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Abstract: There is an increased interest in the use of the deep eutectic solvents (DESs) as electrolytic
media for electrochemical synthesis of conducting polymers, which could influence their characteristics.
Moreover, the polypyrrole layers represent an attractive route for pharmaceutical drug release.
The paper presents several experimental results regarding the electrodeposition of polypyrrole and
of polypyrrole-indomethacin coatings on nickel-chromium NiCr alloy substrates widely used in
dentistry, involving DES-based electrolytes, namely eutectic mixtures of choline chloride and malonic
acid. This type of electrolyte also allowed an enhanced dissolution of indomethacin as compared
to aqueous ones. The electropolymerization process has been investigated by cyclic voltammetry
and chronoamperometry. The obtained indomethacin containing polymeric coatings have been
thoroughly characterized involving scanning electron microscopy (SEM), Fourier transform infrared
(FTIR) spectroscopy, contact angle measurements in simulated body fluid (SBF) and indomethacin
release studies. Adherent and uniform polypyrrole-indomethacin layers have been obtained on NiCr
alloy substrates. The release tests showed that the polypyrrole coatings containing indomethacin
may deliver the drug molecules for longer periods of at least 17 days. The maximum released
amount was around 99.6% suggesting these layers may act as an active reservoir for indomethacin.
Kinetics analysis based on the Korsmeyer–Peppas model suggested the diffusion of the drug out of
the polymer layer as the most probable mechanism governing the release.
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1. Introduction

In recent years, due to the many uses of metals and alloys in dentistry and for economic reasons,
the interest for non-precious dental alloys has increased. NiCr alloys are widely used in dental skeletal
structures and orthopedic implants such as screws, pins, plates, crowns, bridge castings, inlays and
denture bases [1–4]. Cr is the main alloying element facilitating a good corrosion performance due
to the formation of a stable passive oxide layer [5–7]. The main concern regarding the use of NiCr
alloys is the release of allergenic and toxic Ni2+ ions into the human body [8–12]. To circumvent this
disadvantage, protective coatings also providing a suitable biocompatibility are largely investigated [13–17],
including conducting polymers.
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In the last decade the use of the electrochemically synthesized conducting polymers as coating
layers has attracted an increased interest, due to their recognized biomedical compatibility [15,18].
Moreover, they can act as drug carriers as well, representing an alternative approach to conventional
dosage forms. Usually, the film delivery systems are flexible sheets of polymeric matrices incorporating
the therapeutic agent. They can be used for systemic or local action via several approaches including
oral and transdermal delivery [19]. In particular, polypyrrole (PPy) layers have been extensively
investigated and it has been shown they could represent an effective route to pharmaceutical drug
release [14,15,18]. The electrochemical procedure is the most suitable to obtain PPy films on different
substrates with a good adhesion and homogeneity, through a proper selection of the electrolyte
composition and of the operating conditions. During the reversible change between PPy oxidized and
reduced states the anions or cations are incorporated or released to maintain charge balance and these
processes are linked with drug delivery.

The development of drug delivery systems sometimes suffers because of the poor solubility,
permeability and stability of certain drugs. Especially the low solubility is a critical issue. Recently many
studies showed an increased efficiency of the drug delivery systems when ionic liquids (ILs) are
involved, which were found to provide an improved solubility/loading of poorly soluble drugs [20,21].
ILs are defined as “ionic materials in liquid state for temperatures lower than 100 ◦C” [22,23]. They are
interesting chemical compounds with applications in a large range of domains including chemical
and electrochemical synthesis procedures, due to their properties such as their ability to dissolve
organic, inorganic and polymeric materials, non-flammability, high thermal and chemical stability,
low vapor pressures and high ionic conductivity [22,24]. In this context, the related class of ILs known as
“deep eutectic solvents” (DESs) has been shown to be more attractive in drug delivery systems mainly
due to their lower toxicity as compared to classical ILs [21,25–27]. DESs are defined as eutectic mixtures
of a quaternary ammonium salt such as choline chloride (2-hydroxy-ethyl-trimethyl ammonium
chloride) with a hydrogen bond donor (HBD) species such as amides, glycols or carboxylic acids and
have been reported for the first time by Abbott and his co-workers [28–30].

Indomethacin (1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid) belongs to the
non-steroidal anti-inflammatory class of drugs, possessing analgesic, anti-febrile and antiaggregatory
activity [31], with a proven efficiency for restorative procedures in deep cavities [32]. However, its poor
solubility in water, ranging between 8.8 and 77 µg/mL [33] affects its applications [34,35]. It has
been recently shown that the use of DESs may significantly increase the indomethacin solubility [36].
On the other hand, very few published works discussed the electrochemical synthesis of PPy involving
various types of DESs [37,38]. Pigani et al. [38] reported the Py electropolymerization in choline
chloride-ethylene glycol eutectic mixtures without the addition of any other species, using EQCM
technique. The obtained PPy films using DESs were found to show comparable electroactivity to
those grown in aqueous electrolytes. In addition, a higher degree of the film smoothness was noticed.
Our group recently reported the PPy electrochemical synthesis involving choline chloride-malonic
acid and choline chloride-oxalic acid eutectic mixtures (1:1 molar ratio) with additions of acetonitrile
on Pt electrode [39].

