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Abstract: In this study; the effect of aging treatment for 4 h at 600–1000 ◦C on the microstructure and
properties of a Fe55(CoCrNi)10(MoV)5C5 medium-entropy alloy (MEA) was investigated. After the
alloy was aged at 800 ◦C, a large number of granular and rod-shaped particles are formed throughout
the face-centered cubic (FCC) matrix. The average particle diameter was measured to be approximately
46 nm, and the result of transmission electron microscopy (TEM) analysis verified that these secondary
precipitates are VC carbides, which plays an important role for pinning dislocations and hindering
dislocation movement. Therefore, the hardness and ultimate tensile strength of the alloy at this state
increased from 253 HV, 322 MPa in cast condition to 326 HV, 626 MPa, respectively, while remaining
relatively good elongation (6.2%). As the aging temperature increases, the volume fraction of the VC
carbides decreased while its sizes increased; thus, the dispersion strengthening effect was reduced,
resulting in the decrease in the hardness and strength.
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1. Introduction

High-entropy alloys (HEAs) are defined as alloys composed of five or more principal elements
with the molar ratio of each principal element between 5% and 35% [1]. As one of the new materials
that developed in recent years, HEAs have received more and more attention [1–12] due to their unique
property differences from traditional alloys for which the composition is based on one or two principal
elements. HEAs are mainly manifested as the following four core effects: high configuration entropy
in thermodynamics, sluggish atomic diffusion in kinetics, severe lattice distortion effect in structure,
and “cocktail” effect in performance [4]. Due to their unique high-entropy effect, HEAs are easy to form
a simple solid solution structure rather than intermetallic compounds, thus exhibiting high strength,
high hardness, good ductility, and excellent thermal stability [13–17].

FeCoCrNi is a typical HEA with a simple face-centered cubic (FCC) structure, possessing good
ductility and fracture toughness at room temperature or liquid nitrogen temperature. However, its
strength is only 145 MPa in the as-cast state, which is far from meeting the demand of practical
applications [18]. In order to solve this issue, some strengthening methods, such as fine grain
strengthening, dislocation strengthening, precipitation strengthening, and solution strengthening
should be introduced into this alloy. Among them, precipitation strengthening is an effective method to
improve the strength of FeCoCrNi HEA. T T shun et al. [19] have investigated the aging-hardening of
the FeCoCrNiMo0.85 HEA after aging at 700–1000 ◦C, and they found that the σ phase can be completely
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transformed into the µ phase after 700 ◦C aging, giving rise to the hardness increasing from 420 to
621 HV. He et al. [20] have studied the strengthening mechanism of FCC precipitates in CoCrFeNiNb0.25

HEA and found that FCC precipitates appeared in the matrix after annealing, resulting in doubling the
strength without losing the plasticity. As interstitial atoms, carbon is widely used in the traditional
structural materials such as steels and super-alloys due to its solid solution strengthening and carbide
precipitation strengthening [21–24]. In some super-austenitic steel, the precipitation of carbide in the
austenitic matrix can give rise to the outstanding strength at high temperatures. Ou et al. [25,26]
observed that the dense nanosized MX phases were precipitated at the coherent Cu-rich phase with a
nanosized diameter in the austenitic matrix, contributing an excellent precipitation strengthening effect
and creep resistance in the Super304H austenitic steel. Anburaj et al. [27] investigated the precipitation
behavior in an aged super-austenitic stainless steel and found that chi, carbides, and sigma phases are
formed during aging at 500–1000 ◦C, giving rise to the increase in the hardness, while the incoherent
sigma precipitate in the austenite matrix was detrimental to the toughness of alloys. In recent years,
carbons have already been applied in HEAs gradually. Wu et al. [28] have reported that both the yield
strength and the tensile strength of CoCrFeNiMnHEA were significantly increased by adding 0.5 at.%
of C. N. Gao et al. [29] have studied the strengthening effect of NbC precipitation on the microstructure
and property of FeCoCrNiMn HEA and found that 0.8 at.% of Nb/C addition can increase the yield
strength and ultimate tensile strength to 732 MPa and 911 MPa, respectively, while maintaining a high
elongation of 32%.

