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Abstract: In order to suppress the interfacial reaction between the ceramic shell mold and the
magnesium molten alloy during the investment casting process, a mold material with a high
thermodynamic stability based on alkaline zirconium sol (CH4NO3Zr) binder and corundum (Al2O3)
powder was prepared. The effects of the mold materials and casting thicknesses on the interfacial
reaction were investigated by an optical microscope, X-ray diffraction, a scanning electron microscope,
and an energy dispersive spectroscope analysis. The results suggested that the casting poured by the
conventional ZrSiO4 mold has a serious reaction on the surface, and the reaction was more severe
when the casting thickness was increased. The oxidation layer was approximately 300 µm in some
severe areas of 45 mm thickness. The XRD and EDS results showed that the reaction interface mainly
contains MgO and Mg2Si. While the casting poured by the Al2O3 mold provides a light and smooth
surface, the reaction layer was only 1.5 µm on average. The reaction interface mainly contains MgO
and Mg2F.

Keywords: magnesium alloy; investment casting; mold materials; interfacial reaction

1. Introduction

Nowadays, the rapid development of material design and functionalization has aroused the
widespread concern of scientists [1–3]. Investment casting is one of the reasonable solutions for the
near net shaping of magnesium alloys. This process has been widely used in the aerospace industry
in applications such as engine valves, vanes, turbochargers, and aero-engines due to its superior
dimensional accuracy and small surface roughness [4,5]. Investment casting usually requires many
factors, such as non-pollution, formability, mold permeability, cost, high thermal shock resistance,
and collapsibility [6]. However, it is especially necessary to consider the thermodynamic stability of
the shell mold, because magnesium alloy is extremely reactive in the molten state and is prone to
oxidation and reacting with mold materials, resulting in serious mold-metal reactions [7]. The reaction
would reduce the casting surface accuracy and cause a deterioration of the mechanical properties [7,8].
Therefore, the investment casting process is mainly used to prepare thin-walled magnesium alloy
structures at present.

In order to suppress the interfacial reaction between the magnesium alloy and the shell mold,
researchers have performed a lot of works, both domestic and international. Some have found that a
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protective gas of CO2 and 1–2% SF6 can restrict the interfacial reaction effectively [9], but the protection
effect become worse when the mold temperature reaches 600 ◦C [10]. Some works have focused
on adding inhibitors (such as NaBF4, KBF4, and FK) into the refractory, but the inhibitors always
decompose at the mold firing temperature [10]. Besides this, casting process parameters such as
mold preheating and pouring temperatures also have an effect on the interfacial reaction [10–12].
Among them, replacing the mold surface coat materials is the most effective and direct method, and the
challenge is to find a suitable refractory and binder material.

Refractories are the main component of the shell mold, accounting for more than 90% of the mass.
Surface refractory materials have a great influence on the interfacial reaction because they contact with
the magnesium molten alloy directly during the solidification process. Researchers have found that
some conventional refractories such as calcium sulfate, silicon oxide, and zircon would have a different
degree of reaction with the magnesium molten alloy [13–17]. Sin [13,14] evaluated the reactions of a
magnesium molten alloy with a plaster mold. The results showed that the casting had a rough surface,
and a reaction layer was formed according to the following reaction: 4Mg + SiO2 = 2MgO + Mg2Si.
Idris [10] concluded that a zircon-based mold produced inferior ZRE1 investment cast samples.
Jafari [18,19] found that a mold based on zircon flour and colloidal silica has a severe reaction with
the magnesium alloy. The spot-shaped black residues formed on the casting surface mainly consisted
of MgO, Mg2Si, and a small amount of MgAl2O4. Meanwhile, other refractories such as MgO, CaO,
and Y2O3 have a high chemical stability with the magnesium alloy. However, MgO and CaO are prone
to moisture absorption, making them difficult to promote [20–22]. Y2O3 is very expensive, and the
prepared slurry is difficult to preserve for a long time. It also has problems after the thermal cycle of
the mold [23,24].

