
metals

Article

Deformation Property and Suppression of
Ultra-Thin-Walled Rectangular Tube in Rotary
Draw Bending

Kunito Nakajima 1, Noah Utsumi 2,*, Yoshihisa Saito 3 and Masashi Yoshida 4

1 HVAC Systems Production Engineering Department, Marelli Corporation, 8 Sakae-cho, Sano,
Tochigi 327-0816, Japan; kunito.nakajima@marelli.com

2 Faculty of Education, Saitama University, 255 shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
3 Graduates of Faculty of Education, Saitama University, 255 shimo-Okubo, Sakura-ku, Saitama 338-8570,

Japan; y.saito.edu@gmail.com
4 Department of Advanced Science and Technology, Daido University, 10-3 Takiharu-cho, Minami-ku,

Nagoya 457-0819, Japan; myoshida@daido-it.ac.jp
* Correspondence: utsumi@mail.saitama-u.ac.jp; Tel.: +81-48-858-9157

Received: 17 July 2020; Accepted: 7 August 2020; Published: 10 August 2020
����������
�������

Abstract: Recently, miniaturization and weight reduction have become important issues in various
industries such as automobile and aerospace. To achieve weight reduction, it is effective to reduce
the material thickness. Generally, a secondary forming process such as bending is performed on the
tube, and it is applied as a structural member for various products and a member for transmitting
electromagnetic waves and fluids. If the wall thickness of this tube can be thinned and the bending
technology can be established, it will contribute to further weight reduction. Therefore, in this study,
we fabricated an aluminum alloy rectangular tube with a height H0 = 20 mm, width W0 = 10 mm,
wall thickness t0 = 0.5 mm (H0/t0 = 40) and investigated the deformation properties in the rotary
draw bending. As a result, the deformation in the height direction of the tube was suppressed
applying the laminated mandrel. In contrast, it was found that the pear-shaped deformation peculiar
to the ultra-thin wall tube occurs. In addition, axial tension and lateral constraint were applied.
Furthermore, the widthwise clearance of the mandrel was adjusted to be bumpy. As a result, the
pear-shaped deformation was suppressed, and a more accurate cross-section was obtained.

Keywords: ultra-thin walled tube; tube bending; laminated mandrel; rotary draw bending;
Finite Element Analysis (FEA); deformation property

1. Introduction

Tubes are subjected to secondary forming processing such as bending and used as parts in the
automobile and aerospace industries. To bend the tubes, press bending, rotary draw bending,
and other bending methods have been developed and applied to actual product production.
However, during bending of a thin-walled tube with a space in the cross-section, flattening, thickness
deviation, wrinkling, folding, and other undesirable distortions occur [1–3]. Generally, it is effective to
apply a mandrel to suppress undesirable distortions. A ball-type mandrel is often used [4–8], and the
results of investigating the effects of the clearance between the pipe inner diameter and the mandrel
on flattening [9,10] and wrinkling [11] have been reported. Moreover, there have been reports on
the effect of mandrels on springback [12]. In addition, there have been reports on the effect of the
friction coefficient of the ball mandrel on undesirable distortions and analysis of the stress state of the
mandrel during bending [13–16]. In addition, other studies include the following: A study using a
chain-link type mandrel, which is cheaper than a ball type one [17], a mandrel that combines hard and
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soft rubber [18], and a study that suppresses cross-sectional deformation by applying fluid pressure
inside the pipe [19]. Moreover, the effects of mandrels on various materials such as steel, aluminum
alloys, copper alloys, titanium, and high tensile strength materials have been reported [20–23].

