) and (4) are defined as follows: (x„z) is the volumetric heat source
along X, Y, and Z axes, efficiency coefficient η (0.9), voltage U (60 kV), beam current Ib (0.002 mA),
beam penetration h (0.05 mm), and beam diameter ΦE (0.3 mm). xs and ys are the positions of the heat
source (electron beam) center.

A user subroutine DFLUX coded in FORTRAN was used to apply the heat source in the FE model.
The subroutine DFLUX was called under the interaction module so that contact could be established
between the heat source (electron beam spot) and layers, as shown in Figure 3. It is called at the
beginning of each iteration and reads the simulation time to determine the position of the heat source
center so that the domain of the volumetric heat flux can be established. In this study, the penetration
of the beam was chosen to be the same as the thickness of the layer, as adopted by [28].Metals 2020, 10, x FOR PEER REVIEW 7 of 28 
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2.2. Contact

Contact between the base plate material and powder layers was assumed to be rigid. The tie
constraint in ABAQUS was used to transfer the heat from the first layer to the base plate, and also
from the nodes of the top layers to the bottom layers, as shown in Figure 4. The tie constraint locks
the temperature and deformation degrees of freedom between the nodes such that the slave nodes
(bottom nodes) follow the master nodes (top nodes). The characteristics of the tie constraints are:

# The deformation effect will be transferred from one layer to another layer through the tied nodes.
# Heat degree of freedom will be transferred from one layer to another through the tied nodes.
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2.3. FE Mesh

The mesh size for the model was selected after several trials. The model was run with different
mesh sizes, and the results from each model were compared. Hence, fine meshes were used in
the layers deposition zone, and the mesh size was gradually increased with distance from the
deposits. In regions more separated from the heat-affected area, coarser meshes were utilized.
The C3D8T coupled thermal-displacement elements were used to mesh the base plate and the
powder layers. Mesh sensitivity analysis was carried out to ensure that the used mesh (element)
size was neither too time-consuming nor leading to discretization errors. Eight node coupled
thermal-displacement elements (C3D8T) were selected to mesh the layers with an element size
dimension of 0.06 mm × 0.06 mm × 0.05 mm. The same element type was used in the base plate.
The size of the elements in the fine mesh region in the base plate was also the same as for the layers.
Figure 5 shows the mesh used in this model.
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2.4. Powder Addition in a Layer by Layer Fashion

To add layers one by one in the FE model, the model change option in ABAQUS was used. At a
step in time, a set of elements was added onto the base plate by activating the layer to form rectangular
deposits along the centerline of the base plate by using the model change option in the interaction
module. However, at the first step, all layers were deactivated except layer one (L1). After the melting
phase in the L1, the cooling phase (Step-2 in Figure 6) was followed in this layer. The time for the
cooling step was assumed to be 3 s [29]. After the cooling time ended, the second layer (L2) was
activated on top of the previously melted and cooled L1, and so on for the remaining layers, as shown
in Figure 6. Once a layer is activated, it remains active for the remaining analysis to take part in the
heating, conduction, and radiation phenomena.Metals 2020, 10, x FOR PEER REVIEW 9 of 28 
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The whole model (base plate and powder layers) was assigned with a uniform temperature
distribution of T-preheat as the initial thermal condition. During the simulation, the electron beam
traveled along the X and Z-axes on the top surface of each powder layer. After the melting phase,
the phase was changed from powder to solid phase, and then the simulation of the cooling phase
followed. The field variables in ABAQUS were used to transform the martial properties from powder
to solid-state. During the electron beam scanning in Step-1 (melting phase), the Ti-6Al4V properties
were maintained as powder by activating the field variable 1. After the electron beam scan was
accomplished, Ti-6Al4V properties were changed to solid by activating the field variable 2 in Step-2
(cooling phase). This process was repeated in the subsequent melting and cooling steps. The field
variable can be controlled in the ABAQUS within the property module, step module, and edit keywords
options. The time for the cooling step was assumed to be 3 s, as shown in Table 3. Five layers were
built with ten steps (transient fully coupled temperature-displacement) to handle the model. The last
cooling step was 1100 s, which was the time needed for the temperature of the EBAM part to drop to a
room temperature of 293 K.

