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Abstract: The 2018 IPCC (The Intergovernmental Panel on Climate Change’s) report defined the goal
to limit global warming to 1.5 ◦C by 2050. This will require “rapid and far-reaching transitions in land,
energy, industry, buildings, transport, and cities”. The challenge falls on all sectors, especially energy
production and industry. In this regard, the recent progress and future challenges of greenhouse
gas emissions and energy supply are first briefly introduced. Then, the current situation of the steel
industry is presented. Steel production is predicted to grow by 25–30% by 2050. The dominant
iron-making route, blast furnace (BF), especially, is an energy-intensive process based on fossil fuel
consumption; the steel sector is thus responsible for about 7% of all anthropogenic CO2 emissions.
In order to take up the 2050 challenge, emissions should see significant cuts. Correspondingly,
specific emissions (t CO2/t steel) should be radically decreased. Several large research programs in
big steelmaking countries and the EU have been carried out over the last 10–15 years or are ongoing.
All plausible measures to decrease CO2 emissions were explored here based on the published
literature. The essential results are discussed and concluded. The specific emissions of “world steel”
are currently at 1.8 t CO2/t steel. Improved energy efficiency by modernizing plants and adopting
best available technologies in all process stages could decrease the emissions by 15–20%. Further
reductions towards 1.0 t CO2/t steel level are achievable via novel technologies like top gas recycling
in BF, oxygen BF, and maximal replacement of coke by biomass. These processes are, however,
waiting for substantive industrialization. Generally, substituting hydrogen for carbon in reductants
and fuels like natural gas and coke gas can decrease CO2 emissions remarkably. The same holds for
direct reduction processes (DR), which have spread recently, exceeding 100 Mt annual capacity. More
radical cut is possible via CO2 capture and storage (CCS). The technology is well-known in the oil
industry; and potential applications in other sectors, including the steel industry, are being explored.
While this might be a real solution in propitious circumstances, it is hardly universally applicable in
the long run. More auspicious is the concept that aims at utilizing captured carbon in the production
of chemicals, food, or fuels e.g., methanol (CCU, CCUS). The basic idea is smart, but in the early
phase of its application, the high energy-consumption and costs are disincentives. The potential
of hydrogen as a fuel and reductant is well-known, but it has a supporting role in iron metallurgy.
In the current fight against climate warming, H2 has come into the “limelight” as a reductant, fuel,
and energy storage. The hydrogen economy concept contains both production, storage, distribution,
and uses. In ironmaking, several research programs have been launched for hydrogen production
and reduction of iron oxides. Another global trend is the transfer from fossil fuel to electricity.
“Green” electricity generation and hydrogen will be firmly linked together. The electrification of steel
production is emphasized upon in this paper as the recycled scrap is estimated to grow from the
30% level to 50% by 2050. Finally, in this review, all means to reduce specific CO2 emissions have
been summarized. By thorough modernization of production facilities and energy systems and by
adopting new pioneering methods, “world steel” could reach the level of 0.4–0.5 t CO2/t steel and
thus reduce two-thirds of current annual emissions.
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1. Global Challenge of Climate Warming and Its Rationale

Climate change is indisputable. The Intergovernmental Panel on Climate Change’s (IPCC) Fifth
Assessment Report concluded that, “It is extremely likely that human influence has been the dominant
cause of the observed warming since the mid-20th century” [1]. The main culprit is anthropogenic
greenhouse gas (GHG) emissions, which have doubled since 1970 due to the rapid population growth,
expanded industrialization, and increase in standard of living. The observed growth can be seen in
Figure 1 [2]. The scale in the figure is in Gt CO2 equivalent per year. Carbon dioxide is the most
important GHG; its emissions are currently at 37 Gt/year. CO2 content in the atmosphere increased
from 300 ppm in 1950 to the current 410 ppm [3]. Additionally, there are other greenhouse gases that
are more potent, albeit in lesser amounts. Methane CH4 is the most significant, followed by NOx,
and F-bearing gases. The total equivalent GHG emissions are estimated at about 52 Gt/year and 56
Gt/year when land-use, land-use change, and forestry (LULUCF) are taken into consideration.
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Figure 1. Global greenhouse gas emissions, 1970–2018. Modified from [2]. 

The recent course of GHG emissions indicate rapid climate warming, 3–5 °C by 2100 (Figure 2). 
The United Nations’ Intergovernmental Panel on Climate Change (IPCC) has stated that CO2 
concentration must be stabilized at 450 ppm to have a fair chance at avoiding global warming above 
2 °C, which was set as a limit at the COP 21/CMP 11 Conference in Paris, December 2015 [1]. Later, 
this target was brought down to 1.5 °C at the COP 24 meeting in 2018 [4]. In Figure 2, feasible future 
scenarios are shown, together with the last 50 years’ history of equivalent CO2 emissions. Current 
policies or nationally determined contributions (NDC) are not effective, and more radical actions are 
needed. The 2 °C pathway means a roughly 50% cut in emissions by 2050, and the 1.5 °C target 
indicates an 80% cut, respectively. 

Figure 1. Global greenhouse gas emissions, 1970–2018. Modified from [2].