Considering all discussed above, the present study aims to prepare adherent PPy layers on two
types of NiCr alloys widely used in dentistry involving DES based electrolyte, able to incorporate
indomethacin molecules as dopant which subsequently may be released in an aqueous environment.
The electrochemical synthesis of PPy and of the indomethacin containing polymeric coatings on the
two proposed NiCr alloys as substrate involving DESs, as well as their detailed characterization are
reported. In addition, their protective characteristics and the release of the drug molecule in a simulated
body fluid are presented and discussed. To the best of our knowledge this is the first investigation
reporting the electropolymerization of pyrrole and of indomethacin doped PPy as adherent coatings
on NiCr alloy metallic substrates involving DESs.



Metals 2020, 10, 1130 3 of 21

2. Materials and Methods

2.1. Materials

Two types of commercial NiCr alloys usually employed in dental medicine have been used as
metallic substrates and their chemical composition is presented in Table 1. Niadur alloy (denoted ND)
was supplied by DFS (Germany) and I-Bond alloy (denoted IB) was purchased from Interdent (Slovenia).

Table 1. Composition of the NiCr alloys.

Alloy Type
Composition/wt%

Cr Mo Si Fe Co Ce Nb Ni

Niadur (ND) 24.5 10.3 1.7 1.5 - - - balance

I-Bond (IB) 24.2 10.0 1.0 1.0 1.0 0.7 0.5 balance

Choline chloride (HOC2H4N(CH3)3Cl) (Aldrich, 99%), malonic acid (CH2(COOH)2 (Aldrich,
99%), acetonitrile (CH3CN) (Aldrich, 99.8%) and indomethacin (C19H16ClNO4) (Alfa Aesar, 99+%)
were used as received. Pyrrole (C4H5N) (Py) (Aldrich, 98%) was distilled and stored under nitrogen
until use.

As the investigated drug molecule, indomethacin (denoted Indo), has poor solubility in water,
the electrochemical Py polymerization has been performed involving DES based electrolytes, consisting
of choline chloride-malonic acid eutectic mixture (denoted ILM) (1:1 molar ratio) with additions (1:1 by
volume) of acetonitrile (denoted ACN) to increase the conductivity. The monomer concentration was
0.5 mol/dm3 (denoted M) Py. Choline chloride was mixed with malonic acid and heated at 75–85 ◦C
with mild stirring until a homogeneous, clear liquid was formed. The as-prepared DES was cooled at
room temperature (24 ± 2 ◦C) and ACN was added (1:1 by volume), followed by the addition of the
corresponding amount of Py. Finally the Indo was introduced under continuous stirring, so that the
final concentrations were in the range of 0.0125 M and 0.05 M.

2.2. Electropolymerisation of the PPy and of the PPy-Indomethacin Coatings onto NiCr Alloys

To get information on the electropolymerization of PPy and PPy-indomethacin coatings from
DES based electrolytes, electrochemical techniques have been applied, including cyclic voltammetry
and chronoamperometry, using an AutoLab 40 potentiostat/galvanostat (Radiometer Analytical SAS,
Lyon, France). In these cases, a single-compartment glass cell was used, where NiCr alloy discs (1.4 cm
diameter) with an exposed constant geometrical surface of 1.5 cm2 acted as working electrodes. A high
surface area platinum (Pt) plate was the counter electrode and a silver wire was the quasi-reference
electrode [40]. Before each experiment the NiCr alloy working electrodes were mechanically polished
using 1200-grit SiC abrasive paper, rinsed with deionized water, subjected to ultrasound cleaning
for 10 min in acetone to remove any grease or impurities from the surface and air dried. After the
polymer coating formation, the electrodes were abundantly rinsed with distilled water and air dried.
All experiments were performed at room temperature, in stationary conditions. The voltammetric
investigations were performed at scan rates between 10 and 50 mV s−1. The formation of the PPy and
PPy-indomethacin coatings was also investigated under potentiostatic conditions at different applied
potentials for a constant polarization period of 600 s from different DES based electrolytes containing
the monomer (Py), in the absence and in the presence of various Indo concentrations.

2.3. Characterization of the Electropolymerized Polypyrrole Coatings

The surface morphology of the prepared PPy and PPy-Indo coatings was examined by scanning
electron microscopy (SEM) with a Quanta 650 FEG from Thermo Fisher Scientific (Hillsboro, OR, USA).
To get information about their chemical composition the Fourier transform infrared (FTIR) spectrometry
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(Jasco FT/IR 4000, Tokyo, Japan) was used. The spectra were collected from 4000 to 600 cm−1 with
resolution of 4 cm–1 at 30 acquisitions per sample.