Table 3. Model transformation phases.

Layer Phase Step Description Time (s) Total Time (s)

Complete
model Preheating Initial Preheating phase for the

whole model at 1003k 0 0

L1
Melting 1 Electron beam scanning

along X-Z direction 0.0265 0.0265

Cooling 2
Transformation of material
from powder to solid-state

then cooling phase
3 3.0265

L2
Melting 3

Activation of layer-2 and
scanning of electron beam

along X-Z direction
0.0265 3.0795

Cooling 4
Transformation of material
from powder to solid-state

then cooling phase
3 6.0795

L3
Melting 5

Activation of layer-3 and
scanning of electron beam

along X-Z direction
0.0265 6.106

Cooling 6
Transformation of material
from powder to solid-state

then cooling phase
3 9.106

L4
Melting 7

Activation of layer-4 and
scanning of electron beam

along X-Z direction
0.0265 9.1325

Cooling 8
Transformation of material
from powder to solid-state

then cooling phase
3 12.1325

L5
Melting 9

Activation of the next layer
and scanning of electron
beam along X-Z direction

0.0265 12.159

Cooling 10
Transformation of material
from powder to solid-state

then cooling phase
1100 112.16

Total time 1112.16
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2.5. Fabrication of the Thin-Walled EBM Parts

To validate the FE model results, thin-walled Ti-6Al-4V parts were produced via the electron beam
melting machine from ARCAM A2 machine (ARCAM AB, Mölndal, Sweden). The particle size of the
Ti-6Al-4V powder was between 10 µm and 50 µm in which the particle diameter of 37 µm occupies the
highest proportion, and the layer thickness of 50 µm was used [30]. The thickness of the thin-walled
parts was set at 0.6 mm, and the length of the parts was set as 5 mm. Two types of thin-walled parts
were produced; one with a height of 5 mm (100 EBM layers), and second with the height of the 2.5 mm
(50 EBM layers). The layout of the thin-walled parts fabricated on the stainless steel base plate is
shown in Figure 7. Parts were fabricated by using the ARCAM AB recommended process parameters,
as listed in Table 4. It should be noted that the 0.6 mm thickness is the minimum width of the parts that
can be produced with the selected Ti-6Al-4V powder using the ARCAM AB recommended process
parameters (see Table 4). A profile projector was used to measure the distortion in the thin-walled parts,
as shown in Figure 8. The heights of the EBM parts were more than the heights of the parts simulated
in the FE model due to the size constraints of the distortion measuring equipment (profile projector).
The distortion in the bigger height parts can be measured more conveniently and reliably as compared
to the small height parts, i.e., 0.75 mm as produced in simulations due to computational constraints.
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Table 4. Parameters used in the simulations and for producing the EBM parts [29].

Parameters Values

Electron beam diameter, Φ (mm) 0.3
Scan speed, v (mm/s) 400

Acceleration voltage, U (kV) 60
Beam current, Ib (mA) 0.002

Powder layer thickness, tlayer (mm) 0.05
Beam penetration depth, dP (mm) 0.05
Preheat temperature, Tpreheat (k) 1003
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Figure 8. Profile projector setup for measuring the distortion in the EBM parts.

A white light interferometer based 3D profilometer Contour GTK from Bruker (Tucson, AZ, USA)
was used to measure the distortion profile on the base plate after the removal of the thin-walled parts,
as shown in Figure 9. A 5× interferometer lens with a fixed field of view 2.2 mm × 1.7 mm was used to
capture the distortion profile on the base plate.