However, these studies are mainly the results of investigations of circular pipes and materials
with a wall thickness of 1.0 mm or more [24,25]. In contrast, there has been little research on clarifying
and suppressing the cross-sectional deformation phenomenon during bending of a rectangular tube
with a rectangular cross-section and ultra-thin materials with a wall thickness of 1.0 mm or less.
If ultra-thin tubes can be applied to various components in the automobile and aerospace industries,
it is expected that they will contribute significantly to the reduction of size and weight, which is a
common issue in each industry in recent years. Among them, the rectangular tube is considered for
application in the waveguide, which is a component for electromagnetic wave propagation in the
aerospace industry. However, in order to improve the electromagnetic wave propagation efficiency,
it is necessary to minimize the cross-sectional deformation after bending. We investigated the effect of
a mandrel and a restraint plate on undesirable distortions in the cross section of an extruded square
tube on press bending [26]. Furthermore, we also reported that wrinkling in rotary draw bending can
be suppressed by axial tension, and that cracking is considerably affected by the bending radius and
material. In addition, it has been clarified that pear-shaped cross-section deformation occurs when a
mandrel is applied during the bending of ultra-thin tubes [27,28].

Therefore, in this study, in order to contribute to further weight reduction of the tubular material
application parts in each industry by rendering the tubular material thinner, we investigated the
deformation property during rotary draw bending using an ultra-thin aluminum alloy rectangular
tube. As a result, the pear-shaped deformation peculiar to the ultra-thin rectangular tube was
confirmed. The suppression method was then investigated. Specifically, axial tension was used to
suppress wrinkling due to bending. A restraint jig was used to suppress convex distortion at the sides.
To suppress the flattening, we applied a laminated mandrel to adjust the clearance between the tube
shape and the mandrel. As a result, it was found that the deformation of the cross-section peculiar to
the ultra-thin rectangular tube can be suppressed by controlling axial tension, applying side restraint,
and adjusting the widthwise clearance of the mandrel on the compression and the tension sides of
the tube.

2. Materials and Methods

2.1. Workpiece

The workpiece used in the experiments and simulations was an aluminum alloy with annealing
(A6063-O). Table 1 shows the mechanical properties, and Figure 1 shows the shape and dimensions
of the workpiece. The dimensions of the cross-sectional shape were set as follows: height H0 = 20,
10 mm; width W0 = 10, 20 mm; and thickness t0 = 0.5 mm. The waveguide, which is an example of the
application range of ultra-thin tubes, has a standard regarding the material, but the rectangular tube with
a wall thickness of 0.5 mm applied in this study is not part of this standard. Moreover, it is not marketed
because there is a limit to thinning in extrusion. Therefore, in this study, a commercial extruded tube
was processed by drawing to achieve a wall thickness of 0.5 mm and applied to the experiment.

Table 1. Mechanical properties of the workpiece.

A6063-O

Tensile Strength σB/MPa 91
Proof Stress σ0.2/MPa 39

Elongation δ/% 24.3
Work-hardening Exponent n * 0.27

Plastic Modulus C */MPa 160

* Refer to JIS Z2201 σ = Cεn.
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Figure 1. Shape and dimension of the workpiece.

2.2. Bend Radius

As shown in Figure 2, the bending radius R is the bending drum radius; more precisely, the inside
of the rectangular tube is the bending radius. There are two types of rectangular tubes with outer
height H0 = 20, 10 mm, and thickness t0 = 0.5 mm (H0/t0 = 40, 20).
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2.3. Rotary Draw Bending System

Figure 3 shows a schematic of the rotary draw bending machine, and Figure 4 shows a schematic
of the tool alignment of rotary draw bending. This device has a mechanism with a chuck that fixes the
material, a bending drum that determines the bending radius, and a bending load rod that generates
a bending moment. In addition, it is also equipped with a structure that can apply axial tension.
The bending drum can be selected from those with a radius R of 20 to 200 mm, and in this experiment,
the workability R/H0 = 1, 2.5. Moreover, a plate made of MC nylon was installed as a side restraint jig.
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Figure 4. Tool alignment of rotary draw bending.