The recent course of GHG emissions indicate rapid climate warming, 3–5 ◦C by 2100 (Figure 2).
The United Nations’ Intergovernmental Panel on Climate Change (IPCC) has stated that CO2

concentration must be stabilized at 450 ppm to have a fair chance at avoiding global warming
above 2 ◦C, which was set as a limit at the COP 21/CMP 11 Conference in Paris, December 2015 [1].
Later, this target was brought down to 1.5 ◦C at the COP 24 meeting in 2018 [4]. In Figure 2, feasible
future scenarios are shown, together with the last 50 years’ history of equivalent CO2 emissions.
Current policies or nationally determined contributions (NDC) are not effective, and more radical
actions are needed. The 2 ◦C pathway means a roughly 50% cut in emissions by 2050, and the 1.5 ◦C
target indicates an 80% cut, respectively.
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The key question is: how can we stop the growth of CO2 emissions and drastically lower the 
curve in the 2020s? The primary fault lies in fossil fuel being a major source of energy. Although 
renewable energy has gained publicity since the 1990s, its role is still minor—about 14% of all energy 
supply, whereas fossil energy represents 81% (Figure 3). The remaining 5% is nuclear power. For 
electricity generation, the corresponding percentage contribution is 26/63/11 for renewables, fossil, 
and nuclear energy, respectively [4,5]. 
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The global energy production exceeded 14 Gtoe (gigatons oil equivalent) in 2018 [5]. The share 
of fossil energy was 11.3 Gtoe, which is in accordance with anthropogenic carbon emissions, 
including fuel combustion and cement production, 37 Gt CO2/year [2]. 

Figure 2. History of global greenhouse gas (GHG) emissions and different scenarios till 2050 [3].

The key question is: how can we stop the growth of CO2 emissions and drastically lower the curve
in the 2020s? The primary fault lies in fossil fuel being a major source of energy. Although renewable
energy has gained publicity since the 1990s, its role is still minor—about 14% of all energy supply,
whereas fossil energy represents 81% (Figure 3). The remaining 5% is nuclear power. For electricity
generation, the corresponding percentage contribution is 26/63/11 for renewables, fossil, and nuclear
energy, respectively [4,5].
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Figure 3. Total primary energy supply by source, globally, 1990–2017 [5].

The global energy production exceeded 14 Gtoe (gigatons oil equivalent) in 2018 [5]. The share of
fossil energy was 11.3 Gtoe, which is in accordance with anthropogenic carbon emissions, including
fuel combustion and cement production, 37 Gt CO2/year [2].

2. Progress of the Steel Industry and its Role in Energy Consumption and CO2 Emissions

The overall progress of world steel production over the last 150 years is shown in Figure 4a [6].
In the early 19th century, the world annual steel production was only a few million tons. After the
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breakthrough of new technologies, converter processes, and open hearths, production increased and
exceeded 30 Mt in 1900. In 1927, steel production reached 100 Mt and 200 Mt in 1951. The next 30 years
after the II World War was a period of “new industrial revolution” with innovative novel processes.
Extensive investments were made in the steel industry, with Japan, Soviet Union, United States, and
South Korea in the vanguard. The annual steel production reached 700 Mt in the 1970s (record 749 Mt
in 1979). The growth then stagnated due to economic crises and political changes until the turn of the
millennium, when it reached 850 Mt in 2000. This was the overture to the “boom” with China in the
forefront. Since then, the world production has doubled and the record so far is 1,869 Mt, attained in
2019 [6]. China´s share is over 50%. Today, China´s domestic steel demand has reached an “established
level” and eventual growth is directed towards export. Meanwhile, India has strongly increased steel
production and has risen to second place with 111 Mt/2019. It is plausible that in the near future, the
consumption in developing countries will grow. Earlier scenarios predicted continuous growth up to
3000 Mt/year in 2050. Owing to the recession period, the stabilization in China, and the newest goals of
“stop climate change”, the current scenarios are more conservative and an estimate of 2500 Mt in 2050
can be considered realistic [7,8]. Future scenarios until 2050 are sketched accordingly in Figure 4b.
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Figure 4a also shows the amounts of main raw material of steel: blast furnace hot metal (BFHM),
recycled steel (RS), and direct reduced iron (DRI + HBI). Of these, BFHM is mainly charged into
converters to make steel, whereas RS and DRI go into electric furnaces. In 2018, 72% of crude steel
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came from converter processes based on BF hot metal. Electric furnaces produced 27.6%, utilizing
recycled steel scrap as the main iron source, with a minor share of direct reduced iron. The balance
0.4% was produced in open hearths, which is currently a declining technique [6].

Ironmaking is an extremely energy-intensive process, utilizing coal as the main primary energy
source. The steel production was responsible for 7–9% of direct emissions from the global use of fossil
fuel [9]. The specific emission was estimated at 1.85 t CO2/t steel, corresponding to 3.3 Gt CO2 in
a year at the production rate of 1.8 Gt/a. The predicted growth of steel demand/production by the
year 2050 was discussed afore as ending in 2.5 Gt/a (Figure 4b). The “current policy” would lead to
annual emission of 4.5–5 Gt CO2, which would be a disaster, as it is insufficient to stop the growth;
therefore, we must radically cut emissions. By tracking the “2 ◦C pathway”, the emissions could be
halved and the “1.5 ◦C pathway” could mean reduction by 80% [3]. In proportion to the steel industry,
total emissions should be reduced to 1.5–0.75 Gt CO2/a, corresponding to specific CO2 emissions of
0.6 − 0.3 t CO2/t steel. The fall from 1.85 t CO2/t steel is, thus, dramatic. A pertinent question follows:
By what means can we attain this level by 2050?

The author of this paper examined this problem in 2011 by analyzing production practices in
different countries; comparing them with BAT (Best Available Technology) values; estimating emissions
from different energy sources (including electricity); and studying the potential of energy-saving
actions, and low-carbon and carbon-free innovative technologies [10]. The present contribution,
although based on previous studies [10,11], is an updated, generalized version, taking into account the
extensive recent developments and numerous works of literature.