Furthermore, the microstructures of the thinned walled parts were also revealed on the side
faces (0.6 mm thickness side). The samples were first ground with SiC papers P180, P300, P600, P800,
P1000, and P1500 and then polished with Al2O3 suspension followed by etching with Kroll’s agent.
The microstructures were obtained primarily to link the microstructural variations of the alpha and beta
phases along the thin side faces with the recorded temperature distributions from the FE simulations.
This is because the percentage of the alpha and beta phases and the size of these phases are significantly
affected by the temperature input. The developed FE model provided the opportunity to study the
temperature–time history, and to link it with the achieved microstructures.
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3. Results and Discussion

The results and discussion are arranged as follows: temperature field, residual stresses, thermal
distortion, experimental validation, and microstructure evolution.

3.1. Temperature Field

Figure 10 shows the contour and cross-section plots of the temperature field of the melt pool and
surrounding areas at different times. The cross-sections aim to show the effect of heat from the electron
beam on the EBM layers and base plate. Figure 10 also shows that the peak temperature during the
process in the first layer was 2702 K, while the highest temperature during the layer-5 deposition
was 3456 K. It can be concluded that the temperature increases from one layer to another due to
heat accumulation between layers as the process proceeds. It should be noted that, in some regions
in the model, the lowest temperature was below the preheating temperature because the radiation
boundary conditions were defined on all the external surfaces of the base plate and the deposited layers.
Furthermore, the preheating temperature was defined as an initial temperature, which was subject to
change as the model computes. Therefore, in some regions in the model, the temperature goes below
the initial preheat temperature due to the radiation effect. Also, in some regions, the temperature goes
higher due to the heat input from the electron beam. The same methodology was adopted in other
studies as well reported by Cheng, Lu, and Chou [31,32]. They showed that after the cooling step,
the temperature goes below the preheating temperature due to the radiation effect.
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Figure 10. Contour and cross-section plots of temperature field of the melt pool and surrounding areas
at different times: (a) Layer-1 (contour plot), (b) Layer-1 (cross-section plot), (c) Layer-2 (cross-section
plot), (d) Layer-3 (cross-section plot), (e) Layer-4 (cross-section plot), (f) Layer-5 (cross-section plot),
(g) Layer-3 (melt pool contour plot), and (h) Layer-3 (melt pool cross-section).
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To show the dimensions of the melt pool, Figure 10g,h are presented with the lower limit of
the temperature as the melting point of the Ti-6Al-4V, so that only the melt pool would be visible.
Figure 10g,h show the contour and cross-sectional views of the melt pool size and shape as the beam
traveled during the deposition of layers at different times. The melt pool shape and size depend on the
material properties and the EBM parameters. The depth of the melt pool can be influenced by the
movement of temperature-dependent fluid within the melt pool [33]. However, the size and shape of a
melt pool plays a crucial role in the determination of the microstructure in manufactured metals [33].

3.1.1. Temperature Gradient

The temperature gradients were analyzed along the beam trailing direction (Z-direction) and
below the beam center point (Y-direction), as shown in Figure 11a,c. The Z-direction nodes were
along the top surface of the layers, while the Y-direction nodes were along the height of the deposited
layers. Figure 11b presents the thermal gradients along the Z-axis, which have reached a maximum
temperature of 3030 K from the focused electron beam. The temperature gradually decreases along the
Z-axis to the preheating temperature. Figure 11d shows the temperature curve for thermal gradients
along the Y-axis (height) of the selected side cross-section view layers, which have reached a maximum
temperature of 2716 K from the focused electron beam. The temperature gradually decreases along
the Y direction. Since the electron beam melting process is a hot process, during which the powder is
kept at high temperatures throughout the entire melting process. The melting of the electron beam can
easily reach temperatures 2000 K and more to melt the materials such as titanium alloys. The melting
point for titanium alloys is 1900 K [34]. Figure 11 shows that the temperature is high enough to melt
the selected material that is difficult to dissolve through traditional technologies.
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3.1.2. Model Validation