The surface wettability characteristics were determined by measurements of the contact angle in
simulated body fluid (denoted SBF) at room temperature (24 ± 2 ◦C), using the preparation procedure
as detailed in [41]. The involved SBF contains 7.996 g L−1 NaCl, 0.350 g L−1 NaHCO3, 0.224 g L−1 KCl,
0.228 g L−1 K2HPO4 × 3H2O, 0.305 g L−1 MgCl2 × 6H2O, 0.278 g L−1 CaCl2, 0.071 g L−1 Na2SO4 and
6.057 g L−1 (CH2OH)3CNH2 (tris(hydroxymethyl)aminomethane ACS as buffer). A CAM 100 compact
contact angle meter was used and an average value of five measurements performed on five different
areas of the specimens was considered.

The protective characteristics of the synthesized PPy and PPy-Indo layers were also assessed
using SBF as electrolyte and the same three electrode cells. Potentiodynamic polarization curves at
a sweeping rate of 5 mV·s−1 have been recorded against Ag/AgCl reference electrode and Pt mesh
counter electrode. In these cases the polymer coatings were prepared under potentiostatic conditions,
at a constant applied potential of 1.1 V vs. silver (Ag) wire and had a thickness d of 5.7 ±1 µm. It was
determined by the gravimetric weight difference method using Equation (1), where m represents the
mass of the deposited polymer in grams, ρ is the density of polypyrrole, taken as 1.5 g cm−3 and A is
the surface area of the electrode, in cm2:

d =
m
ρ·A

(1)

2.4. Drug Release Studies

The release of Indo molecules from the polymeric coatings were studied using optimized specimens
of PPY-Indo coatings, which were placed in a 20 cm3 SBF solution volume each. Prior to the drug
release experiments, the polymer coatings were thoroughly washed with distilled water and dried.
Periodic withdrawals of the solution containing the drug releasing specimens (three aliquots of 200 µL
each) in combination with the use of a Perkin-Elmer UV-Vis spectrometer (Perkin-Elmer, Shelton, USA)
allowed the construction of the drug release curves. Aliquots were analyzed by UV-Vis spectroscopy
between 220 and 500 nm wavelengths. The values of the absorption band at 266 nm were considered
and the average of three measurements was then used for the data analysis. A calibration straight
line for indomethacin (correlation coefficient of 0.9986) was obtained using standards prepared with
concentrations between 0 (blank) and 10 mg L−1. The initial amount of the indomethacin in the polymer
coating has been also determined employing the same analytical procedure.

2.5. Statistical Analysis

All performed measurements were checked in at least triplicate, in order to verify their
reproducibility and to statistically evaluate their significance. Standard error was reported for all
relevant data. To obtain more information on the morphological characteristics of the coatings,
a statistical analysis was performed and the particle sizes were extracted from the high magnification
SEM images by measuring approximately 50 individual particles for each sample. From the data
represented in the form of histograms, the average particle sizes were calculated.

3. Results and Discussion

3.1. Electrochemical Preparation of PPy and of the PPy-Indo Coatings Using DES Based Electrolytes

Figure 1 presents the cyclic voltammograms recorded on the investigated NiCr alloys (IB and ND
respectively) in ILM-ACN electrolyte in the absence of Py monomer.
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Figure 1. Cyclic voltammograms on NiCr alloys in ILM-ACN electrolyte: (a) IB alloy; (b) ND alloy. 
The scan rate was 10 mV s−1 and T = 25 °C. 

Both figures show the presence of a current plateau followed by a continuous increase, as the 
electrode potential is displaced towards either more positive or negative values. The current values 
are relatively low, of 23 ÷ 35 µA cm–2 on anodic branch and of 16 ÷ 24 µA cm–2 on cathodic one. The 
onset of the anodic process is located at ca. +1.0 V, being assigned to the oxidation of chloride ion 
while the onset of cathodic one, at about –0.25 V is attributed to the electroreduction of hydrogen 
cations, a process in which hydrogen gas is formed [42]. 

Figure 2 illustrates examples of the recorded multicycle voltammograms (CVs) during PPy 
growth on IB (a) and ND (b) alloys from ILM-ACN electrolyte containing 0.5 M Py. 

Figure 1. Cyclic voltammograms on NiCr alloys in ILM-ACN electrolyte: (a) IB alloy; (b) ND alloy.
The scan rate was 10 mV s−1 and T = 25 ◦C.

Both figures show the presence of a current plateau followed by a continuous increase, as the
electrode potential is displaced towards either more positive or negative values. The current values are
relatively low, of 23 ÷ 35 µA cm–2 on anodic branch and of 16 ÷ 24 µA cm–2 on cathodic one. The onset
of the anodic process is located at ca. +1.0 V, being assigned to the oxidation of chloride ion while
the onset of cathodic one, at about –0.25 V is attributed to the electroreduction of hydrogen cations,
a process in which hydrogen gas is formed [42].