3. Review of Means to Cut CO2 Emissions from the Steel Industry

We have identified several key factors that make it possible to reduce CO2 emissions from steel
production. Some of them are incremental improvements in current processes, whereas the others
can be regarded as radical breakthrough technologies for iron/steel making or energy supply/usage.
Both incremental and radical improvements are useful and necessary to be implemented due to the
huge scale and inertia for change as well as the urgent schedule of having only few decades to achieve
the set goal.

3.1. Improving Energy Efficiency

The first key factor is to improve the energy efficiency of current processes—the fastest way to
stop the growth of emissions at a moderate cost. A previous comprehensive study by IEA/OECD
analyzed steel industries in different countries and showed an energy-saving potential of 4.1 GJ/t steel
(corresponding to 20% reduction from the current world average) [12]. The saving potential varied
from 1.4 to 8.7 GJ/t in different countries, with the largest savings slated for China, Ukraine, Russia,
India, and Brazil. China has made big efforts and decreased its specific energy consumption by 15%
from 2006 to 2017 [13]. The total energy consumption or intensity in BF-BOF steel production varied
in different countries from 19 to 26 GJ/t crude steel in a recent, rather inclusive benchmarking [14].
Despite great advancements by the world steel industry, energy consumption can still be reduced by
10–15% on average to meet the BAT values by applying best available technologies [15,16]. Even bigger
deduction of CO2 emissions is possible by transfer to low-carbon energy sources.

Any comparison of energy efficiency between different countries or even steel plants is not fair
if the boundary conditions (raw materials, energy sources, processes, products etc.) are different.
For such comparisons and evaluation of any kind of process changes, it has proved illustrative to set
the different process routes (ore-based and scrap-based steel production) at the ends of the x-axis and to
examine the specific energy consumption (GJ/t steel) against the recycling ratio, defined as percentage
of scrap from total Fe input [10,11]. Correspondingly, the specific CO2 emissions (t CO2/t steel) can be
presented as in Figure 5. The % REC means percentage of recycled steel i.e., scrap. The case % REC = 0
corresponds to 100% ore-based BF–BOF (or in the case of smelting reduction SRF–BOF) route steel
production. On the other hand, % REC = 100 means 100% recycled steel (scrap) based production
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i.e., the EAF route. The direct reduction process (DRI production) cannot be put in a diagram on its
own, but the melting stage in EAF, normally with some scrap, must be included. Then, the position
on the x-axis depends on the scrap/DRI ratio used in the EAF. This kind of representation is apt, e.g.,
for comparison of the state of the steel industry in different countries as well as evaluation of new
development steps. In Figure 5, the present level is outlined. The full BAT line was drawn based on
rather conservative data by Worrell et al. [16]. The BAT Line Range was outlined based on different CO2

emissions from electricity generation, the low line referring to low emission electricity (hydro/nuclear
power) and the high line permitting coal/oil/gas as primary energy. In this scale, the current position of
“world steel” W is at 1.8 t CO2/t steel vs. 35% REC [9]. The % REC value takes account of the usage of
scrap in BOFs. Hence % REC is notably higher than the percentage of EAF production (see e.g., China).
Further, Japan, the European Union, Germany, France, Canada, the United States, and Italy were
evaluated in Figure [13,14,17–20]. The drop in overall world average from 1.8 t CO2/t steel to the BAT
level would mean a reduction by 15–20%. This could be achieved by modernizing plants, adopting best
available technologies, and closing old-fashioned units in China and other countries—i.e., a certain
“low-carbon retrofit”.
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The positions of world, EU, and different countries in Figure 5 are only an approximate, as both
the published CO2 emissions and estimated % REC values were not necessarily based on equivalent
premises. As remarked before, the % REC also rules in the scrap used in converters, whereas DRI
is counted as “ore-based” iron raw material. A position in relation to the BAT line relates to the
technology level but can also incorporate other factors. For instance, Canada’s outstanding position
is partly owing to the substantial share of natural gas as the primary energy source. In contrast,
Germany´s relatively high value is a result of the big role of coal in ironmaking as well as in electricity
generation. Generally, in cases with high EAF share, electricity generation emissions have a strong
influence, illustrated by the expanding BAT range.
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3.2. Potential Means to Mitigate CO2 Emissions in Ore-Based Production by Improving and Modifying
Current Technology

Numerous R&D programs and projects have been carried out over the last 10-15 years or are
on-going. The European ULCOS program, COURSE50 in Japan, the POSCO program in Korea,
the Australian CO2 Breakthrough Program (CO2BTP, ISP), and the AISI CO2 Breakthrough Program
in North America as renowned examples [21–30]. In addition, comparable projects have been
reported in China, India, and Taiwan [13,17,31–34]. Without going into details of the programs, the
main improvements that could have a potential influence on the reduction of CO2 emissions are
summarized below:

• Transfer to coke dry quenching in coke making (CDQ)
• Production of high strength coke to better utilize hydrogen reduction in BF
• Top-pressure Recovery Turbine (TRT) technology in BFs and dry dedusting systems for BFG and

BOFG (blast furnace and converter off-gases)
• Incorporation of oxygen enrichment technology in hot stoves
• Integrated optimized usage of off-gases in-plant, for electricity generation and district heating
• Top gas recycling in oxygen blast furnace (TGR-OBF)
• Enhanced utilization of unused steel plant waste heat (off-gases from sintering, coke plant,

hot stoves, converters, reheating furnaces, etc.)
• Heat recovery from slags

The applicability of these technologies has been tested at least in pilot scale, and some
represent well-established technologies (e.g., CDQ, TRT). By nature, technical improvements result
in energy saving, thus indirectly reducing CO2 emissions. The influences are proportionately minor,
but significant on a global scale. Integrated systems with heat recovery, optimized internal recycling,
substitution of air with oxygen; and actions that increase the role of hydrogen as a fuel and reductant
are powerful.