Therefore, it is still a problem for scientists and industries to suppress the interfacial reaction
between the magnesium alloy and ceramic shell mold using practical, economical, and environmentally
friendly methods. The aim of this project is to optimize and develop a refractory and binder system for
magnesium alloy investment casting from the practical and economic points of view. An attempt was
made to investigate the effects of mold materials on the mold-metal reaction by using optical microscope,
X-ray diffraction, scanning electron microscope and energy dispersive spectroscope analyses.

2. Experimental Procedure

2.1. Shell Mold Preparation

In order to evaluate the thermal stability of the mold materials, the melted wax was poured into
the stepped mold with different thicknesses (15 mm, 30 mm, and 45 mm) to prepare the wax molds.
Figure 1 shows the sketch of the wax patterns. Figure 2 shows the preparation process of the shell
mold [25].
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In this study, two types of shell molds were prepared. One primary slurry was composed of zircon
flour (ZrSiO4, 325 mesh) and colloidal silica binder (SiO2), another slurry was composed of corundum
flour (Al2O3, 325 mesh) and alkaline zirconium sol binder (CH4NO3Zr), and they all contained a
wetting agent (0.02 wt.%) and an anti-foam agent (0.02 wt.%). Then, the zircon stucco (120 mesh) was
applied to form a primary face in the ZrSiO4 mold, while the corundum stucco (120 mesh) was applied
in the Al2O3 mold. Further, mullite flour (Al2O3·SiO2, 120 mesh) and silica sol binder (SiO2) were
used to prepare the excess slurry of two molds. The excess slurry was coated with 5 layers and sealed
with the last layer. Each coat was dried in an environment of 25 ◦C and a 50% humidity for 8–12 h.
The slurry, stucco, and drying time of each coat are shown in Table 1.

Table 1. The slurry, stucco, and drying time of each coat for different molds.

Mold Type Coat No.
Slurry

Stucco Dry Time (h)
Oxide Binder

ZrSiO4 mold

1 zircon
(325 mesh) Colloidal silica zircon powder

(120 mesh) 12

2–6 mullite
(120 mesh) Colloidal silica mullite

(40–80 mesh) 8

7 mullite
(120 mesh) Colloidal silica 8

Al2O3 mold

1 corundum
(325 mesh) alkaline zirconium sol

corundum
powder

(120 mesh)
12

2–6 mullite
(120 mesh) Colloidal silica mullite

(40–80 mesh) 8

7 mullite
(120 mesh) Colloidal silica 8

After the application of the last coating, the molds were de-waxed in an autoclave for 15 min
at 170 ◦C, with a pressure of about 0.7 MPa. Subsequently, they were heated and fired at 200◦ C for
60 min and 800 ◦C for 90 min in a heating furnace.

2.2. Melting and Casting Experiments

The chemical composition of the AZ91D magnesium alloy is given in Table 2, and was analyzed
by inductively coupled plasma (ICP). The magnesium alloy ingots were melted and casted under a
mixed protective atmosphere of CO2 and SF6 with the ratio of 99:1 in an electric resistance furnace.
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Argon refining and degassing took place during the smelting. The iron crucible was used for the
magnesium alloy melting, argon was used for the refining and degassing during the smelting, and the
pouring temperature was 730 ◦C. Before the pouring process, the mold was preheated at 250 ◦C for 4 h,
and the protective gas was injected into the mold for 60 s.

Table 2. Chemical composition of the investment casting of the AZ91D magnesium alloy (wt.%).

Al Zn Mn Fe Si Cu Ni Mg

8.95 0.54 0.33 <0.001 <0.01 <0.001 <0.001 Bal.