Figure 2 illustrates examples of the recorded multicycle voltammograms (CVs) during PPy growth
on IB (a) and ND (b) alloys from ILM-ACN electrolyte containing 0.5 M Py.
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Figure 2. Cyclic voltammograms on IB (a) and ND (b) NiCr alloys during electrosynthesis of PPy 
from ILM-ACN electrolyte containing 0.5 M Py. The scan rate was 10 mV s–1 and T = 25 °C. 

The first anodic scan presents a flattened anodic peak in the region 0.84–0.91 V/Ag on IB alloy 
(Figure 2a), respectively at around 0.83–0.86 V/Ag on ND alloy (Figure 2b). This indicates the 
oxidation of the pyrrole monomer, in other words, the onset of film growth producing the oligomer. 
If the scan is continued, a more clear anodic peak at about 1.14–1.16 V/Ag occurs which is attributed 
to oxidation process of Cl− anions existing in the DES electrolyte. During repetitive cycling the current 
density increases with the number of potential cycling scans. This means a progressive increase in 
the electrical charge, the voltammograms displaying only the anodic plateaus at about 0.85–0.91 
V/Ag, assigned to the further electropolymerization and PPy formation. As Garfias-Garcia et al. have 
shown [43], if the electropolymerization process continues, the potential required to polymerize may 
become less positive than that corresponding to the monomer oxidation. 

Correspondingly, the peaks at 0.23 ÷ 0.27 V/Ag for the IB alloy, respectively at 0.21 ÷ 0.22 V/Ag 
for the ND alloy identified on the cathodic branch of the CVs are assigned to the reduction process. 
This reduction peak increase could be associated with the expulsion of a fraction of Cl− species 
originated from the DES (deintercalation of Cl− anions in order to maintain charge neutrality) from 
the polymer film due to its reduction from the oxidized to the neutral state, in agreement with [44]. 

Figure 2. Cyclic voltammograms on IB (a) and ND (b) NiCr alloys during electrosynthesis of PPy from
ILM-ACN electrolyte containing 0.5 M Py. The scan rate was 10 mV s–1 and T = 25 ◦C.

The first anodic scan presents a flattened anodic peak in the region 0.84–0.91 V/Ag on IB alloy
(Figure 2a), respectively at around 0.83–0.86 V/Ag on ND alloy (Figure 2b). This indicates the oxidation
of the pyrrole monomer, in other words, the onset of film growth producing the oligomer. If the scan is
continued, a more clear anodic peak at about 1.14–1.16 V/Ag occurs which is attributed to oxidation
process of Cl− anions existing in the DES electrolyte. During repetitive cycling the current density
increases with the number of potential cycling scans. This means a progressive increase in the electrical
charge, the voltammograms displaying only the anodic plateaus at about 0.85–0.91 V/Ag, assigned to
the further electropolymerization and PPy formation. As Garfias-Garcia et al. have shown [43], if the
electropolymerization process continues, the potential required to polymerize may become less positive
than that corresponding to the monomer oxidation.

Correspondingly, the peaks at 0.23 ÷ 0.27 V/Ag for the IB alloy, respectively at 0.21 ÷ 0.22 V/Ag
for the ND alloy identified on the cathodic branch of the CVs are assigned to the reduction process.
This reduction peak increase could be associated with the expulsion of a fraction of Cl− species
originated from the DES (deintercalation of Cl− anions in order to maintain charge neutrality) from
the polymer film due to its reduction from the oxidized to the neutral state, in agreement with [44].
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The significant increase in current in the whole potential range with increasing the number of cycles
indicates the growth of the PPy layer on both investigated NiCr alloys.

According to Figure 2, a slightly higher polymerization rate was noticed on the IB type alloy,
materialized by current density values around 3.8 mA cm–2 after six cycles as compared to about
2.66 mA cm−2 in the case of the ND type alloy after the same number of cycles. This phenomenon could
be related to the slight difference in the value of the potential required to initiate the Py oxidation on
the two investigated NiCr alloys, which may suggest the formation of different oligomeric species of Py
depending on the alloy type (IB or ND type) [43] which further influence the overall growth kinetics.

After electropolymerization, both types of NiCr alloy were entirely covered by a black, uniform
and adherent PPy layer.

The PPy films were also synthesized onto the IB and ND alloys under potentiostatic conditions.
Figure 3 illustrates typical current versus time curves obtained for the potentiostatic synthesis of
PPy on the two investigated NiCr alloys as substrates at different applied potentials (Ef) using
ILM-ACN electrolyte.
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Figure 3. Current–time plots recorded at different constant applied potentials for electrosynthesis of 
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Figure 3. Current–time plots recorded at different constant applied potentials for electrosynthesis of
PPy from ILM-ACN electrolyte containing 0.5 M Py on IB (a) and ND (b) NiCr alloys.