2.4. Mandrel

Figure 5 shows a schematic of the mandrel. The core material has a structure in which 0.01 mm
to 2.0 mm PVC (polyvinyl chloride) and stainless-steel thin plates are bundled by a jig. The flexural
rigidity of the laminated mandrel was adjusted to minimize the adverse effect on the workpiece during
bending. In addition, the clearance with the workpiece was adjusted to CL = 1.0 mm in both width
and height.
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Figure 5. Schematic of the laminated elastic mandrel.

2.5. Finite Element Analysis (FEA) Model

Figure 6 and Table 2 show a schematic of the Finite Element Analysis (FEA) model and the boundary
conditions of FEA. LS-DYNA 3D (Ver.R10.1.0, ANSYS Inc. Canonsburg, PA, USA), a commercially
available finite explicit element analysis software package, was used for the simulation. The laminated
mandrel is a solid element and the rest are shell elements. The mesh size was 2 mm and the number
of elements of the workpiece was 17,250. The friction coefficient between the inner surface of the
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workpiece and the mandrel was set to 0.01 on the assumption that there was almost no friction because
the lubricant was applied. In addition, the workpiece was analyzed as an elasto-plastic (Von-Mises)
according to the exponentiation hardening rule, the mandrel as an elastic body, and the rest as a rigid
body. The workpiece in the model was assumed to be an isotropic elastoplastic body with the power
law hardening rule. The constitutive equation is given as Equation (1).

σ = C
(
εyp + εp

)n
(1)

where, εyp is an elastic strain and εp is an equivalent plastic strain. Moreover, the elastic strain is
calculated by the following Equation (2).

εyp = (E/C)(1/(n−1)) (2)

where, E is Young’s modulus. Accordingly, the constitutive equation of the workpiece can be expressed
by Equation (3).

σ = 160(0.002424 + εp)
0.27 (3)
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Table 2. Boundary conditions of Finite Element Analysis (FEA).

Workpiece Mandrel Bending Drum Restraint Jig Bar

Element Type Elasto-Plastic/ShellElastic/Solid Rigid/Shell Rigid/Shell Rigid/Shell

Number of
Elements

17,250 1200 1515
H0 = 10:1010

765H0 = 20:2020

Restraint
condition free free * 90◦ rotation fixed fixed

* Fixed area of mandrel.

3. Results and Discussion

3.1. The Mechanism of Cross-Sectional Deformation

Figures 7 and 8 show the mechanism of cross-sectional deformation. Here, M is the Bending
moment, σt is the tensile stress, σc is the compression stress, PT is the circumferential force of the tension
side in the flattening, PC is the circumferential force of the compression side, PTN is the flattening
component of the tension side, and PCN is the flattening component of the compression side. The flange
falls due to the component force generated in the compression flange and the tension flange by the
bending moment. Subsequently, due to the moment generated by the component force, the component
force acts on the web, resulting in flattening. The purpose of applying the mandrel is to restrain
the component force PTN generated in the compression flange and the tension flange. In addition,
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PTN is expressed as Equations (4) and (5), using bending stress σTE in the elastic state. However, it is
qualitatively the same as that in plastic region.

PTN = 2σTEt0W0 sin
(

dθ
2

)
; σTEt0W0dθ =

t0W0EH0dθ
2ρ

(4)

dxT =
(
ρ+

H0

2

)
·dθ ; ρdθ (5)

where t0 is the thickness of the workpiece, W0 is the width of the workpiece, dxT is the length
between points A and C on the tension flange, E is the Young’s modulus, and ρ is the bending degree
(R + H0/2) [29].