Many studies have shown that equal atomic ratios are not the necessary condition for the
formation of single-phase solid solutions. For example, Tasan et al. [30] have investigated the effect of
non-equal atomic ratios on the phase stability, deformation mechanism, and mechanical properties of
FeCoCrNiMn HEA, and they found that the Fe40Mn27Ni26Co5Cr2 alloy is composed of a stable single
FCC structure, and the quaternary unequal atomic ratio Fe37Mn45Co9Cr9 alloy is also comprised of a
single FCC equiaxed crystal structure after homogenization treatment. Ma et al. [31] have found that the
Fe42Cr20Ni30Co6Cr2 MEA contains only a single FCC phase. Stepanov et al. [32] have studied a series
of quaternary Cr–Fe–Ni–Mn non-equal atomic ratio alloys, and they found that the Fe40Mn28Ni28Cr4,
Fe40Mn28Ni20Cr12, and Fe40Mn28Ni14Cr18 alloys are all composed of a simple FCC structure.

Carbides are an effective hardening particle for improving the strength of the steels. For example,
Scott et al. [33] have enhanced the strength of high manganese austenitic TWIP steels by TiC, NbC,
and VC. Wang et al. [34] found that the ultrafine M3C, M7C3, and M23C6 carbides are responsible for
the enhanced strength of high chromium steels. VC and Mo2C are hard phases with simple crystal
structures, which are commonly formed in V-Mo-containing steels. VC/Mo2C carbides usually show
two main types of size distribution: one is the primary carbides with a size range of 1–10 µm formed
during solidification, and the other is the fine strengthening secondary precipitates with a nanometer
size generated from a supersaturated matrix during the aging treatment or when the steels are serviced
at high temperature. The substantial strengthening effect of VC/Mo2C carbides has been reported
for various steel grades [35,36]. So far, few have rarely reported on the precipitation behavior of
Mo2C, VC, Cr7C3, etc., in FeCoCrNiHEAs, although these particles can be used to strengthen the
alloy by second phase strengthening. Therefore, the purpose of this work is to use the hard Mo2C
and VC carbides to strengthen FCC-structured HEA using a high content of carbide-forming elements.
There are two considerations that need to be taken into account when designing the alloy composition.
Firstly, increasing the Fe content to above 50% on the basis of FeCoCrNi HEA can effectively reduce
the cost of HEAs while still obtaining adequate entropy configuration to stabilize FCC solid solution
over intermetallic compounds. Secondly, strong carbide-forming elements Mo and V and sufficient
C element are added for promoting the precipitates of carbides. The investigated alloy is named as
non-equal-atomic Fe55(CoCrNi)10(MoV)5C5, which can be classified as a medium-entropy alloy (MEA),
according to the generally accepted definition that specifies MEA as an alloy with the configuration
entropy between R and 1.5R, in which R is the gas constant. In this study, the influence of aging
treatment on the microstructure evolution, precipitation behavior, and changes in the mechanical
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properties of MEA was investigated and discussed. The results of this study can provide an easy
approach to strengthen MEAs by tailoring their composition and aging treatment.

2. Experimental Procedures

Fe55(CoCrNi)10(MoV)5C5 MEA was prepared by the vacuum arc melting mixture of pure metals
Fe, Co, Cr, Ni, Mo, V, (purity > 99.9%) and Fe-5 wt %C master alloys. The nominal and real compositions
of the investigated alloy are shown in Table 1. Before alloy melting, the chamber was evacuated
to ~5 × 10−2 Pa, followed by flushing twice using pure Ar. The ingot was flipped and remelted
five times to ensure chemical homogeneity and finally cast into a cylindrical ingot with a size of
Φ60 mm × 150 mm. Then, the alloy was aged at 400–1000 ◦C for 4 h followed by water quenching.

Table 1. Chemical compositions of Fe55(CoCrNi)10(MoV)5C5 medium-entropy alloy (MEA).