The curves can be divided in two periods: (1) an increased anodic current, corresponding to the
onset of PPy electropolymerization and (2) a current stabilizing in time. The first part shows an increase
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of the anodic current known as the induction period [45] due to the nucleation and growth of the
polymer; in some cases the current reaches a maximum. Then the current slightly decays or remains
constant attaining a near steady-state value. As illustrated in Figure 3, the shape was found to be
dependent on the applied potential. As expected, a potential increase from 1 to 1.2 V (vs. Ag quasiref.)
produces an increase in the charge required for anodic polymerization, in agreement with [45,46].
The recorded current-time plots at constant applied potentials showed a relatively similar behavior for
the two investigated alloys.

Examples of the recorded CVs during Py electrochemical polymerization in ILM-ACN electrolyte
in the presence of 0.0175 M Indo are displayed in Figure 4.
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25 °C). 

The shapes of the voltammograms are similar to those recorded in the absence of Indo, for both 
investigated NiCr alloys. In addition, higher anodic currents are noticed by comparing CV curves 
from Figures 2 and 4, suggesting the incorporation of Indo charged species within the PPy matrix 

Figure 4. Cyclic voltammograms on IB (a) and ND (b) NiCr alloys during electrosynthesis of PPy-Indo
from ILM-ACN electrolyte containing 0.5 M Py and 0.0175 M Indo. (scan rate of 10 mV s−1 and 25 ◦C).

The shapes of the voltammograms are similar to those recorded in the absence of Indo, for both
investigated NiCr alloys. In addition, higher anodic currents are noticed by comparing CV curves
from Figures 2 and 4, suggesting the incorporation of Indo charged species within the PPy matrix
which increases the required charge for polymerization. It is known [47,48] that the Indo molecule
contains several hydrophilic groups, including carboxylic group, –COOH, amide group, –CONH–,
and methoxyl group, –OCH3 that can participate in different hydrogen bonding interactions leading to
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formation of cyclic aggregates such as dimers and linear chains. They may be either hydrogen bond
(HB) donors, acceptors or both.

Based on several experiments at different deposition periods and applied potentials associated
with the quality of the prepared films, the optimum parameters for PPy growth on IB and ND type alloys
with a high degree of reproducibility were found to be 600 s and 1.1 V (vs. Ag quasiref.), respectively.

Therefore, the further electrochemical synthesis of the PPy-Indo coatings was performed under
potentiostatic conditions at an applied potential of 1.1 V for 600 s involving ILM-ACN electrolyte
containing 0.5 M Py and different concentrations of Indo in the range of 0.0125–0.05 M.

Figure 5 presents examples of the recorded charge–time plots for the studied NiCr alloys during
potentiostatic PPy polymerization in the absence and in the presence of Indo dissolved in ILM-ACN
electrolyte containing 0.5 M Py.
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the absence and in the presence of various Indo concentrations.

As evident from Figure 5, an increase in the Indo concentration produces an increase of the
polymerization charge, regardless of the type of NiCr alloy substrate, thus confirming the voltammetric
comparison of Figure 2 (electrolyte without Indo) and Figure 4 (with 0.0175 M Indo).

The polymerization charge obtained for different Indo concentrations in the ILM-ACN based
electrolytes is summarized in Table 2.
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Table 2. Polymerization charge for different Indo concentrations in ILM-ACN based electrolytes.

Alloy Type Electrosynthesis Electrolyte Applied Potential
During 600 s (V vs. Ag)

Polymerization
Charge/C cm−2

IB

0.5M Py

1.1

0.844
0.5M Py +0.0125M Indo 0.864
0.5M Py +0.0175M Indo 0.78
0.5M Py +0.025M Indo 1.068
0.5M Py +0.05M Indo 1.416

ND

0.5M Py

1.1

0.564
0.5M Py +0.0125M Indo 0.78
0.5M Py +0.0175M Indo 1.404
0.5M Py +0.025M Indo 1.452
0.5M Py +0.05M Indo 1.932

Usually, from the gradient of the charge–time plot, the rate of polymer deposition can be estimated
and any deviation from the linear trend would suggest a loss in the conductivity of the deposited
polymer [46]. Therefore, rates of electrochemical polymerization were calculated for the investigated
Indo doped PPy coatings, ranging between 2.16 and 3.54 mC s−1 (1.44–2.36 mC cm–2 s−1) and
2.0–4.83 mC s−1 (1.3–3.22 mC cm−2 s−1) for IB and ND substrates, respectively. It should be noticed
that the PPy-Indo coating formation on ND alloy is slightly faster than on IB type. For both cases
charge–time linear plots have been recorded, giving a constant rate of electropolymerization, with no
evidence of any decrease in the conductivity of the deposited polymer [46,47].

3.2. Characterization of Indo Doped PPy Coatings

In order to get information on the morphology of the PPy-Indo coatings formed on the involved
NiCr alloys under potentiostatic control in ILM-ACN based electrolyte, SEM microscopy has been
applied. Figure 6 presents examples of the SEM micrographs of the electrochemically synthesized
polymeric layers on the two investigated metallic substrates.
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ND alloy substrates from ILM-ACN electrolyte containing 0.5 M Py and 0.0175 M Indo at a constant
applied potential of 1.1 V/Ag for 600 s.