Distributed flattening force wTN on the tension flange is expressed as Equation (6), using Young’s
modulus, E, in the elastic state. In the plastic state, the tangent modulus Et is used in Equation (7).

wTN =
PTN

dxTW0
=

H0t0E
2ρ2 (6)

Et =
dσ
dε

= Cεn (7)

Figure 9 shows the graph of wTN calculated under various conditions from Equation (4).
It demonstrates that the wTN increased as the wall thickness increased; thus, flattening was more likely
to occur. Additionally, wTN increases as ρ/H0 decreases. In this study, R/H0 = 1.5 (H0 = 20, R = 50),
and t0 = 0.5 mm. Under this condition, the wTN is small because the wall thickness is thin, but ρ/H0 is
also smaller than that of a square tube with a general wall thickness; accordingly, so the wTN is larger
and the deformation after bending is expected to be larger. Furthermore, when the axial tension Pa is
applied, PTN (wTN) is further increased because Pa is added to PT.
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3.2. Method for Evaluating Deformation

The deformation ratio was defined as (H−H0)/H0, (W−W0)/W0 (measured values H, W; initial values
H0, W0), and the cross-sections before and after processing were compared. In addition, the maximum
height and width of the workpiece are Hmax and Wmax, and the minimum workpiece width is Wmin.
Furthermore, the load factor of axial tension was defined and evaluated as Pa/Fmax (axial tension Pa,
tensile strength Fmax of the workpiece).

3.3. Effect of the Laminated Mandrel and Axial Tension

Figure 10 shows the appearance of the workpiece after rotary draw bending without a material,
restraint jig, and axial tension. At R/H0 = 1.5 (H0 = 20, R = 50), folding occurred, and at R/H0 = 5.0
(H0 = 10, R = 50), wrinkling occurred. In addition, Figure 11 shows the effect of axial tension. As shown
in Figure 11, the wrinkling can be suppressed by axial tension. In contrast, the fall of the flange became
large. The axial tension reduced the compression region of the tube, suppressed buckling deformation,
and suppressed wrinkling. However, the component force PTN increased as the tensile force increased,
causing the tensile flange to fall greatly, resulting in a large expansion of the web. From this result and
Equation (6), it was found that the following factors increased influence the cross-section deformation:
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• Axial tension
• 1/R
• Cross-section outline
• Thickness
• Work-hardening exponent
• Plastic modulus (Young’s modulus)
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Figure 12 shows the effects of the mandrel and axial tension. R/H0 = 2.0 (H0 = 10, R = 20) was
possible bending without wrinkling and splitting, whereas splitting occurred in the condition of
R/H0 = 1.0 (H0 = 20, R = 20). Wrinkling and splitting did not occur at R/H0 = 1.5 (H0 = 20, R = 50). In
contrast, the cross-section deformation was large for both H0 = 10 and 20. Especially at R/H0 = 1.5
(H0 = 20, R = 50), a pear-like deformation occurred in which the deformation of the web side enlarged.
Considering this deformation as buckling, and considering one side of the web as buckling of a long
column, the end on the tension side was constrained and the end on the compression side is constrained
to rotate, which is similar to the deflection of a beam. In addition, the effect of the mandrel was
confirmed by the small deformation of both the tension and compression side flanges.
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Additionally, the convex distortion of the web is larger when H0 = 20 than when H0 = 10. It is
assumed that this is because the mandrel was compressed by PTN by axial tension and deflected to
the web. In this experiment, the number of laminated mandrels with H0 = 20 was larger than that
with H0 = 10. This is because by lowering the bending rigidity of the mandrel, it is possible to prevent
adverse effects such as splitting and convex distortion in the tensile flange of the tube. Therefore, as the
number of laminated layers increases, it is possible that minute voids are generated between the plates.
It is considered that the voids were compressed by PTN and became substantially larger than the set
clearance, resulting in larger deformation than H0 = 10.