The results obtained from the EBM process model have been validated by comparing them with
the results from the reported studies. Figure 12 presents the simulation results of temperature history
after final cooling from Shen and Chou [14] and the current model simulation results on the electron
beam melting process (ARCAM AB) with the same parameters for both models. Figure 12 shows
that the range of the temperature gradient during deposition is almost the same. The maximum
temperature (Shen & Chou) [14] is 3007 ◦C, and 3015 ◦C for the simulated result. The temperature
dropped to room temperature (25 ◦C) after final cooling on both models. The temperature rose from
750 ◦C (preheating temperature) to 3015 ◦C in 0.3 s and dropped again to 750 ◦C in about 3 s.
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Figure 13 shows a comparison of the maximum temperature for the electron beam melting process
when producing thin-wall parts. The current model results are compared with the experimental
and simulation results reported by Shen and Chou [14]. The histogram shows that the maximum
temperature for the current model and experimental results (Shen and Chou) are almost the same,
with a minimal difference of around 170 ◦C. It can also be seen from Figure 13 that the maximum
temperatures for the experimental, simulation (Shen and Chou), and current simulated results are
2800 ◦C, 2950 ◦C, and 2970 ◦C, respectively.
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3.2. Residual Stresses

The residual stress is the stress resident inside a structure after all applied forces have been
removed. The magnitude and nature of residual stresses occurring in the final deposits affect the
integrity of the whole structure. In general, compressive residual stresses are beneficial because they
increase the load resistance and prevent the growth of cracks. However, tensile residual stresses are
disadvantageous because they reduce the load resistance and accelerate the growth of cracks.

The von Mises stress distribution in the electron beam melting process of the five-layer model
after the final cooling stage shows that the maximum stress occurs at the end of the electron beam
scanning location and has a magnitude of about 840 MPa. After the EBM process started, the von Mises
stress rapidly increased to 442 MPa. During the deposition process, it maintained a value between
333 MPa and 442 MPa, and after final cooling, it rose to 840 MPa, as shown in Figure 14b.
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Figure 14. (a) Von Mises stress during deposition at t = 9.125 s, layer-4. (b) Von Mises stress after
final cooling.

The residual stress distribution during deposition is shown in Figure 14a. It shows the stresses
along with the three axes. Figure 14a,b indicate that the residual stresses in the lower part were mostly
tensile stress due to the cooling phase of the molten layers [29]. After deposition, the re-melted base
of the deposits began to shrink. This shrinkage was restricted by the underlying material and hence
encouraged the tensile stresses.

The components of normal stress along the X-Axis and Z-Axis are stresses along the scan direction,
which are indicated as S11 and S33, respectively. S33 are the normal stresses along the beam scan
direction along the length of the layers, while the S11 are the normal stresses along the beam scan
direction along the width of the layers. In contrast, S22 defines the normal residual stresses along the
beam penetration direction (Y-axis). Such stress components reflect the highest possible magnitude of
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the residual stress at the given point being selected. Von mises stress and normal stresses S11, S22,
and S33 along three spatial directions are shown in Figure 15. The residual stress distribution after the
final cooling step is shown in Figure 15a–d (a cross-sectional view is used to show the internal residual
stress). The maximum tensile stress of 592 MPa and the maximum compressive stress of 353 MPa can
be observed in Figure 15. Although these residual stress values are lower than the yield point of the
Ti-6Al-4V, still such EBM parameters should be used that the residual stresses in the produced parts
should be minimum for better and safe performance [14]. The FE model allows us to explore the EBM
parameters, which can lead to lower residual stresses, as discussed later in Section 4.Metals 2020, 10, x FOR PEER REVIEW 17 of 28 
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(S33, along Z-axis).

3.2.1. Instantaneous Stress

The instantaneous von Mises stress within the deposits during the electron beam melting process
is shown in Figure 16. As the EBM process started, the von Mises stress rapidly increased to 820 MPa.
The maximum von Mises stress existed at the end of the electron beam scanning location with a value
of around 830 MPa. The von Mises stress after the deposition process had a greater magnitude than
that during the deposition process.