The synthesized PPy-Indo polymer films show a rather granular surface morphology for both
involved NiCr alloy types, quite consistent with previous findings in [39]. The average particle size
was extracted from the high magnification SEM images by measuring approximately 50 individual
particles for each sample. From the data represented in the form of histograms (not shown here)
the highest number of particles was found to be within 160–220 nm range for the ND substrate and
within 180–320 nm range for the IB substrate, respectively. The mean particle size was calculated
as 200 ± 25 nm for the ND alloy and as 261 ±54 nm for the IB one. A slight porosity of the film
is also observed, somewhat more pronounced for the IB metallic substrate. In addition, the SEM
micrographs suggest that the IB alloy facilitates the formation of a more ordered and homogeneous
layer as compared to the ND one. Moreover, from the recorded micrographs it is evident that there are
no insoluble precipitates of the drug molecules on the surface.

The electrochemically synthesized PPy and PPy-Indo films have been qualitatively analyzed by
FTIR spectroscopy, as exemplified in Figure 7.

The main peaks of indomethacin can be observed on FTIR spectra at 2900 cm−1 corresponding to
Ar–H stretching vibration in aromatics (Ar), 2860 cm−1 associated with C–H stretch and 1740 cm−1

which is assigned to the C=O and C–O stretches. Moreover, the peak at 1468 cm−1 corresponds to
O–CH3 deformation and the peaks in the region of 708 cm−1 correspond to the presence of aromatic ring
of indomethacin, as illustrated in Figure 7d,e [49,50]. A broad shoulder better evidenced in Figure 7b,c
in the region 3400–3200 cm−1 may be assigned to the presence of N–H stretching vibrations of pyrrole
ring [51,52]. The peak at 1566 cm−1 is attributed mainly to the intercycle C–C stretching vibration in
PPy and the band centered at 1163 cm−1 can be associated with C–N stretch while the peak at 957 cm−1

is due to ring stretch from pyrrole [53,54]. All these peaks indicate the presence of indomethacin in the
polypyrrole structure.

Contact angle, defined as the angle formed at the intersection of the liquid and the solid interface,
represents a relative measure of the surface energy of a material. Usually, contact angle analysis may
provide valuable information about hydrophilicity and the hydrophobicity nature of the material’s
surface. Therefore, the SBF contact angle was examined to get information on the wettability of
the surface after each modification, which usually is governed by the chemical composition and
surface morphology. Contact angles between 0◦ and 90◦ are characteristic to hydrophilic surfaces,
while values higher than 90◦ indicate hydrophobic characteristics [55,56]. As illustrated in Figure 8,
the bare NiCr alloys showed significant hydrophobicity, more pronounced for ND alloy. The presence
of the electropolymerized PPy layer produced a significant decrease around 29◦ and 38◦ for both the IB
and the ND alloys, respectively.
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and PPy-Indo coatings.

Moreover, the doping with Indo also contributed to a decrease of the contact angle value,
suggesting an improvement of the hydrophilic characteristics. This behavior could be related to the
slightly porous morphology of the Indo doped PPy coatings, more pronounced in the case of IB
alloy as metallic substrate. It is worth mentioning here that the SBF contact angle measurements
evidenced quite similar values, regardless of the value of Indo concentration in the DES based electrolyte
during electropolymerization.

The protective characteristics of the Indo doped PPy coatings on both the IB and the
ND alloy substrates have been assessed in SBF as electrolyte, using linear sweep voltammetry.
Figure 9 comparatively presents typical potentiodynamic polarization curves for PPy and Indo doped
PPy coatings electrosynthesized from ILM-ACN based electrolyte on the two involved NiCr alloys
having a constant thickness of 5.7 ± 1 µm.
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Figure 9. Polarization curves in semilogarithmic coordinates for PPy and PPy-Indo films formed at
constant applied potential of 1.1 V/Ag on: (a) IB and (b) ND alloy substrates from ILM-ACN electrolyte
containing 0.5 M Py and 0.0175 M Indo. Curves were recorded in SBF at 25 ◦C, scan rate 5 mV s−1.

As the polarization measurements were performed with solution in contact with the atmosphere,
dissolved oxygen molecules will normally be present and the cathodic currents recorded in the
presented potential region can be attributed to the reduction of oxygen dissolved in the solution [57,58].
Analyzing the anodic part of the polarization curves, it is seen that the uncoated IB and ND alloys
show a passive region up to ~0.1 ÷ 0.2 V vs. Ag/AgCl, followed by an increase of the current as the
potential is shifted towards more positive values. It is obvious that the PPy and PPy-Indo coated
electrodes also present passive regions, slightly displaced positively as compared to the uncoated
alloys. In addition, the values of the corrosion potential Ecorr of PPy and PPy-Indo layers are about
100–150 mV more positive than those of the uncoated alloys.