Top gas recycling, combined with an oxygen blast furnace (TGR-OBF), was a central concept in
the European ULCOS program [21–23]. The idea was presented in the early 1970s [35], but proved to
cause big changes in gas flow, heat distribution, and reaction zones, compared to air or O2-enriched
conventional (max. 30% O2) furnaces. Coupling with top gas recycling seemed to solve these problems
by increasing the blast gas volume—a part of the top gas is recycled back to the furnace to utilize its
CO and H2 as reducing agents and fuel. In order to enable rational recycling, the CO2 (and H2O) in the
recycled top gas must be removed (CCS). With a small amount of inert gas N2, the blast temperature
can be decreased, which means savings in hot stoves. The reduction in CO2 emissions was estimated
to be in the range of 10–25% [22] (Figure 6). However, the TGR-OBF-CCS technology is relatively
complicated, electricity consumption increases, and less electric power can be generated [27,36–38].
An industrial TGR-OBF installation was put into operation in Anshan, China, in 2012 [39].

In conventional ironmaking, hydrogen is retained in the background in BFs, as the volatile
hydrogen-rich matter in the coal-to-coke process is removed in coke oven gas (COG), which is an
important heat source and energy storage in an integrated steel plant. Interest in co-injection of COG
in BFs has recently increased [24–26]. COG decreases coke consumption and CO2 emissions in BF,
whilst also cutting off a bit of the total energy supply of the integrate, which then must be replaced
by another energy source. Another efficient way to decrease coke consumption is by powdered coal
injection (PCI) through BF tuyeres. This idea dates back to the early 1980s when it was first put
into operation in Japan as a substitute for oil that had increased in price [40]. PCI is now a common
practice—up to 30% coke can be replaced; higher amounts are possible, but for smooth operation of the
BF process, the properties of coke are extremely critical. Replacement of coke with coal decreases the
flame temperature, the effect of which is compensated by oxygen enrichment in the hot blast. Generally,
the replacement ratio of typical coke-substitutes (kg coke/kg substitute) is less than 1.0 (typically in the
range of 0.7–0.9). At high injection rates, the ratio tends to decrease, which means an increase in total
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energy consumption and hence a positive effect on CO2 emissions is lost. Instead of coal powder, other
powdered materials can be used e.g., waste plastics, char, sawdust, and other biomasses, providing
sufficiently high energy content and low impurity. Waste plastic injection was started in Bremen in
1995 [41] and has become a common practice in Japan as well.
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A reawakened trend is to introduce “renewable biomaterials” as a solution to the problem of global
CO2 emissions. Since 2000, several extensive studies on the potential of wood as a substitute for fossil
energy in iron and steel production have been conducted e.g., [42–46]. The main interest has been in
countries with a high percentage of forests and strong tradition of the wood industry, or countries with
high potential for wood plantation (for example, Finland, Sweden, Australia, Brazil). Possible sources
of charcoal could be both waste wood from harvesting and industries and large-scale wood plantation,
which has been in industrial use in Brazil for pig iron and ferroalloys production since the 1970s [47,48].
Charcoal is made of planted eucalyptus wood by pyrolysis. Pig iron is produced in mini blast furnaces,
where 100% charcoal operation is possible. The overall coke/charcoal ratio in Brazilian pig iron is about
80/20. In big BFs, a certain amount, approximately 250 kg coke/t HM, is necessary for smooth operation
of the high shaft reactor with complex chemical reactions, counter-current solid-liquid/gas flows, and
heat transfer phenomena. Except for substituting charcoal for coal injection and nut coke in BF top
charging, it can be used in sintering, as a carbon carrier in EAFs, ladle metallurgy etc. Charcoal is an
excellent material owing to its chemical purity and high heat value compared with coal. In addition,
the carbon in biomasses ends up in the atmosphere as CO2, but can be compensated by planting new
trees, which then bind CO2 from the atmosphere and liberate O2 via photosynthesis. The whole cycle
is not emission-free, as both the plantation and usage with preparation processes need energy and
produce emissions. In Figure 6, the maximal potential of biomass on CO2 emissions was estimated
as being 40%. In reality, any substantial deployment is limited to countries and areas where the
circumstances are favorable for massive, ecologically reasonable biomass production. On a global
scale, socio-economic issues, land use, requirements for food production, etc. restrict any extensive
‘renaissance’ of charcoal blast furnaces. We remember how the early history of ironmaking was based
on charcoal and this was a cogent reason why forests disappeared widely in Great Britain and the
European continent in the Middle and New Ages by the end of 1800, when the use of coke emerged
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and created preconditions for the ‘steel revolution’ [49]. The dominance of coke has lasted for over
200 years but is now ending and novel remedies must be discovered. The ‘return of biomass’ can be a
reasonable supplementary recourse for the steel industry in restricted regions/circumstances, provided
that the production is ecological, low-emitting, and economical, wherein carbon-tax is decisive.