2.3. Evaluation of Microstructure and Mold-Metal Reaction

Magnesium alloy samples were acquired from the stepped casting at 15, 30, and 45 mm below
the surface for analysis and testing. After they were embedded and polished, the microstructures
were observed by an Olympus-PMG3 optical microscope (OM, OLYMPUS, Tokyo, Japan) and a Sigma
500 scanning electron microscope (SEM, ZEISS, Jena, Germany) equipped with an energy dispersive
spectroscope (EDS, Carl Zeiss AG, Jena, Germany), respectively. The surface phase composition was
analyzed by X-ray diffraction (XRD, SHIMADZU, Kyoto, Japan) using Cu Kα radiation performed on
a XRD-6100 with a scanning speed of 2◦/min and a 2θ diffraction angle range of 30–80◦, and a 2014
ICDD standard card was used for the phase comparison. A tensile test was carried out with a DNS−20
universal testing machine (CRIMS, Changchun, China) under a constant speed of 1.0 mm/min at room
temperature. Specimens for the tensile test were made into dog-bones with a size of 5 mm in diameter
and 25 mm in length using the wire cutting method. Three specimens were tested for each sample.
The heat treatment process of the specimens were 375 ◦C × 2 h + 415 ◦C × 18 h of the solution treatment
and 175 ◦C × 16 h of the aging treatment.

3. Results and Discussions

3.1. Surface Structure of the Investment Castings

Figure 3 represents the surface macro-morphology and corresponding SEM micrograph of the
AZ91D cast specimens with different mold materials. It can be seen that the casting surface is pretty
dark for the ZrSiO4 mold (Figure 3a,c). A significant amount of black residues formed on the surface
of 45 mm thickness, a few small granular black residues formed at a 30 mm thickness, and no obvious
black residues formed at a 15 mm thickness. Figure 3e shows the SEM micrograph of black residues
on the casting surface of 45 mm thickness. The black residues are believed to be the product of the
reaction between the molten alloy and the shell mold, or the reaction with the air that came through
the mold. The magnesium alloy was casted under atmospheric conditions, so the molten alloy was
oxidized inevitably during the casting process. H. Jafari [12,18,19] claimed that the spot-shaped black
residues formed on the surface of the AZ91D cast specimens mainly consisted of MgO, Mg2Si, and a
small amount of MgAl2O4. Figure 3b,d shows that the casting poured by the Al2O3 mold represents a
smooth surface at 15, 30, and 45 mm thicknesses, and there are no obvious black residues. The SEM
micrograph of the corresponding area (shown in Figure 3f) shows that the micro-surface is relatively
flat at a 45 mm thickness. In addition, it can be clearly seen that the sample thickness has a significant
effect on the interfacial reaction from the black residues on the casting surface. As the sample thickness
increased, the casting with the ZrSiO4 mold has a denser black residue on the surface, indicating that a
more severe interfacial reaction occurred. However, for the casting with the Al2O3 mold, the sample
thickness has no obvious effect within 15–45 mm.
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(a,c,e) ZrSiO4 mold; (b,d,f) Al2O3 mold.