The values of the corrosion current density, icorr and corrosion potential, Ecorr (determined by Tafel
extrapolation of both cathodic and anodic polarization curves) as well as values of the polarization
resistance, Rp (calculated from the Stern–Geary equation) [59] are listed in Table 3. Corrosion rates, CR,
were also obtained from these curves.
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Usually, the polarization resistance Rp is representative for the degree of protection at the surface.
When higher values of the Rp are noticed, lower icorr may be expected. Therefore regarding the
values presented in Table 3, it is obvious that the PPy-Indo layers exhibit better corrosion protection
as compared to the PPy ones, for both investigated metallic substrates. As illustrated in Figure 9,
the corrosion protection effect of PPy and PPy-Indo coatings is more related to the inhibition of
anodic reaction.

Table 3. Values of corrosion parameters resulted from polarization curves in SBF for bare NiCr alloys,
PPy and PPy-Indo coatings.

Alloy Type Coating Type Ecorr /V vs.Ag/AgCl icorr/µA cm2 CR/mm/year Rp/Ω

IB
- −0.260 11.82 0.143 2760

IB-PPy −0.208 4.18 0.051 7252
IB-Ppy-Indo −0.118 1.68 0.020 17,086

ND
- −0.250 19.85 0.241 1345

ND-PPy −0.180 7.47 0.091 3820
ND-Ppy-Indo −0.078 4.65 0.056 11,562

3.3. Indomethacin Release from the Polypyrrole Matrix

The release of indomethacin from the polymer films was assessed by immersing the drug loaded
specimens in the SBF at room temperature. The UV-Vis spectrum of indomethacin recorded in SBF
between 220 and 500 nm is presented in Figure 10a, showing maximum absorption bands at 266 nm,
321 nm and 203 nm. The calibration curve illustrated in Figure 10b has been obtained for the highest
absorption band at 266 nm. A good linearity has been noticed up to about 0.01 g L−1 (27.9 µM) of
indomethacin in SBF, so that this medium could be considered appropriate for the release of the drug
from the PPy matrix.

The PPy-Indo coatings employed in the release experiments were loaded with various amounts of
Indo, depending on its concentration during electrochemical polymerization, as it follows: (i) 67.9 µg
(0.0125 M Indo); (ii) 110.9 µg (0.0175 M Indo); (iii) 153.8 µg (0.025 M Indo) and (iv) 193.1 µg (0.05 M Indo).

Figures 11 and 12 show the release profiles of indomethacin from the doped conducting polymer
coatings electrosynthesized on the IB and the ND metallic substrates, respectively, from ILM-ACN
based electrolyte containing 0.5 M Py and various Indo concentrations. The cumulative drug release,
denoted R, represents the fraction (percentage) of the active species released at time t in SBF medium,
calculated as R% = 100 × q/qo, where qo represents the initial amount of the Indo in the coating and q
is the released drug amount at time t.

As illustrated in Figure 11, an initial burst release effect up to about 30% during the first 12–15 h
may be noticed for the PPy-Indo coatings on the IB substrate, followed by a prolonged release phase
for the next 200–250 h and then a relatively constant release profile up to 400 h.

The doped conducting polymer coatings on ND substrate as presented in Figure 12 show an initial
burst release of about 18% during the first 15 h, followed by a continuous prolonged release phase for
the next 500–550 h.

According to the drug release profile, the electrochemically synthesized PPy-Indo coatings
involving ILM-ACN based electrolytes have the potential to deliver indomethacin for longer periods
of at least 17 days. The cumulative indomethacin released fraction is in the range of 98.7–99.6%
after 408 h and between 95.7–99.6% after 600 h for the PPy-Indo coatings on the IB substrate and the
ND one, respectively. This evolution suggests a faster release of the drug in the case of the doped
conducting polymer coatings electrosynthesized on IB. Generally, the morphological characteristics of
the films may influence the diffusion of the active compounds to the solution [60]. Therefore, the slightly
higher porosity of the PPy-Indo layers on IB as it was shown in Figure 6a may support this faster
release behavior.
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The mathematical modeling of the indomethacin release from the PPy coatings can provide more
information on the mechanism governing the release.

Most of the empirical and semi-empirical mathematical models that have been developed in
order to kinetically study the release of drugs have been derived from Fick’s law of diffusion [61–63].
The Korsmeyer–Peppas model, also known as the power law model is based on a simple semi-empirical
equation frequently involved to describe the release kinetics in pharmaceutical research [61,63,64].
This equation is expressed as:

R = k tn (2)

where R is the cumulative drug release fraction at time t, k is kinetic constant also incorporating
structural and geometric characteristics of the drug/polymer system and n represents the diffusional
exponent characterizing the mechanism of the drug release [63,64]. The Korsmeyer–Peppas model may
be seen as a decision parameter to identify drug transport mechanisms where n is used to differentiate
between the various drug release mechanisms, also considering the nature and geometry of the drug
delivery system, as shown in Table 4 [64,65].