Three paths are drawn on the top surface of the deposits to present the average distribution and
magnitude of residual stresses in part. Along the z-direction, the middle part of the top surface was
compressed with a stress magnitude of approximately 700 MPa, while at the edges, it was lower,
as shown in Figure 17. The trend of residual stress on each path was relatively uniform along the
longitudinal direction in the left and right sides. For the normal stresses along z, tensile stresses with a
magnitude of approximately 700 MPa existed near the center part, and residual stresses ranging from
300 to 400 MPa existed at both edges.
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Figure 17. Von Mises stress after final cooling along the length of the deposited layers.

3.2.2. Model Results Versus Reported Results

Figure 18 compared the normal stress from the current model after cooling with the results
of [15] along the beam scan direction (along the length of the layers). The residual stress levels are
approximately the same (5%), with minimal differences due to the location of the path chosen on each
model. It can be seen that the maximum residual stress in [15] after the cooling is 350 MPa, which is
almost the same (5% error) as simulated in the current model.
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3.3. Thermal Distortion

Heating and cooling during the EBM process produce non-uniform thermal expansion, which
results in a problematic distribution of residual stresses in the heat-affected zone and unexpected
distortion. These residual stresses may increase fatigue and fractures during deposition. Deformation
is determined from the dimensional accuracies of the structures. It is therefore very important to
predict the behavior of the material after the EBM process, and to study manufacturing parameters,
to control deformation and residual stresses. During EBM, the base plate will continuously shrink and
expand, leading to a deformed shape. In this research, deformation along the X-direction was the main
focus under consideration, and Figure 19a illustrates the base plate deflection during the electron beam
melting process. For each deposition layer, the base plate first bent down due to thermal expansion on
the top surface and then bent up due to thermal shrinkage during the cooling process. The curve of
base plate distortion along the X-axis is shown in Figure 19b. After completely cooling down, the base
plate maintained its deformed shape. In Figure 19a–d, it can be concluded that more layers lead to
higher distortion in the base plate.
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3.4. Experimental Validation

The profile projector machine was used to measure the distortion results of the parts produced by
EBM. The profile of the EBM parts can be seen on the screen, as shown in Figure 20. The projector
magnifies the profile of the specimen and displays this on the built-in projection [1] screen on this
screen. There is typically a grid that can be rotated 360 degrees so that the X-Y axis of the screen can be
aligned with a straight edge of the part to be examined or measured. This projection screen displays
the profile of the piece, which is magnified for ease of measurement. The distortion measurement
from both sides for the 50-layer part (2.5 mm height) produced with EBM/Ti-6Al-4V are shown in
Figure 20a–d. The distortion seems to increase in the base plate, and the first few layers as more layers
are added. The profiles of the distortion in the right and left sides can be clearly seen in Figure 20.
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The distortion measurement from both sides is shown in Figure 21a–d for the 100 layer part (5 mm
height), produced with EBM/Ti6Al-4V. The distortion increases in the base plate and the first few layers
as more layers are added. The profile of distortion can be seen more clearly than in the previous profile
of 50 layers part, as shown in Figure 21.
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An important observation is made from Figures 20 and 21 that the overall total distortion in the
EBM produced parts remains almost the same, independent of height. For example, the total distortion
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in the 2.5 mm height part was measured to be around 0.15 mm, and the total distortion measured in
the 5 mm height part was approximately 0.17 mm, which is a very similar value.

The comparison of distortion in the built layers between the experimental and simulation results is
presented in Figure 22a–e. Although inherently capable of performing calculations on 50 or 100 layers,
limitations of the computer used meant that simulation was stopped at 15 layers, as shown in Figure 22.
The distortion in the EBM produced parts was experimentally measured. The experimental results
showed that the overall distortion was independent of the part height produced. The simulated
pattern of the distortion in the FE model results was qualitatively compared with experimental data
and showed a similar trend. When more layers are added, the first few layers are bent down due to
thermal expansion on the top surface and then bent up due to thermal shrinkage during the cooling
process. After complete cooling down, the layers maintained their profile shape.
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Figure 22. Comparison between current model result and measured distortion within the layers.
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side from the front view (50 layers). (d) The distortion in the current model result (e) Right side from
the bottom view (50 layers).