Figure 4 shows the XRD analysis of the casting surface with different molds and thicknesses.
The results show that the casting surface of ZrSiO4 mold mainly contains Mg, Mg17Al12, MgO,
and Mg2Si phase (Figure 4a). The sample thickness has an obvious effect on the diffraction peak of
the Mg2Si and MgO phase. As the thickness reduced, the peak of the Mg2Si is lower (Figure 4a),
and the peak of the MgO is lower too (Figure 4b). Meanwhile, the casting surface of the Al2O3 mold
mainly contains Mg, Mg17Al12, and a small amount of MgO phase (Figure 4c). The peak of MgO is
relatively low at different thicknesses. Among the observed phases, Mg and Mg17Al12 are assumed as
the matrix and main secondary phase of the AZ91D alloy, MgO is generated by the surface oxidation
of the magnesium alloy, and Mg2Si is generated by the interfacial reaction between the magnesium
molten alloy and the surface coat materials from the previous research [13]. It can be seen that for the
casting with the ZrSiO4 mold, the reaction products increased and the oxidative aggravated when
the thickness increased. Meanwhile, the casting with the Al2O3 mold had no obvious effect as the
thickness changed.
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Figure 5 shows the EDS surface scanning results of the castings poured by different molds at the
45 mm thickness step. It can be seen that all the element contents decrease in the black residue area
(Figure 5a). It is speculated that the residues are loose and porous, and the low density of the residues
cause the element contents to decrease. In addition, comparing the element density of the casting
surfaces with different molds, it can be seen that for the casting of the ZrSiO4 mold, the concentration
of the Si and O elements are high and the concentration of the F element is low. The high concentration
of Si and O indicates that a interfacial reaction has occurred in this area, and the oxide layer is thicker.
The interfacial reaction products might be MgO and Mg2Si according to the XRD results. Meanwhile,
the low concentration of the F element indicates that the SF6 gas does not form a dense protective film
on the casting surface. Related research [23] found that when the interfacial reaction occurs, magnesium
diffuses through the mold and reduces the silica present in the investment material, originating a Mg-Si
phase that precipitates in the intermetallic compound with a polyhedral shape. Meanwhile, the surface
film of the casting poured by the Al2O3 mold is relatively smooth, with no obvious pits and residues
(Figure 5b). The concentration of the Mg and F elements are high, and the concentration of the Si and
O elements are low when compared with the ZrSiO4 mold. The lower O element density indicates
that the surface oxidation was light and the oxide film was thinner. Meanwhile, the higher F element
density indicates that the SF6 protective gas plays well, and a dense protection layer containing the F
element was formed on the casting surface.

It can be recognized from the casting surface that the ZrSiO4 mold is more prone to react with the
magnesium molten alloy, causing serious oxidation, and the reaction intensity is obviously related
to the casting thickness step. An XRD phase analysis shows that the main element that reacts with
the magnesium alloy is silicon, which may exist in zirconium powder and the colloidal silica binder
included in the ZrSiO4 mold. The results also indicate that the casting thickness has an significant
influence on the severity of the interfacial reaction. Generally, thick parts of the casting have a more
intense reaction because the cooling rate of the molten alloy becomes slow with the increase in the
casting thickness, resulting in a longer contact time between the magnesium molten alloy and the shell
mold. Meanwhile, the mold based on corundum powder and alkaline zirconium sol binder has a
better chemical stability with the magnesium alloy, leading to a better casting surface quality. Silicon or
other reaction compounds are not found on the casting surface of the Al2O3 mold, which indicates that
there is no obvious interfacial reaction between the magnesium alloy and the shell mold.
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3.2. Section Structure of the Investment Castings