Furthermore, Figure 13 shows the results of FEA. The same phenomenon as in the experiment
was confirmed in FEA. Therefore, it was confirmed that the pear-shaped deformation is a deformation
peculiar to the ultra-thin rectangular tube. The analysis conditions were R/H0 = 1.5 (H0 = 20, R = 50),
the mandrel was applied, and axial force was applied. To reduce the analysis time, the laminated
mandrel in FEA has a smaller number and a larger thickness than in the experiment. The laminated
plate is an elastic body, and Young’s modulus was set small to match the moment of inertia with the
experiment. Thus, the deformation of the mandrel in the plate thickness direction was larger than in
the experiment, resulting in depression or convex distortion in the tension and compression flanges.
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3.4. Effect of Restraint Jig

An experiment was conducted by applying a jig that restrains the web surface in order to suppress
the outward convex distortion of the web. Figure 14 shows a schematic of the jig and FEA model.
In bending with H0 = 10, the height of the restraining ring was 10 mm. At H0 = 20, the deformation of
the compression side is particularly large. Therefore, two types of conditions were applied: one for
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constraining only the compressed part of the web and one for constraining the entire web. Namely,
there are two types of ring height h = 10, 20 mm.
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Figure 14. Schematic representation of restraint jigs and simulation model.

Figure 15 shows the experimental results for R/H0 = 2.0 (H0 = 10, R = 20). It was found that the
convex distortion of the web was suppressed to less than 5% by applying the restraint jig. In addition,
at the minimum part (tensile flange), the width W decreased due to axial tension applied to suppress
wrinkling. Therefore, it was found that the accuracy of the width tends to deteriorate slightly compared
to the maximum part (compression flange).
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Figure 15. Effect of restraint jigs (H0 = 10, R = 20).

In addition, Figure 16 shows the experimental and FEA results for R/H0 = 1.5 (H0 = 20, R = 50),
and restraint jig ring height h = 10. As shown, the web compression side is inward, and the web
tension side is outward. As mentioned above, it is known that convex distortion occurs outward
during bending on the compression side. However, in this case, a restraint jig was provided on the
side surface, and accordingly, outward convex distortion was suppressed. Nevertheless, since there is
clearance (0.5 mm × 2 on each side) between the tube and the mandrel, it is presumed that the web is
deformed inward by that amount. In addition, since the restraint jig was not provided on the tension
side, it is considered that the web collapsed outward and convex distortion due to the above-mentioned
deflection on the compression side.
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Furthermore, Figure 17 shows the results when the restraint jig ring height h = 20. Deformation
was suppressed compared to h = 10 in both experiments and FEA. However, it was not possible
to completely suppress the waveform deformation of the web. This is attributed to the fact that
the clearance between the tube and the mandrel was set to 1.0 mm in both height and width. It is
considered that the PTN during bending compressed the web by the amount of clearance, buckled,
and caused wavy deflection.Metals 2020, 10, x FOR PEER REVIEW 11 of 15 
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3.5. Effect of the Bumpy Laminated Elastic Mandrel

Based on the results obtained so far, Figure 18 shows a comparison of the cross-sectional shapes
acquired by unconstrained and constrained bending. As shown in Figure 18, the maximum width
Wmax was significantly improved by applying the constraint. In addition, the height H was reduced by
4.4%, and the minimum width Wmin was reduced by 9.8%. A decrease in height H is considered to be
due to the clearance between the tube and the mandrel, and the decrease in minimum width Wmin is
considered to be due to the axial tension.

In addition, Figure 19 shows the result of FEA using a model in which the wall thickness
of the rectangular tube was changed. The wall thickness of the rectangular tube increased;
the above-mentioned deformation in which the web collapses inward and wavy deformation was not
observed, but the deformation was mainly trapezoidal. Thus, it is considered that the pear-shaped or
corrugated cross-section deformation is peculiar to the ultra-thin rectangular tube. In order to suppress
this waveform deformation, it is necessary to adjust the clearance between the rectangular tube and
the core material.