3.5. Microstructure Evolution

The samples were first grinding with SiC papers P180, P300, P600, P800, P1000, and P1500,
and then polishing with Al2O3 suspension followed by etching with Kroll’s agent. The microstructures
were obtained primarily to see the variation of the alpha and beta phases along the thin side faces.

Figure 23a,b presents the microstructure of the EBM produced Ti-6Al-4V parts. It can be noted that
the columnar grains (α and β) are found in the bottom (almost first three layers) of the produced part
due to the cumulative heat deposited in the part near the bottom, as shown in Figure 23a. The result
shows that the coarse structure has been found above the base plate, fine structure at the mid of the
building layers, and finer structure near the top of the produced layers. This is because the bottom of
the simulated model has more heat cycles due to the cumulative heat deposited when compared with
the middle region of the part which receives fewer heat cycles. For instance, in Figure 23c, it can be seen
that layer-2 receives several heat cycles due to electron beam scans on subsequent layers as compared
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to layer-8, which only receives 2 heat cycles (see Figure 23d). Usually, the higher heat accumulation
and rapid extraction of heat favor the higher concentration of the beta phase and vice versa for the
alpha phase [35,36]. Therefore, in Figure 23a, more β phase and wider α grains could be observed.
In contrast, in Figure 23b, a refined lamellar α + β structure is produced because this region (middle
region) receives fewer heat cycles (see Figure 23d) and experiences less heat accumulation as compared
to the bottom region.Metals 2020, 10, x FOR PEER REVIEW 22 of 28 
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4. The Effects of Different Electron Beam Parameters

This section shows the effects of EBM processing parameters on producing a thin part of Ti-6Al-4V.
Three parameters are studied: beam speed, beam current, and voltage. These three parameters were
selected as they are easily adjusted and are believed to be the ones having the most influence on
the objects produced. Beam current is the current due to the electrons in the electron beam. Beam
speed is the electron beam scan speed. In the study, Ti6Al-4V parts were modeled using different
processing parameters.

Process parameter values were chosen according to the machine’s parameter range in order to
achieve the largest difference between the high and low values of each process parameter. Using a wide
range in each parameter increases the probability that significant effects will be detected. As mentioned
above, Cheng and Chou reported the EBM parameters used for producing a part by ARCAM AB
machine, which were 400 mm, 0.002 mA, and 60 kV. However, in this section, nine combinations
have been used to study the effect of real conditions such as beam speed, current, and voltage for a
selected geometry.

4.1. The Effect of Scan Speed on the EBM Process

Table 5 shows the combination of parameters used with varying scan speed with other parameters
fixed. The scan speed has been varied within the range reported for the ARCAM AB Machine, which
is capable of scan speeds up to 8000 m/s (ARCAM AB, 2016).
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Table 5. The levels of scan speed changes.

Parameter Level-1 Level-2 Level-3

Speed (mm/s) 300 400 500
Current (mA) 0.002 0.002 0.002
Voltage (kV) 60 60 60

Figure 24 shows the scan speed versus temperature with other parameters fixed to study the effect
of scan speed on the electron beam melting process. The results conclude that the increase in scan
speed leads to a decrease in temperature. The first combination of 300 mm/s, 0.002 mA, and 60 kV,
has the highest temperature of 3977 K. The second combination has a temperature of 3193 K, and the
third has a lower value of 2765 K. Figure 24 presents the scan speed versus von Mises stress to study the
effect of scan speed on stress in the electron beam melting process. The results show that an increase
in scan speed leads to an increase in the residual stresses deposited in the part produced by EBM.
The first combination of 300 mm/s, 0.002 mA, and 60 kV received the least residual stress with a value
of 665 MPa. The second combination had a value of 676 MPa, and the third had the highest residual
stress value of 705 MPa. It can be concluded that, as the speed increases, the time of contact becomes
less, which leads to a decrease in the temperature and an increase in the residual stress.
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Figure 24. Scanning speed vs. temperature & stress.