It has been suggested earlier that the relative difference of the mold-metal reaction by section
optical microstructure provides a good index for the stability of oxide molds [11–13]. Figure 6a–c
shows the optical section microstructure of the AZ91D casting with the ZrSiO4 mold. It can be seen
that the casting has a smooth surface at a 15 mm thickness (Figure 6a); some pits and bulges at a
30 mm thickness (Figure 6b); and a pretty worse surface at a 45 mm thickness, where the oxidized
slag has extended into the cast specimen for approximately 300 µm in some severe areas (Figure 6c).
This suggests that the interfacial reaction becomes severe as the sample thickness increases. Figure 7a
shows the SEM micrograph of the severe reaction area of Figure 6c. The EDS results suggest that the
reaction slag area mainly contains Mg, O, and a little Al (Figure 7b), indicating that the reaction products
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are magnesium oxide mainly, and a little aluminum oxide. It is known that the severe oxidation at the
45 mm thickness is caused by the slow cooling rate of the magnesium molten alloy. Figure 6e,f shows
that the casting with the Al2O3 mold has a smooth interface at different thicknesses, demonstrating
that the Al2O3 mold has a better chemical stability to magnesium molten alloy compared with the
ZrSiO4 mold. The effect of sample thickness on the interfacial reaction is not obvious.Metals 2020, 10, x FOR PEER REVIEW 8 of 14 
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In order to determine whether a weak reaction occurred at the 30 mm thickness, an SEM micrograph
and EDS line analysis are performed on the areas below the surface of 30 mm thickness (Figure 8).
In the case of the AZ91D casting into the ZrSiO4 mold (see Figure 8a), the casting surface is rugged and
the oxide layer is thick. An EDS line analysis shows that the content of Mg decreases and the content of
O and Si increases from the casting inner to the surface. The depth of the oxide layer is about 5 µm from
the decrease in Mg. The rise of silicon is considered to be caused by the interfacial reaction between the
molten alloy and the shell mold. However, the casting surface is smooth and the oxide layer is thinner
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in the case of the Al2O3 mold (Figure 8b). An EDS line analysis shows that the content of Mg decreases
and the content of F and O increases from the casting inner to the surface. The depth of the oxide layer
is about 1.5 µm from the decrease in Mg. The thinner depth of the oxide layer and the increase in the F
element illustrate that the casting has a weaker reaction with the Al2O3 mold, and the SF6 protective
gas works well. Because the interfacial reaction is always an exothermic reaction, this progress will
accelerate the oxidation of magnesium, which will result in more serious oxidized slag. This is the
reason why the casting with the ZrSiO4 mold has a thicker oxide layer compared with the Al2O3 mold.Metals 2020, 10, x FOR PEER REVIEW 9 of 14 
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The surface phase analysis and EDS line analysis are synthesized with the casting poured by the
ZrSiO4 mold. It is speculated that the reaction area mainly contains Mg, MgO, and Mg2Si. Among them,
MgO is brought by the oxidation of the magnesium alloy, while Mg2Si is mainly brought by the
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interfacial reaction between the surface coat material and the magnesium molten alloy. The interfacial
reaction destroyed the formation of the surface protection film, reducing the protective effect of
SF6 protective gas and leading a bad flame-retardant effect. Besides this, the interfacial reaction is
an exothermic process. The interface temperature will increase sharply as the reaction continues,
which further exacerbates the oxidation of the magnesium alloy. Following chemical reactions may
exist at the interface of the ZrSiO4 mold and magnesium alloy:

2Mg(l) + O2(g) = 2MgO(s),

∆G = −1056.012 kJ mol
(1)

4Mg(l) + SiO2(s) = Mg2Si(s) + 2MgO(s),

∆G = −345.487 kJ mol
(2)

For the casting poured by the Al2O3 mold, the surface layer mainly contains Mg, MgO, and MgF2.
There is no obvious interfacial reaction occurred because the surface coat of the Al2O3 mold only
contains alumina and zirconia, which have a better chemically stability compared to the magnesium
molten alloy. Researchers [26–28] have studied the character of the protective surface films formed
on the magnesium alloy protected by air/SF6 atmospheres. The results showed that MgO and MgF2

were the only chemical compounds present in the film. The F element on the surface layer speculated
that the SF6 protective gas have played a perfect protective effect. The protective gas form a dense
oxide film on the surface of the magnesium solution and inhibit the interfacial reaction effectively.
The following reactions may exist at the interface of the Al2O3 mold and the magnesium alloy:

2Mg(l) + O2(g) = 2MgO(s),

∆G = −1056.012 kJ mol
(3)

2Mg(l) + SF6(g) + O2(g) = 2MgF2(s) + SO2F2,

∆G = −1003.634 kJ mol
(4)