3.3. Potential Means to Reduce Emissions by CO2 Capturing and Storage as well as Utilization

The idea of capturing CO2 is well-known and has been proven since the 1930s to purify natural gas,
hydrogen, and other gas streams on an industrial scale. In 1972, the first commercial-scale operations
were performed to inject captured CO2 into underground storage [50]. CO2 capture and storage has now
become a well-established practice in oil and gas production, led by the U.S. and followed by several
oil-producing countries. During the last decades, the interest in the applications of this procedure
has extended to energy production, cement, and chemical and metallurgical industries. Different
techniques have been investigated and developed to capture CO2: chemical absorption (amines like
MEA), physical absorption (PSA), or membrane or cryogenic distillation-based separation process.
Numerous technologies are under development, in pilot scale or close to demo level. The capacity of
projects currently operating or under construction is about 40 Mt CO2 per annum [50]. The IEA’s World
Energy Outlook 2019 presents a scenario wherein CO2 capture, utilization, and storage (CCUS) could
provide 9% of the cumulative emissions reduction between now and 2050 [51]. The annual capture was
calculated as 2.8 Gt CO2. On the other hand, estimates by the IPCC of the amount of CO2 that must be
stored using CCS are much higher—around 5 to 10 Gt/a by 2050—in order to limit global warming
to 1.5 ◦C [52]. As for the technical realization, the most common course is geological sequestration,
generally connected to oil and gas fields, when oil recovery can be notably increased by pumping CO2

into the empty wells (enhanced oil recovery EOR). This improves the combination economy, but at
the same time tends to accelerate the use of fossil energy with a negative impact on climate warming.
The storage capacity of the empty wells is limited, and more capacity has been traced in appropriate
geological formations. Rough estimates of the disposable “saturation” capacity ranges in hundreds of
years. Nonetheless, CCS cannot be a long-term solution to the climate problem, but only a temporary
mitigation method. A better sustainable way is mineral sequestration, in which CO2 is exposed to
react with suitable minerals (Mg, Ca-silicates, serpentines etc.) to form stable carbonates [53,54]. When
mineralization is performed in situ, the CO2 must be separated from the off gas and transported to
the mine for the mineralization process. At the plant site, mineralization can be performed directly
from the off gas. In such cases, it is reasonable to make mineralization e.g., by using steelmaking
slags [54–56]. Altogether, the entire process of CCS consumes a remarkable amount of energy, although
less-energy consuming methods for CO2 capture are under development [50].

Principally, a better method might be carbon capture combined with carbon utilization, CCU.
One method is the aforementioned EOR use, but more genuine are applications where CO2 is used
as an input to the production of value-added products, resulting in real emissions decrease, as the
gas is permanently stored. Traditionally, CO2 is used in beverage production, metal welding, cooling,
and fire suppression. In those applications, captured CO2 is used to replace CO2 specially made for
that purpose. An example of ‘true GHG use’ is in horticulture, where the greenhouse atmosphere is
enriched with CO2 to accelerate photosynthesis and growth rate. The captured CO2 can then displace
the gas produced from fossil origin for that purpose. Another example is saline algae cultivation,
which could utilize and bind CO2 and produce raw materials for various bioproducts [57]. Captured
CO2 is already in use for natural gas processing and urea fertilizer production [50]. According to a
new ‘waste-to-energy’ concept, CO2 should be converted into hydrocarbons and then into liquid or
gaseous fuel whenever it displaces a product of fossil fuel origin, chemicals, plastics, and building
materials. In different industrial sectors, there are numerous, potential uses for captured CO2 [58].
The estimated amounts of possible reuse of CO2 in different applications vary from tens to hundreds
of millions, eventually billions of tons per year. Although these are big quantities, CCU will not be a
true solution to CO2 emissions but only a complementary, short-term way. Further research in the field
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to develop competitive processes and products, as also emphasized in the reports by the Global CCS
Institute and IEA [50,52], is important.

The review above concerns the general status of CCS, CCU, and their combination CCUS. With
regard to iron and steel production, CO2 capture has been examined widely and tested but not yet
widely deployed. Different techniques have been scrutinized to capture CO2 from blast furnace gas by
applying chemical absorption or physical absorption/adsorption [21,22,25,31,37–39,59–62]. In addition,
CO2 capture from the “end of pipe” off-gas of the whole plant has been examined. In general, these
capture techniques require a lot of energy. Therefore, an essential objective is to reduce energy
consumption in CCUS. Potential means are, for example, to utilize sensible heat of slags by applying
a high-efficiency heat exchanger. For that purpose, process gases coming from the coke plant, blast
furnace (BF), and basic oxygen furnace (BOF) containing CO2, CO, CH4, and H2 can be recovered [27,60].
A potential ‘waste-to-energy’ technology is gas fermentation, which uses works arising gases (WAGs)
to produce ethanol. LanzaTech in Illinois U.S. has developed a microbial bioreactor system capable
of direct gas fermentation to produce ethanol from carbon-containing gases like integrated iron and
steel plant off-gases [63,64]. A demonstration scale plant has been in operation in Shougang China
since 2018, and a bigger demonstration plant with an estimated capacity of 64,000 tons ethanol/year is
under construction at Arcelor Mittal Ghent, Belgium [64]. This STEELANOL project is supported by
the EC Horizon2020 program [65]. Comparable polygeneration concepts involving biomass used in a
steel plant and utilization of off gases to methanol production, district heat, and electricity have been
proposed e.g., in [66,67].