Table 4. Interpretation of diffusional release mechanisms considering the values of diffusional exponent
n and the geometry of the delivery systems.

Diffusional Exponent, n
Drug Release Mechanism Ref.

Thin film Cylinder Sphere

0.5 0.45 0.43 Fickian diffusion
[63–65]0.5 < n < 1 0.45 < n < 0.89 0.43 < n < 0.85 Anomalous (non-Fickian) transport

1 0.89 0.85 Case-II transport

According to Table 4, for n values equal to 0.5, Fickian diffusion release is valid, while higher
values of n between 0.5 and 1 suggest a non-Fickian behavior which also takes into consideration
the erosion of the polymer chain. Values of n equal to 1 correspond to zero order kinetics release,
when drug release is independent of time [63–65]. Generally, Equation (1) should be applicable to the
first 60% of the cumulative drug release fraction (R < 60%) [63–65].
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Table 5 presents the values of the calculated parameters for the doped PPy coatings
electrochemically synthesized from ILM-ACN based electrolytes and various Indo concentrations,
on IB and ND substrates, respectively.

Table 5. Results of curve fitting using Equation (1) of indomethacin release data from different PPy-Indo
coatings electrosynthesized on IB and ND alloy substrates using ILM-ACN based electrolyte containing
0.5 M Py and various Indo concentrations.

System
Parameters

n k/h–1 r2

IB-PPy-0.0125 M Indo 0.493 5.328 0.9638
IB-PPy-0.0175 M Indo 0.522 5.243 0.9688
IB-PPy-0.025 M Indo 0.523 7.228 0.9943
IB-PPy-0.05 M Indo 0.623 6.309 0.9830

ND-PPy-0.0125 M Indo 0.399 5.731 0.9821
ND-PPy-0.0175 M Indo 0.432 5.006 0.9583
ND-PPy-0.025 M Indo 0.446 5.253 0.9754
ND-PPy-0.05 M Indo 0.441 5.814 0.9918

The correlation coefficients (r2) determined during the fit of the Korsmeyer–Peppas model to
the experimental release data for all PPy-Indo coatings suggest that the indomethacin release can
be described using this model. The diffusional exponent (n) ranged between 0.493 and 0.623 for the
PPy-Indo coatings electrosynthesized on the IB alloy substrate, indicating that the diffusion of the
drug out of the polymer layer is a mechanism governing the release. In the case of PPy-Indo coatings
electrosynthesized on the ND alloy substrate, the n values were calculated to be in the range of
0.399–0.441, suggesting the indomethacin release controlled by a lower diffusivity, possibly related to
the slightly more compact morphology of the layer [65].

The kinetic constant (k) shows relatively high values, suggesting a fast release of the drug from
the PPy coatings, more pronounced in the case of those electrosynthesized on the IB substrate.

4. Conclusions

Polypyrrole and polypyrrole-indomethacin coatings have been successfully synthesized on
different types of NiCr alloy substrates (IB and ND) widely used in dentistry, involving electrochemical
polymerization of pyrrole using eutectic mixtures of choline chloride and malonic acid. This appears
to be the first report related to the electropolymerization of pyrrole on NiCr alloy metallic substrates
involving DESs. This type of electrolyte allowed an enhanced dissolution of indomethacin as compared
to aqueous ones.

Electrochemical polymerization rates have been estimated from the gradient of the charge–time
plots, ranging between 2.16 and 3.54 mC s−1 (1.44–2.36 mC cm−2 s−1) and 2.0 and 4.83 mC s−1

(1.3–3.22 mC cm−2 s−1) for the IB and ND substrates, respectively, with no loss of the conductivity
of the deposited polymer. SEM micrographs of the polypyrrole-indomethacin coatings evidenced a
rather granular surface morphology and no insoluble precipitates of the drug molecules were detected
on the surface. The recorded FTIR spectra confirmed the presence of indomethacin in the polypyrrole
structure. The SBF contact angle measurements suggested that the doping of the polymer with the drug
molecule facilitates an improvement of the overall hydrophilic characteristics. The PPy-Indo layers
were found to provide better corrosion protection compared to the pure PPy ones in SBF environment,
mainly due to the inhibition of the anodic reaction.

Indomethacin release tests showed that the PPy-Indo coatings may deliver the drug molecule
for longer periods of at least 17 days. The maximum released amount was found to be around 99.6%
suggesting that the synthesized polypyrrole coating layers acted as an active reservoir for indomethacin.
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The release profiles suggested that the diffusion of the drug out of the polymer layer is the mechanism
governing the release.

The obtained results showed some of the advantages of the use of DESs, providing both an
easier route for the electrochemical synthesis of doped conducting polymers on commonly used
metallic substrates and an improved solubility of poor soluble drugs as is the case with indomethacin.
The procedure would contribute to the growth of promising films suitable to be used as biocompatible
materials. The electrochemical behavior in complex DES based formulations will be further investigated
for a deeper understanding of the polymerization mechanism occurring in these electrolytic media.
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