Elements (at %) Fe Co Cr Ni Mo V C

Nominal composition 55 10 10 10 5 5 5
Real composition 49.56 12.05 11.02 11.56 5.35 5.69 5.1

The metallographic samples were prepared by mechanical grinding and then electropolished
using a mixed solution of 20 vol.% perchloric acid, 10 vol.% glycerin, and 70 vol.% alcohol. The phase
structure of the alloy was characterized using an X-ray diffractometer (Bruker D8-Advance, Germany)
with a scanning speed of 2◦/min and a 2θ range of 20–100◦. According to Bragg’s law (nλ = 2dhklsinθ),
the interplanar spacing (dhkl) of the FCC matrix was obtained from its diffraction angles (θ), and the lattice

parameter (a) of the FCC phase can be calculated using the following equation: dhkl = a/
(
h2 + k2 + l2

)1/2
.

The field-emission scanning electron microscope (SEM, Zeiss Sigma, Oberkochen, Germany) was
used to observe the microstructure of the alloy. TEM investigations were performed utilizing an FEI
TecnaiG2 F20 microscope equipped with energy-dispersive spectrometer (EDS) (FEI, Hillsboro, OR,
USA) at an accelerating voltage of 200 KV. The TEM sample was mechanically ground to a thickness of
approximately 50 µm, which was followed by thinned using ion beam milling. The Image-pro-plus 6.0
software (Version 6.0.0.260, Media Cybernetics, Rockville, MD, USA) was applied to count the size of
grains, the particle size, and the volume fractions of the precipitates.

A 200HVS-5 Vickers hardness tester was used to measure the hardness of the bulk alloy, and the
test was carried out at a load of 1 kg and a holding time of 15 s. In order to ensure the accuracy of
the data, 7 measurements were performed for determining the average value. The room temperature
tensile tests were conducted on a UTS5105 electronic universal testing machine (SANS, Shenzhen,
China) with a strain rate of 10−3/s using dog-bone-shaped samples with a gauge length of 10 mm,
width of 3 mm, and thickness of 1 mm. Three samples were tested for each state to ensure repeatability.

3. Results and Discussion

3.1. Age-Hardening Curve

The hardness curve of the investigated MEA after aging at 400–1000 ◦C for 4 h is shown in Figure 1.
It can be seen that the hardness of the alloy increases at first and then decreases as the temperature
increases. The hardness peak appears at 800 ◦C and increases from 253 HV in cast condition (not list in
here in) to 326 HV (increased by 29%). When the temperature exceeds 800 ◦C, the hardness decreases
gradually and reaches 289 HV at 1000 ◦C, indicating that the hardness still maintained a relatively high
value compared to the hardness of the as-cast alloy even at a very high temperature.
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Figure 1. Hardness curve of the 4 h-aged alloys as a function of temperature.

3.2. Phase Analysis

Figure 2 shows the XRD patterns of the studied alloys in the as-cast condition and aged at
600–1000 ◦C for 4 h. It can be seen that the phase constitute of the as-cast alloy consisted of FCC,
MC, and M2C carbide. No other phases were found in the alloy after aging at 600–1000 ◦C within
the limitation of the XRD detector. However, it can be noted that the 2θ for the 800 ◦C aged alloy
apparently has shifted to the higher angle compared to those of the others. This indicates that the
lattice constant of the FCC matrix has decreased significantly during aging at 800 ◦C, and it may
be attributed to the abundant atoms precipitating from the matrix. The calculated lattice constant
of the FCC matrix in different states shown in Figure 3 could verify this phenomenon. Contrary to
the hardness curve, the lattice constant of the FCC decreases first and then increases as the aging
temperature rises. The lattice constant of the FCC matrix in the cast alloy was 0.35994 nm, and it
decreased to the lowest value of 0.35927 nm when the temperature increases to 800 ◦C. As the aging
temperature exceeds 800 ◦C, the lattice constant begins to increase, indicating that the precipitated
phase has re-dissolved into the FCC matrix and increased the lattice constant of the matrix.

Metals 2020, 10, x FOR PEER REVIEW 4 of 14 

 

the hardness decreases gradually and reaches 289 HV at 1000 °C, indicating that the hardness still 

maintained a relatively high value compared to the hardness of the as-cast alloy even at a very high 

temperature. 

