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Abstract: The determination of three components of displacements at material surfaces is possible
using surface topography information of undeformed (reference) and deformed states. The height
digital image correlation (hDIC) technique was developed and demonstrated to achieve micro-level
in-plane resolution and nanoscale out-of-plane precision. However, in the original formulation hDIC
and other topography-based correlation techniques perform well in the determination of continuous
displacements. In the present study of material deformation up to cracking and filan failure,
the ability to identify discontinuous triaxial displacements at emerging discontinuities is important.
For this purpose, a new method reported herein was developed based on the hDIC technique.
The hDIC solution procedure comprises two stages, namely, integer-pixel level correlation and
sub-pixel level correlation. In order to predict the displacement and height changes in discontinuous
regions, a smoothing stage was inserted between the two main stages. The proposed method
determines accurately the discontinuous edges, and the out-of-plane displacements become sharply
resolved without any further intervention in the algorithm function. High computational demand
required to determine discontinuous displacements using high density topography data was tackled
by employing the graphics processing unit (GPU) parallel computing capability with the paging
approach. The hDIC technique with GPU parallel computing implementation was applied for the
identification of discontinuous edges in an aluminium alloy dog bone test specimen subjected to
tensile testing up to failure.

Keywords: surface topography; optical profilometry; height digital image correlation; discontinuous
displacements; triaxial displacements

1. Introduction

The use of the digital image correlation (DIC) technique for the determination of biaxial
displacements dates back to the 1980s. After the introduction of this technique by Parks and
Vincent [1] for measuring displacements using speckle photography, Chu et al. [2] applied digital
speckle patterns in the context of experimental mechanics of solids. Today, this technique is widely
used for monitoring biaxial displacements at the surface of samples with 2D or 3D geometries as
presented in the studies of Hild and Roux [3] and Zhao et al. [4]. The missing information related to
the third component of displacements (out-of-plane with respect to the sample surface tangent plane)
was typically neglected, because digital imaging cameras were not capable of recording information
about the out-of-plane displacements at the surface with micro-level in-plane resolution of the samples
being investigated. Current topography based DIC techniques determine out-of-plane displacements
with very high-resolution over small areas [5–10]. On the other hand, 3D DIC techniques provide
depth information with very low resolution and low precision over large areas [11–14]. The height
digital image correlation (hDIC) [15] which is a true full field method and based on focus stacking

Metals 2020, 10, 1037; doi:10.3390/met10081037 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-3558-5198
http://www.mdpi.com/2075-4701/10/8/1037?type=check_update&version=1
http://dx.doi.org/10.3390/met10081037
http://www.mdpi.com/journal/metals


Metals 2020, 10, 1037 2 of 13

optical microscopy (FSOM), fills the gap between the two approaches. Beeck et al. [16] also used
confocal microscopy for obtaining topography information to perform DIC, but this scanning method
is intrinsically slow [8] and requires complex finite element calculations and, accordingly, it is far from
being a full field method. However, all topography based DIC techniques, including the hDIC, have
been optimised for determination of continuous displacements.

The displacement fields arising in engineering components can be investigated in situ using DIC.
The low cost and high accuracy of the technique eliminate the need for expensive laboratory strain
measurement equipment, such as strain gauges or extensometers. Sause [17] provided improvements
in the resolution of digital image recording techniques that allowed capturing small defects and
instances of failure, such as cracks not visible to the naked eye. Abanto-Bueno and Lambros [18] used
DIC for the purpose of investigating crack growth, Mathieu [19] proposed a crack propagation law,
Mokhtarishirazabad et al. [20] evaluated crack-tip fields, and Hamam et al. [21] and Mcneill et al. [22]
estimated stress intensity factors, e.g., in the investigation of mode I crack propagation as it was
presented by Tahreer et al. [23]. These studies performed correlation for continuous displacement
fields but did not provide information regarding the discontinuous edges associated with the cracks.
Chernyatin et al. [24] developed a mathematical and numerical correction method for displacements
determined by DIC. The proposed model provides a theoretical description of the discontinuous
displacement fields associated with material edges. However, this estimation process begins with
the elimination of a rectangular area. Therefore, the interpretation is not based on real experimental
measurements. Jandejsek et al. [25] performed standard fracture toughness tests to determine in-plane
stress and strain distributions around a crack using DIC. However, the solutions include smoothing
stages and do not capture the detail of discontinuous displacements at material edges within the
crack. Hosdez et al. [26] studied crack growth in ductile cast iron using DIC and the potential drop
method. The authors visually presented the displacement distribution associated with the crack
at different resolutions, with the increasing resolution providing more details of the precise crack
shape and deformation fields. The length of the crack was determined with good precision; however,
the information about the displacements and strains around the crack was missing from the report.
Bourdin et al. [27] presented the Heaviside-DIC technique for the measurement of plastic localisation in
polycrystalline metallic materials. The proposed method focuses on the determination of discontinuous
deformations formed by slip bands but requires additional treatment of the subsets. Cinar et al. [28]
also used Heaviside-DIC technique, but correlation around the crack fails within a wide range and
results in errors that need to be rectified by extrapolation. As a consequence, current DIC techniques
for the determination of discontinuous deformations use pixel intensities with algorithms specified to
the applied problem. These methods were not developed based on surface topography information
and accordingly they are not able to determine out-of-plane displacements in and around deformed
sections. Final representations of discontinuous edges are blurry images that need guiding lines.