3.4. Hydrogen Economy—Definitive Solution Toward Carbon Neutral Society?

The actions discussed above to improve or modify the current BF-based ironmaking technology
can reduce CO2 emissions maximally by 50%, i.e., to the specific emission level of 1000 kg CO2/1ton
steel. In the global overall context, this is not enough; a more radical leap is vital. The wide-ranging
use of hydrogen as a substitute for coal/coke is a potential solution, both in ironmaking and in energy
use, transportation, heating etc. [68–72]. As hydrogen is not a natural resource like coal, it must be
first produced. The main technologies to produce hydrogen are based on steam reforming of natural
gas or oil, which produce approximately 95% of the current global H2 production (≈70 Mt/y) [70].
This hydrogen is, by no means, carbon-free and is called “grey hydrogen”. In addition to the reformed
hydrogen, roughly 50 Mt/y H2 is used in mixed gases e.g., for direct reduction of iron (DRI) as well as in
BFs [69]. In order to produce low-carbon hydrogen through natural gas/oil reforming or coal gasification,
CCS must be adopted (“blue H2”). These technologies are well-established on an industrial scale; future
development should include indispensable infrastructure for transmission, storage, and distribution,
which will greatly facilitate the emerging hydrogen economy. Instead of fossil-derived hydrogen, the
so-called bio-hydrogen is in the spotlight. Various agricultural and industrial residues and municipal
wastes are possible raw materials for hydrogen production. Both thermochemical methods and
biochemical processes (based on algae, fermentation) have been investigated [71,72]. Additionally,
hydrogen production via water electrolysis at room temperature or high temperature (solid oxide
electrolyte cell, SOEC) [69] is a well-known principle with different technologies. Combination of
SOEC with SOFC (solid oxide fuel cell) might be a true promoter of the development by involving
means of energy production, storage, and usage. Hydrogen produced via these technologies as well as
bio-hydrogen can be called “green”, providing the electric energy is fossil-free.

Along the same lines, the impact of hydrogen on CO2 emissions from iron and steel production
depends greatly on the “purity” of hydrogen, the treatment of the accompanying CO2 (CCS, CCU),
and the carbon footprint of the electricity (grid), which is used in all the stages—from raw materials
and energy to final steel. The lowest line in Figure 6 starting from 1000 kg CO2/t steel describes
the current best technology using DR + scrap and average electricity. By moving to “pure” H2 and
“green” electricity, the emissions decrease, both on the primary “ore-based” side and on the secondary
“recycled” steel side, as will be discussed later in Paragraph 4. The first industrial scale trials with
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hydrogen reduction were in the 1950s when the H-iron process was introduced [73]. The idea was
to produce fine Fe powder in a fluidized bed at temperatures below 500 ◦C. Several processes were
developed based on the fluidized bed principle and the exclusion of the agglomeration process of iron
ore fines as the driving force, but with scant success. For high productivity and metallization, reduction
should be made at higher temperatures, which, however, resulted in “sticking” when metallic iron
was formed. This is a problem well known since the 1950s; a current publication summarized its
phenomena and mechanisms [74]. Among the numerous fluidized bed attempts, the Circored process
is still in an active state. It was developed for reformed natural gas but was proved for pure hydrogen
as well [75]. Another method for reduction of fine iron ore concentrates is Flash Ironmaking Technology
(FIT), developed at the University of Utah by Prof. H-Y. Sohn and his group [30,76,77]. This innovative
alternate ironmaking process utilizes a flash reactor, well-known in non-ferrous smelting for Cu and
Ni sulfides. The FIT reactor can be operated with different reductant gases, hydrogen or natural gas,
and possibly bio/coal gas or a combination. There is an article on the subject in this issue [30]. Overall,
just as conventional ironmaking is based on a shaft furnace reactor (BF), the direct reduction takes
place in shaft furnaces using natural gas (Midrex, Energiron). This also concerns hydrogen reduction.
The European research program ULCOS began in 2004 and had several projects on the application of
hydrogen in iron and steel production [21,78–80]. The development work has continued in several
projects aiming at pilot and industrial scale installations. The H2FUTURE project in Austria will prove
the PEM electrolyzer for hydrogen production [81], the GrInHy2.0 project in Salzgitter Germany strives
to utilize steam from industrial waste heat in SOEC for hydrogen production [82], and the HYBRIT
project aims at the development of a fully fossil-free steel production chain [83,84]. HYBRIT (Hydrogen
Breakthrough Ironmaking Technology) is a Nordic endeavor with backing from three companies,
LKAB (iron ore mining and pelletizing), SSAB (steel manufacturer), and Vattenfall (power utility).
The project was launched in 2016 and will continue with pilot reduction trials and hydrogen production
and storage until 2025; it will proceed to demonstration plants and industrial scale transformation in
2025-40 and fossil-free production as the final goal in 2045 [85]. The influence of hydrogen deployment
on CO2 emissions are discussed later with respect to the summary part, Paragraph 4.

3.5. Clean Electricity—The Major Energy Form in the Future

As noted before, different ways to generate electricity cause very different CO2 emissions.
Consequently, the influence on total emissions can be substantial, depending on the share of electricity
in iron and steel production. The impact is determined in EAF steelmaking, noteworthy in reduction
processes, and will be critical in transition to hydrogen reduction, including H2 production (steam
reforming, electrolysis, etc.). In a power station with coal as the primary energy source, specific
CO2 emissions can be over 1000 g CO2/kWh (mean value 820 g CO2/kWh), whereas in a modern gas
power station, the corresponding figure is below 500 g CO2/kWh (Table 1). Direct emissions from
biomass combustion are relatively high, but a modern dedicated biomass-fired CHP system has much
lower emissions. All types of fuel-fired power stations can be reformed to low-emitting units (≤200 g
CO2/kWh) by CO2 capturing (CCS). However truly low, almost zero emissions, can be attained only via
non-fossil/renewable technologies, solar, wind, nuclear, and hydro power stations, where the emissions
are in the range of 10–50 g CO2/kWh (Table 1) [86,87].