 

Figure 1. Hardness curve of the 4 h-aged alloys as a function of temperature. 

3.2. Phase Analysis 

Figure 2 shows the XRD patterns of the studied alloys in the as-cast condition and aged at 600–

1000 °C for 4 h. It can be seen that the phase constitute of the as-cast alloy consisted of FCC, MC, and 

M2C carbide. No other phases were found in the alloy after aging at 600–1000 °C within the 

limitation of the XRD detector. However, it can be noted that the 2θ for the 800 °C aged alloy 

apparently has shifted to the higher angle compared to those of the others. This indicates that the 

lattice constant of the FCC matrix has decreased significantly during aging at 800 °C, and it may be 

attributed to the abundant atoms precipitating from the matrix. The calculated lattice constant of the 

FCC matrix in different states shown in Figure 3 could verify this phenomenon. Contrary to the 

hardness curve, the lattice constant of the FCC decreases first and then increases as the aging 

temperature rises. The lattice constant of the FCC matrix in the cast alloy was 0.35994 nm, and it 

decreased to the lowest value of 0.35927 nm when the temperature increases to 800 °C. As the aging 

temperature exceeds 800 °C, the lattice constant begins to increase, indicating that the precipitated 

phase has re-dissolved into the FCC matrix and increased the lattice constant of the matrix. 

 

Figure 2. XRD patterns of the as-cast and 4 h-aged alloys. Figure 2. XRD patterns of the as-cast and 4 h-aged alloys.

The phase constitute of the investigated alloy can be predicted by means of the phase criterion of
HEAs (only consider metallic elements) proposed by Y. Zhang [7]; this criterion and related parameters
contain ∆Smix (the mixing entropy), ∆Hmix (the mixing enthalpy), ∆χ (the Pauling electronegativity
difference), δ (the atomic-size difference), VEC (the valence electron concentration), and Ω (ratio of
entropy to enthalpy). The terms δ and ∆χ are the standard deviation of atomic sizes and electronegativity
in the alloy, respectively, reflecting the discrete degree of distribution of atom size and electronegativity
in an alloy. The calculated methods for these parameters are conducted according to the thermodynamic
and Hume-Rothery rules for the formation of solid solution, and the results are shown in Table 2. It can be
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found that the investigated alloy satisfies the conditions of δ < 6.6%, −22 KJ/mol < ∆Hmix < 5 KJ/mol ,
Ω ≥ 1.1, ∆χ≤ 0.175, VEC > 6.87 for the formation of a stable FCC solid solution. However, in the present
study, the results of XRD analyses showed that FCC phase and carbide were the phase components
of the as-cast alloy. Based on the thermodynamic concept, a system attempt to minimize its Gibbs
free energy (∆Gmix) in order to achieve a stable equilibrium state, in which ∆Gmix is known to be
related to the mixing enthalpy (∆Hmix) and mixing entropy (∆Smix), and the relation among these three
parameters can be expressed as shown in Equation (1) [37].

∆Gmix = ∆Hmix − T∆Smix (1)
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Figure 3. The calculated lattice constant of the face-centered cubic (FCC) matrix of the as-cast and
4 h-aged alloys.

Table 2. Calculated parameters of ∆Smix , ∆Hmix, ∆χ, δ, VEC, and Ω for investigated MEA.

Alloy ∆Smix (J/mol·k) ∆Hmix (KJ/mol) ∆χ δ/% VEC Ω

Fe55(CoCrNi)10(MoV)5C5 10.967 −3.23 0.14 5.9 7.45 6.15

The values of the mixing enthalpy of binary systems (∆HmixAB) for the investigated alloy are listed
in Table 3. As can be shown, the C–V, C–Mo binary systems have the most negative mixing of enthalpy
(−82 KJ/mol, −67 KJ/mol, respectively), which means that the vanadium carbide and molybdenum
carbide could be the phases with high thermodynamic stability. Therefore, for the investigated alloy,
the addition of C results in the formation of MC and M2C carbides rather than dissolving into the
matrix to form solid solution. So, there are also carbides in the alloy except for the FCC phase.