4.2. The Effect of Current on the EBM Process

Table 6 shows the combination of parameters used with varying current, and other parameters
fixed. The current has been varied within the range reported H. Gong, Rafi, Starr, & Stucker [37] for
the ARCAM AB machine (0.001, 0.002, and 0.003 mA).

Table 6. The levels of current changes.

Parameter Level-1 Level-2 Level-3

Speed (mm/s) 400 400 400
Current (mA) 0.001 0.002 0.003
Voltage (kV) 60 60 60

Figure 25 shows the current versus temperature to study the effect of current on the temperature
in the electron beam melting process. The results conclude that the increase in current leads to a rise in
the temperature of the electron beam melting process. The first combination of 300 mm/s, 0.001 mA,
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and 60 kV, has the lowest temperature of 1926 K. The second combination has a temperature of 3192 K,
and the third has the highest value of 4357 K. Figure 25 presents the current versus von Mises stress at
different applied currents, to study the effect of current on stress in the electron beam melting process.
It is concluded that the increase in current leads to an increase in the residual stress deposited in the
part produced by EBM. The first combination of the three parameters has the least residual stress,
with a value of 666 MPa. The second combination has a value of 676 MPa, and the third has the highest
residual stress with a value of 709 MPa. It can be concluded that, as the current increases, the spot size
is decreasing the beam energy, so it leads to an increase in the temperature and residual stress.
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Figure 25. Current vs. temperature& Von Mises Stress.

4.3. The Effect of Voltage on the EBM Process

The combination of parameters used with varying voltage and other parameters fixed is shown in
Table 7. The voltages used are 50, 60, and 70 kV.

Table 7. The levels of Voltage changes.

Parameter Level-1 Level-2 Level-3

Speed (mm/s) 400 400 400
Current (mA) 0.002 0.002 0.002
Voltage (kV) 50 60 70 k

Figure 26 shows the voltage versus temperature at various set voltages to study the effect of
voltage on the temperature in the EBM process. The results conclude that the increase in voltage
leads to a rise in the temperature of the EBM process. The first combination of scan speed, current,
and voltage has the lowest temperature of 2780 K. The second combination has a temperature of 3192 K,
and the third has the highest value of 3693 K. Figure 26 presents the voltage versus von Mises stress at
different set voltages to study the effect of voltage on stress in the EBM process. It can be concluded
that the increase in voltage leads to lower residual stresses deposited in the part produced by EBM.
The first combination of the three parameters has the highest residual stress with a value of 705 MPa.
The second combination has a value of 676 MPa, and the third has the least residual stress with a value
of 661 MPa. The results conclude that as the voltage increases as the energy increases, leading to an
increase in the temperature and a decrease in the residual stress due to the potential difference between
the two nodes.



Metals 2020, 10, 1151 26 of 29

Metals 2020, 10, x FOR PEER REVIEW 25 of 28 

 

 
Figure 26. Voltage vs temperature & Von Mises Stress. 

5. Conclusions 

The thermomechanical finite element model was developed for the multi-layer EBM process of 
Ti-6Al-4V, to investigate the thermal and mechanical behavior of deposited materials involved in the 
electron beam melting process. In this study, the thermomechanical analysis was performed using a 
3D transient, fully coupled temperature-displacement model.  