Another way of tracking the general global progress is to examine the CO2 emissions of national
electrical grids i.e., emissions per generated kWh in different countries. China is the biggest steel
producer and used to have quite high emissions from coal power stations; however, with modernization,
the figure fell to 620 g CO2/kWh in 2017 [88–90]. India, the second-biggest steel producer had 723 g
CO2/kWh, followed by Japan (492 g CO2/kWh), U.S.A (420 g CO2/kWh), and the EU (282 g CO2/kWh).
The world overall electricity generation emitted 484 g CO2/kWh on average. The recent progress
has been mildly positive i.e., decreasing, although on the global level, the reduction has been only
10% in 30 years, whereas the demand has more than doubled [89]. Hence, a real radical decline
must be reached for. By adopting technologies that utilize non-fossil or renewable primary energy,
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grid emissions can go an order of magnitude lower. Nordic countries are examples of “green electricity”;
Finland, Norway and Sweden reported 83, 19, and 9 g CO2/kWh for their national grids in 2017 [88].
As a final comment to the reader: the values in the selected studies are comparable with each other,
but not necessarily with other studies/references. There are several reasons for this: the calculation
methods and system boundaries can vary; sometimes, only “direct” emissions are counted, instead of
total “life-cycle” emissions, etc.

Table 1. CO2 emissions (g/kWh) from electricity generation by using different fuels/technologies in
power stations. The values are estimated life-cycle emissions or ranges. IPCC Technical Summary
Report, 2014 [87].

Primary Energy—Fossil Bio New Technology with CCS

Coal Natural gas Biomass Coal + CCS NG + CCS

820 490 740; 230 1 160–220 170

Primary Energy Renewable/Non-fossil

Geothermal Hydro Nuclear Solar Wind

38 24 12 48 12
1 Cofiring vs. dedicated.

3.6. Increasing Recycling—A Key Factor in Overall Reduction of CO2 Emissions

Reduce, reuse, remanufacture, and recycle is a current trend and necessity, which has seen a
breakthrough during the last few decennia. Less waste and the reduced need to utilize primary, virgin
resources are the main goals. Recycling concerns both short- and long-lived materials. In history,
recycling of steel was extremely valued throughout the Iron Age before industrialization. Because
steel was a rare and expensive material, village blacksmiths used to store disused steel articles to
remanufacture second-hand products, in archaic words, “beat swords into ploughshares”. When steel
became a mass product, its price fell and remanufacturing almost disappeared. However, collection
of scrap and delivery to steel plants has been duly organized for long in industrialized countries.
The recycling rate is moderate, and nowadays vigorously increasing e.g., by recovering rebar steel
from concrete of demolished buildings. A major part of purchase scrap is used in electric arc furnaces,
and a smaller share in converters as a coolant, typically 15–25% of the iron charge, which includes a
significant share of the internal plant scrap as reverts from different process stages. Until the turn of the
millennium, the global share of EAF was smoothly growing and reached 34% in 2001, but then the rapid
growth in China, based on the BF + BOF route, brought the ratio down. Today, EAF´s share is not full
28%, whereas BOF has 72% [6]. The EAF share varies in different countries. It was 100% in 44 countries
(in total 44 Mt in 2018), 69% in the United States, 41% in the EU, and 10% in China) [6]. The recent
trend of scrap in steel making is shown in Figure 7 [91]. Purchased scrap means external “obsolete”
scrap. Another column is internal “own” scrap, which can be counted as Scrap use—Purchased scrap.
As the exact data of scrap use is missing, the total scrap amount was calculated based on the balance of
Fe metallics, including BF hot metal, DRI+HBI, and scrap; and world steel production.

The principle of “circular economy” has recently gained ground. Intensified scrap usage is a
self-evident goal. Recent scenarios assume significant growth in the availability and use of steel scrap.
Along with the improved consciousness on recycling, another reason is that the sudden growth in
steel production and its use in the early 2000 will inevitably reflect in scrap availability a few decades
later. As for scrap dynamics, the “age of scrap” or lifetime from production and usage to recycling
varies from a few years to decades, or in some constructions, even centuries—as a rule, resulting
in 30–40 years [92–94]. Consequently, the amount of scrap should strongly increase from 2020 to
2050 [6,95,96]. This points towards a substantial growth in EAF steel making, whereas BOF production
would stay approximately at its present level on a global scale. However, regionally e.g., in China,
the availability of scrap will increase and the EAF route will grow remarkably from the current 10% by
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partial replacement to the BF + BOF route. A general increasing demand will incite recycling and raise
collection rates. A scenario for scrap use in steel making is presented in Figure 8 [91,96]. The notation
‘Scrap’ refers to the usual recycling practice and ‘Scrap+’ to boosted recycling rate, including strong
parallel actions in China as well. In this scenario, the available scrap is estimated to be 1400 Mt in 2050,
which is in fair agreement with the estimate of the World Steel Association—1300 Mt [97]. Both these
estimates support the forecast that the scrap ratio will rise to the 50% level by 2050. This is extremely
important in relation to the issue of CO2 emissions.
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4. Summary of the Means to Cut CO2 Emissions from the Steel Industry—A General Vision