Table 3. The values of the mixing enthalpy of binary systems (∆HmixAB) [38]/ KJ·mol−1.

Element C V Cr Fe Co Ni Mo

C - −82 −61 −50 −42 −39 −67
V - −2 −7 −14 −18 0
Cr - −1 −4 −7 0
Fe - −1 −2 −2
Co - 0 −5
Ni - −7
Mo -

3.3. Microstructures

Figure 4 shows the microstructure of the investigated alloy in different conditions. As shown
in Figure 4a, the microstructure of the as-cast alloy was characterized by a typical dendrite structure
with an average grain size of about 53 µm (For the grain size, using Image-pro-plus 6.0 software for
statistics, select at least 20 grains for statistics, repeat three times to get the average value.) and many
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coarse carbides distributed in the interdendrite. Combined with the results of XRD, the dendrite
structure can be identified as FCC phase, and bright white layered carbide and gray chrysanthemum
carbide were M2C and MC, respectively. Figure 4b shows the microstructure of the alloy after aging at
600 ◦C; no obvious changes of carbide in shape and distribution were found compared with those
of the as-cast alloy. After aging at 800 ◦C, it can be seen from Figure 4c that there are many particles
inside the grains. A detailed examination indicates that these particles are cubical or needle-shaped
precipitates, and the needles appears as a list of discontinuously distributed precipitates and tend to be
spread around coarser cubical particles (marked by red circle in Figure 4d). When the temperature
increases to 1000 ◦C, it can be found that the particles inside the grains began to grow in size and shape
from fine cubical into granular or coarse rod-like particles (Figure 4e,f).
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The particle size distribution and volume fraction of alloys after aging at 800 ◦C and 1000 ◦C
are presented in Figure 5. The average diameter and volume fraction of precipitates in the 800 ◦C
aged alloy were measured to be about 46 nm, 5.6%, respectively. After aging at 1000 ◦C, the average
diameter of precipitates increased to 86 nm, while the volume fraction decreased to 4.7%.Metals 2020, 10, x FOR PEER REVIEW 8 of 14 
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aged alloys.

Figure 6a shows the TEM images of the granular particles in the alloy after aging at 800 ◦C for
4 h. The particle was identified by electron diffraction as VC carbide with a FCC structure, and the
EDS analysis of this particle presented in Figure 6b shows unambiguously that it was enriched with a
V element. VC carbide is a hard and brittle phase, and the densely distributed VC that exists in the
matrix of 800 ◦C aged alloy can play an important role for pinning dislocations, leading to the highest
hardness. The typical morphology of the fine needle-like precipitates is shown in Figure 7. It can be
found that the needles were composed of many discontinuously distributed fine particles with sizes of
approximately 29 nm (Figure 7a,b), which is consistent with the observation in Figure 4c. These needles
were usually observed to be distributed along the larger particles (marked by arrows 1, 2 in Figure 7c).
This is probably because the areas near coarse particles have a lot of dislocations and carbon atoms
easily segregate on these locations during the aging process. Figure 8a shows the morphology of fine
VC carbides distributed along dislocation lines, and the result of EDS (obtained from area marked by
arrow in Figure 8b) further confirms that these particles mainly contain a V element. It is noted that the
high content of Fe may originate from the matrix due to the size of the particle being smaller than the
size of the electron beam spot. Figure 8c illustrates the HRTEM image of the fine precipitates, and the
result shows that the particle is spherical with a size of 8–10 nm (marked by a red rectangle), and the
corresponding Fast Fourier Transformation (FFT) shown in Figure 8d confirms that this particle is VC
having a cubic-on-cubic crystallographic relationship with the FCC matrix, which is consistent with
the results in some traditional iron base alloys [25]. Through the above analysis, it can be inferred that
it is the large amount of precipitation of these nano-scaled VC carbides playing a significant role in
precipitation strengthening and dispersion strengthening, leading to the hardness peak in the alloy
after aging at 800 ◦C for 4 h. As the temperature increased, the particles gradually grow up, and the
effect of precipitation strengthening decreased, resulting in a decrease in the hardness value.
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Figure 8. TEM micrograph of nano-sized VC carbides in alloy after aging at 800 ◦C for 4 h: (a) fine
VC carbides precipitating along dislocation lines, (b) the EDS analysis of fine VC carbides marked by
arrow in (a); (c) HRTEM image of fine VC precipitates; (d) Fast Fourier Transformation (FFT) image of
precipitates marked by red rectangle in (c).