The developed FE model study the effect of real conditions such as preheating temperature, the 
energy of the electron beam, cooling time, and beam scanning path and speed for a selected 
geometry. The simulated results have been compared with other reported simulated results on EBM, 
and the experimental results. The results revealed the characteristics of temperature distribution, 
residual stress, and deformation within the deposited layers and the base plate. Based on the results 
and discussion, several conclusions have been drawn and can be stated as follows: 

o The FEA can predict the thermomechanical behavior of products fabricated by the electron beam 
melting process or similar processes with localized heat sources such as laser sintering, laser 
cladding, and welding. 

o During the deposition of layers with EBM, high residual stresses resulted after final cooling, i.e., 
the stresses in the deposited layers increased with cooling due to thermal contraction. It is highly 
recommended to validate the FE residual stress results by conducting the experimental 
observations and measurements as well. 

o The distortion in the EBM produced parts was experimentally measured. The experimental 
results showed that the overall distortion was independent of the part height produced. The 
simulated pattern of the distortion in the results from the FE model was found to be in close 
agreement with the experimental data. 

o The maximum predicted temperatures and the temperature profiles were found to be in close 
agreement with the reported experimental and simulated results. 

The effects of EBM processing parameters on the production of a thin part of Ti-6Al-4V have 
been studied to understand the most influential parameters. Findings are as follows: 

o An increase in scan speed leads to a decrease in temperature. 
o An increase in scan speed leads to an increase in the residual stresses within the part produced 

by EBM. 
o An increase in current leads to a rise in temperature of the electron beam melting process. 
o A decrease in current leads to a reduction in the residual stresses within the part produced by 

EBM. 
o An increase in voltage leads to a rise in the temperature of the electron beam melting process. 
o An increase in voltage leads to lower residual stresses within the part produced by EBM. 

655
660
665
670
675
680
685
690
695
700
705
710

0

500

1000

1500

2000

2500

3000

3500

4000

40 50 60 70 80

V
on

 M
ise

s S
tre

ss
 (M

Pa
)

Te
m

pe
ra

tu
re

 (K
)

Voltage (Kv)

Figure 26. Voltage vs. temperature & Von Mises Stress.

5. Conclusions

The thermomechanical finite element model was developed for the multi-layer EBM process of
Ti-6Al-4V, to investigate the thermal and mechanical behavior of deposited materials involved in the
electron beam melting process. In this study, the thermomechanical analysis was performed using a
3D transient, fully coupled temperature-displacement model.

The developed FE model study the effect of real conditions such as preheating temperature,
the energy of the electron beam, cooling time, and beam scanning path and speed for a selected
geometry. The simulated results have been compared with other reported simulated results on EBM,
and the experimental results. The results revealed the characteristics of temperature distribution,
residual stress, and deformation within the deposited layers and the base plate. Based on the results
and discussion, several conclusions have been drawn and can be stated as follows:

# The FEA can predict the thermomechanical behavior of products fabricated by the electron beam
melting process or similar processes with localized heat sources such as laser sintering, laser
cladding, and welding.

# During the deposition of layers with EBM, high residual stresses resulted after final cooling,
i.e., the stresses in the deposited layers increased with cooling due to thermal contraction. It is
highly recommended to validate the FE residual stress results by conducting the experimental
observations and measurements as well.

# The distortion in the EBM produced parts was experimentally measured. The experimental results
showed that the overall distortion was independent of the part height produced. The simulated
pattern of the distortion in the results from the FE model was found to be in close agreement with
the experimental data.

# The maximum predicted temperatures and the temperature profiles were found to be in close
agreement with the reported experimental and simulated results.

The effects of EBM processing parameters on the production of a thin part of Ti-6Al-4V have been
studied to understand the most influential parameters. Findings are as follows:

# An increase in scan speed leads to a decrease in temperature.
# An increase in scan speed leads to an increase in the residual stresses within the part produced

by EBM.
# An increase in current leads to a rise in temperature of the electron beam melting process.
# A decrease in current leads to a reduction in the residual stresses within the part produced

by EBM.
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# An increase in voltage leads to a rise in the temperature of the electron beam melting process.
# An increase in voltage leads to lower residual stresses within the part produced by EBM.

For the EBM machine, characteristics of the beam, and materials used in this study, the best
combination of parameters was 400 mm/s, 0.002 mA, and 60 kV speed, current, and voltage, respectively,
to achieve parts with low levels of residual stress and distortion and hence improved quality.
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