Earlier in Figure 6, different means to decrease specific CO2 emissions from conventional
ironmaking were examined. It was concluded that by installing and putting into operation the most
advanced technologies for improved energy efficiency and heat recovery, along with decreasing the
carbon/hydrogen ratio in fuels and reductants, the emissions can be roughly halved to the level of
1000 kg CO2/t steel. This value is the new “baseline” in Figure 9. In the preceding chapters, several
other “key factors” were discussed and their influences are now illustrated. Carbon capture and
storage (CCS) and utilization (CCU) are potential ways to decrease CO2 emissions from steel plants.
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Their deployment would be most reasonable and economic in oxy-fuel processes with CO2-rich
off-gases. The same concerns biofuels and reductants. All these means are potential and rational
components in the fight against climate change, but they cannot be a final comprehensive solution.
In the long term, CCU might become a “viable weapon”. Locally, in restricted regions and favorable
conditions, the impact can be eminent in the short run. The predictable increase in scrap ratio in
steelmaking, on the world level from ≈30% to 50% in 2050, is a very significant change. As such, it will
reduce specific emissions in the world scale and cause a marked transmission to EAF production.
The emissions from electricity generation are thus emphasized upon. The arrow on the right axis
shows the range from fossil electricity (F-E) to world average today (W) and down to renewable
electricity (RW-E). Rapid progress in hydrogen economy; production; and use in industries, energy,
transportation, and other fields will also give the steel industry a strong push. The breakthrough of
hydrogen and non-fossil renewable electricity generation are the key factors, by means of which the
universal targets of CO2 emissions and climate change can be honestly achieved.
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Figure 9. Summary of the potential means to mitigate specific CO2 emissions in iron/steelmaking.
Different lines show the assessed levels achievable by adopting the labelled actions. The evaluation
is based on the literature [17,85–91,95–99] and the author´s own assessments. Three arrows starting
from the current world position W→ 2030→ 2050 show a plausible vision/pathway for the world steel
industries. More comments in the text.

The first steps in that direction were taken in ironmaking (HDRI); the efforts toward “green”
electricity will have a strong reducing influence on specific CO2 emissions on both sides of the diagram
(Figure 9). The third arrow in the figure ends at the level of 0.4 t CO2/t steel. By multiplying with the
scenario production of 2.5 Gt steel in 2050, the emissions from the steel industries ≈1 Gt CO2/year are
obtained as the outcome, which is roughly 1/3 of the present emissions and thus falls between the
climate warming scenarios for 2 ◦C and 1.5 ◦C in Figure 2. However, how realistic is this vision or
scenario for the steel industry? As stated, this reasoning concerns the whole world steel production i.e.,
the average specific emission weighted by produced tons. It includes both ore-based producers and
scrap-based producers and combinations. Certain proactive companies/plants will be better than the
scenario, whereas some plants will fail in attaining the target. The role of big steel producers (China,
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India, Russia) is especially very determining. Though every mitigated CO2 ton is important, the present
BAT line is not adequate, and the target must be put on a much lower level. A strong commitment to
the ‘2050 strategy’ by enterprises, countries, and organizations like the World Steel Association, the
United Nations, and the European Union is the basic necessity and the key to success [9,100].

5. Conclusions

In this review, the position of the steel industry in the global fight against climate warming is
discussed. This industrial sector is one of the biggest GHG emitters today and thus has a tremendous
task in changing the course toward a low-emitting and carbon neutral industry responding to the
challenges defined by the IPCC in 2018. The most essential observations are summarized below:

(1) The conservative forecast for steel demand/production in 2050 is 2.5 Gt/y. At the same time,
the emissions should be cut down by 65–70%, which means that specific emissions, t CO2/t steel,
should be reduced by approximately 75%. This will keep the steel industry in line with the
IPCC´s target. This realization demands resolution and a strong commitment to wide-ranging
and properly directed investments in reconstruction of the global steel industry. Practical
implementation should be performed by steel enterprises and supervised by organizations like
the World Steel Association, the United Nations, and the European Union.

(2) In the short term, the most effective pathway is to improve energy efficiency and mitigate CO2

emissions by installing best available technologies in existing integrated steel plants (including
sintering/pelletizing, coke making, BFs, BOFs, CC, rolling mills, etc.) as well as in EAF plants.
Reducing C/H ratio in fuels and reductants, via efficient heat recovery and integrated management
of energy flows as well as by adopting CCS from off gases, can decrease specific emissions by
40–50%.

(3) More radical change is possible only via radical transmission from carbon-based metallurgy
(coal, coke, oil, natural gas) to carbon-lean/carbon-free iron making. That can be realized via a
combination of hydrogen reduction and melting with low-Carbon/C-free electricity. This provides
major reconstruction of steel plants, replacement of blast furnaces with direct reduction furnaces,
and production and storage for hydrogen. Pioneering attempts in this direction are under way,
but for a wide quantum leap, a bigger wide-ranging transition to hydrogen economy throughout
the society is necessary.

(4) One positive trend that supports the steel industry in its endeavor to attain its targets is the
growing share of recycled steel—from 30% to 50% level in steel production. This means a smaller
need (share) for ore-based primary iron, higher share of EAF production, and strongly increasing
demand for carbon-neutral electricity.

(5) In order for the steel industry to make these implementations on a broad front and on schedule,
certain policy tools are also necessary. Financial support to develop and deploy new technologies
should be used as positive incentives. On the other hand, carbon pricing that favors low- and
zero-carbon solutions and penalizes CO2 emissions is indispensable. The system should be
transparent and based on both national conventions and wide international treaties.
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