3.4. Tensile Properties

Figure 9 shows the engineering stress-strain curves of the alloys in different states. It can be
seen that the tensile strength and elongation of the as-cast alloy was low. When the alloy was aged,
both the ductility and strength increased. The mechanical properties of the alloys in different states
are collected in Table 4. As can be shown, the tensile strength of the alloy reached a maximum value
of 626 MPa after aging at 800 ◦C for 4 h, which increased by 94% compared to those of the as-cast
alloy, while the elongation increased from 1.2% to 6.2%. As the temperature increases to 1000 ◦C,
its tensile strength decreased to 548 MPa, and the elongation decreased to 2.9%. Figure 10 shows the
tensile fracture morphology of the alloys at different states. As shown in Figure 10a,b, the fracture
surface of the as-cast alloy is characterized by cleavage facets, secondary cracks, and a small amount of
tearing ridges, suggesting that it belongs to brittle fracture. This is because there are a large number
of network carbides on the grain boundary, which can seriously reduce the plasticity of the alloy.
Figure 10c,d show the fracture morphology of the alloy after aging at 800 ◦C for 4 h, and it can be
found that there are more tearing edges and increased dimples except for some river-like cleavage
facets, indicating that the fracture mechanism belongs to quasi-cleavage fracture. The improvement
of ductility for the 800 ◦C aged alloy might be attributed to the large number of carbide particles
dispersed throughout the matrix effectively released local stress concentration during deformation,
thus making the cracks difficult to initiate and propagate. On the other hand, the precipitation of the
secondary phase particles can promote the nucleation of microscopic voids and the occurrence of local
plastic deformation, thus increasing elongation [39]. The fracture morphology of the 1000 ◦C aged
alloy shown in Figure 10e,f manifests a complex fracture surface of river-like cleavage facets, cleavage
steps, and a few dimples, indicating that the type of fracture belongs to brittle fracture. As depicted
above, the fine precipitates have coarsening and aggregating after being aged at 1000 ◦C. Some studies
have pointed out that the larger carbides can weaken the effect of the precipitation strengthening,
leading to the decrease in strength [40,41]. As the VC carbides grow up, a stress concentration is
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generated around them during the deformation process, and the crack is easy to form and expand,
thus reducing the ductility.
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Table 4. Yield strength, ultimate tensile strength, and elongation of alloys in different states.

States Yield Strength
σs/MPa

Ultimate Tensile Strength
σb/MPa

Elongation
ε/%

As-cast 313 322 1.2
800 ◦C 349 626 6.2
1000 ◦C 374 548 2.9
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4. Conclusions

The effect of aging temperatures on the microstructure evolution, carbide precipitation behavior,
and properties of the Fe55(CoCrNi)10(MoV)5C5 MEA were investigated, and the following conclusions
can be drawn as follows:

(1) The microstructure of the as-cast alloy is composed of a FCC dentritic structure, interdentritic
M2C, and MC carbide. The average grain size of the investigated alloy was approximately 53 µm.
The very low negative mixing enthalpy of C–V and C–Mo binary systems makes carbon tend to
combine with Mo and V to form carbides rather than forming a solid solution.

(2) Aging hardening is present over the temperature range of 600–1000 ◦C. The hardness peak
appears at 800 ◦C, which raises the hardness increases from 253 HV in as-cast to 326 HV, due to a
plethora of nano-scale VC carbides precipitating from the matrix. As the aging temperature rises,
the VC particle size increases and the volume fraction decreases, thus decreasing the hardening effect.

(3) 800 ◦C/4 h aged alloy has the highest ultimate tensile strength of 626 MPa and a relatively
good elongation. The uniformly distributed nano-sized VC precipitates throughout the FCC matrix
contributed to the high strength and reasonable ductility of the MEA.
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