Therefore, bending was performed by applying a stepped laminated mandrel, as shown in
Figure 20. Table 3 shows the experimental conditions. The height of the rectangular tube was H0 = 20
and the bending radius was R = 50. Axial tension was applied, and the height of the restraint jig was
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set to h = 20. The clearance between the rectangular tube and the core material was ChL = 0 to 0.5 in the
height direction and 0.5 mm in the width direction. Moreover, the effect was confirmed by adding a
step of 1.0 mm on the compression side and 0.5 mm on the tension side with the center line as the
boundary. Figure 21 shows the appearance after bending under each condition. Wrinkling occurred
in Figure 21a. This is considered to be because the clearance in the height direction was as large as
0.5 mm and the depression of the compression side flange surface, PTN, could not be suppressed.
In addition, in Figure 21b, splitting occurred. In contrast, in Figure 21c, a cross-sectional shape without
wrinkling or splitting was obtained. In order to examine these results, the post-bending cross-sections
were compared under the condition that the clearance was 1.0 mm in both height and width, and the
condition where the bumpy mandrel was applied. Figure 22 shows a comparison of deformation ratio
and Figure 23 shows a comparison of changes in wall thickness. Figure 20 demonstrates Hmax was
significantly suppressed in the bumpy mandrel. It is considered that this is because the bending in
the case of using the bumpy mandrel was CLh = 0 mm; thus, the deformation in the height direction
could be suppressed more than CLh = 1.0 mm. Accordingly, it was found that the clearance in the
height direction needs to be as small as possible to suppress the deformation in the height direction.
In contrast, the deformation of the width W was suppressed to some extent, but its effect was smaller
than that of H. As shown in Figure 21b, if the clearance on the tension side in the width direction is set
small (0.5 mm), a decrease in the width direction is suppressed, but conversely, cracking occurs. It is
considered that this is because the tension of the mandrel was increased and the friction between the
mandrel and the tube was increased by decreasing the clearance. Therefore, it was found that it is
necessary to adjust the clearance in the width direction of the mandrel on the tension side to allow
the tension and friction to relief in order to obtain a highly accurate cross-section after bending in
thin-walled tubes.
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Table 3. Conditions of experiment and simulation.

Height of Workpiece H0 20 mm

Bending drum radius R 50 mm
Axial tension α Apply

Height of restraint jigs h 20 mm

Laminated Elastic Mandrel
Height CLh 0.5 mm 0 mm 0 mm

Width CLw (Top/Bottom) 0.5/0.5 mm 0.5/0.5 mm 1.0/0.5 mm
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4. Conclusions

The results of investigating the deformation characteristics and suppression of the ultra-thin
rectangular tube in rotary draw bending are as follows:

1. The component flattening forces PTN and the distributed flattening force wTN increase as bending
degree ρ (bending radius R), thickness t0, height H0, and axial tension Pa increase.

2. Wrinkling tended to occur when bending an ultra-thin wall tube. However, wrinkling can be
suppressed by applying axial tension.

3. By applying the mandrel to a tube with R/H0 = 1.5 (H0 = 20, R = 50), it was possible to suppress
cross-sectional deformation in the height direction. In contrast, pear-shaped deformation peculiar
to ultra-thin wall tube occurred.

4. The pear-shaped deformation could be suppressed to Wmin = −4%, Wmax = 1% by restraining the
side surface of the ultra-thin wall tube with H0 = 10, R = 20. In contrast, wrinkling and waveform
deformation such as a long column buckling phenomenon occurred on the web of the tube with
H0 = 20, R = 50, h = 20.

5. By adjusting and stepping the clearance in the width direction of the mandrel on the tension side
and the compression side of the ultra-thin wall tube with R/H0 = 1.5 (H0 = 20, R = 50, h = 20),
along with the restraint on the side surface and the axial force, it was possible to suppress to
H = 1%, Wmax = 3%, and Wmin = −7%. Namely, it was possible to suppress the pear-shaped
deformation peculiar to ultra-thin wall tube and waveform deformation such as a long column
buckling phenomenon.

6. It was found that the deformation of the cross-section peculiar to the ultra-thin rectangular tube
can be suppressed by applying axial tension, applying side restraint (h = 20), and adjusting
the widthwise clearance of the mandrel on the compression and the tension sides of the tube
(CLh = 0 mm, CLw = 1.0 mm/0.5 mm).
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