3.3. Microstructure and Mechanical Properties

The AZ91D magnesium investment casting poured by the Al2O3 mold has a better surface
quality, so we observed the microstructure and mechanical properties of it. Figure 9 shows the optical
microstructure of the sample cut from different thicknesses of AZ91D investment castings in as-cast,
solid solution, and aged states; the mold was preheated at 250 ◦C for 4 h before pouring. The solid
solution and aging processes are 375 ◦C × 2 h + 415 ◦C × 18 h and 175 ◦C × 16 h. It can be seen that the
section thickness has a significant effect on the grain size and primary phase morphology. The average
grains size of the different samples are measured as 154.06 µm at a15 mm thickness, 296.78 µm at a
30 mm thickness, and 340.28µm at a 45 mm thickness through the linear intercept method. It can be seen
that the as-cast samples all contain primary equiaxed α-Mg solid solution, along with β-Mg17Al12 phase
and Al-Mn particles (Figure 9a–c), according to the previous studies [21,29]. The primary β-Mg17Al12

phase disappears after the solution treatment (Figure 9d–f) and disperses along the grain boundary after
the aging treatment (Figure 9h–j). The differences in the grain size and β-Mg17Al12 phase are closely
related to the cooling rate of the magnesium solution at different thicknesses. Generally, the thick part
of the casting has a slower cooling rate, resulting in a serious grain growth and second phase growth,
while the thin part of the casting was just the reverse [30–35]. Besides this, there are some small spots
in the solid solution microstructure. They are confirmed as Al-Mn particles by the EDS point analysis
results (Figure 10).
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Figure 10. SEM and EDS point analysis results of the spots in the solid solution microstructure.

Table 3 shows the tensile properties of the AZ91D alloys at different thicknesses after the T6
treatment. The results in the table are the average of three tested samples. It can be seen that the
tensile properties are closely related to the casting thicknesses. The casting exhibits the highest
mechanical property at a 15 mm thickness; the UTS, YS, and elongation were 235 MPa, 167 MPa,
and 5.4%. Meanwhile, the casting at 45 mm thickness has the worst mechanical properties; the UTS,
YS, and elongation were 194 MPa, 121 MPa, and 4.0%. It can be seen that the mechanical properties
correspond to the casting thickness perfectly. Because the thin part section has a higher solidification
rate, this leads to a grain refinement and second phase refinement effect, increasing the tensile properties
of the casting [36,37].
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Table 3. Tensile properties of the AZ91D alloys at different thicknesses after the T6 treatment.

Thickness UTS/MPa YS/MPa δ/%

15 mm 235 167 5.4
30 mm 214 147 5.6
45 mm 194 121 4.0

4. Conclusions

This study mainly focuses on the effects of mold materials and casting thickness on the interfacial
reaction of AZ91D alloy investment casting. The conclusions are as follows:

(1) Surface layer materials have a significant effect on the interfacial reaction between the AZ91D
alloy investment casting and the ceramic shell mold. The chemical stability of the Al2O3 mold is
better than that of the ZrSiO4 mold.

(2) A serious reaction occurred on the casting surface of the ZrSiO4 mold; the main substance reacting
with the magnesium alloy is silica. Dense black residues are formed on the casting surface and
they mainly contain the reaction products MgO and Mg2Si. The interfacial reaction equation is:
4Mg + SiO2 = Mg2Si + 2MgO.

(3) Wall thickness has a great influence on the interfacial reaction between the magnesium alloy
and the ZrSiO4 mold. The interfacial reaction become more severe as the wall thickness
increases. However, for the Al2O3 mold the sample thickness has no obvious effect on the
mold-metal interface.

(4) The Al2O3 mold has a good chemical stability to the magnesium molten alloy, leading to a high
surface quality investment casting with a smooth and light surface. The main component of the
surface film was MgO and Mg2F, and the reaction layer was 1.5 µm thin on average.

(5) The casting thickness have a great influence on the microstructures and mechanical properties
of AZ91D investment casting. The casting at 15 mm thickness has the smallest grain size and
highest mechanical properties, with a 235 MPa UTS and 5.4% EL.
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