In spite of the fact that conventional DIC techniques are able to determine the discontinuous
displacements associated with material edges such as cracks, they are not able to determine the
boundaries of discontinuous displacements. Thus, representations of discontinuous displacements do
not include real boundaries, but rather visualise them as blurry (smeared out, or smoothed) images
of fracture zones. In addition to the lack of details of discontinuous edges, the depth (out-of-plane
displacements) components cannot be determined using conventional DIC techniques. The lack of
information about the depth component of displacements prevents the calculation of the Mode III
component of crack-related deformation fields.

The hDIC technique [15] was proposed recently for the correlation of optical profilometry
data obtained using “infinite focus” microscopy. This allows the use of height data instead of the
conventional grey scale colour intensity in typical digital images for the purpose of determination of
triaxial surface displacements. The hDIC technique was developed as a two-stage process, comprising
integer-pixel level and sub-pixel level correlation stages. The integer-pixel level stage determines the
best matching pixels to determine large shifts, while the sub-pixel level correlation stage searches
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for the best matching displacement values using interpolation. In this two-stage process, the role of
integer-pixel level cross-correlation is to determine the best matching pixel as a starting point for the
minimisation process conducted during the sub-pixel level correlation. The determination of large scale
displacements using this two-stage process was previously validated by investigating displacements
during the tensile test by the present authors [15] and by comparing strains calculated using the hDIC
displacement results with synchrotron diffraction measurements by Uzun et al. [29].

After the completion of integer-pixel level cross-correlation and sub-pixel level correlation stages
of the hDIC technique, the results are presented and analysed following the smoothing that plays an
important role in the digital image correlation algorithms serving the purpose of eliminating noise,
as it was explained in the studies of Craven and Wahba [30] and Woltring [31]. As a consequence,
only continuous displacement fields can be extracted as it was stated in the studies of Palanca [32]
and Woltring [31]. Li et al. [33] stated that careful adjustment of the smoothing parameters is crucial,
because the strain calculation is highly sensitive to displacement noise. In the case of discontinuous
displacement fields, smoothing has a harmful effect on the determination of discontinuous edges.
In order to prevent the removal of discontinuous edges by smoothing, several methods were developed
in [25], and by Mathieu et al. [19] and Réthoré et al. [34] to guide the DIC algorithm in describing the
displacement fields around cracks (but not across them). However, in a generic analytical approach,
the determination of discontinuous displacements should be performed at any surface without
additional guiding procedures. The current methods do not satisfy this demand.

In this study, topography data collected using the optical profilometry technique were used for the
first time to determine defects and failures that create discontinuous displacements and height profile
changes. For this purpose, the hDIC technique was modified as an automatically working algorithm
that does not need additional guiding property around the discontinuous edges. A new three-stage
correlation process is presented to determine the displacements accurately at discontinuous edges.
After integer-pixel level cross-correlation stage, a smoothing function is fit with displacement results of
the first stage to predict displacements in damaged spaces of the target topography data. The matching
points predicted in the target topography are used as the centre point of the sub-pixel level correlation
stage. The use of topography data allowed the determination of the height profile of damaged sections
in the experiments conducted to correlate initial and after break states of a tensile test specimen.

The use of high-density topography data to achieve high resolution at discontinuous edges increases
the computation power demand drastically. In order to deal with this problem, GPU implementation of
the hDIC technique was developed based on the paging of subsets corresponding to the reference and
target conditions. The gain in speed due to the GPU implementation is presented with benchmark tests.

2. The hDIC Technique with GPU Implementation

The hDIC technique was developed as a two-stage process for the determination of continuous
displacement fields. Integer-pixel level cross-correlation and sub-pixel level correlation stages
are followed by smoothing to eliminate displacement noise and strain calculations. In order to
determine discontinuous displacements without modifying the main form of this correlation process,
the smoothing stage was shifted to the middle of two main stages of the hDIC technique.

Resolution of the representation of discontinuous edges is improved by the use of high-density
topography data, but this increases the solution time. For the purpose of dealing with this problem,
GPU implementation of the hDIC technique was developed by defining subsets of reference and
target conditions as pages of three-dimensional arrays as illustrated in Figure 1 for two stages of the
hDIC technique.
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Figure 1. GPU parallel computing implementation of two stages of the height digital image correlation
(hDIC) technique.

Integer-pixel level cross-correlation stage aims to determine the best matching pixels between
the topography data of reference and target conditions. Dimensions of subsets are formulated as
(2N + 1) × (2N + 1) where N is an odd number in order to keep a single pixel in the centre of the
subset. Cross-correlation is performed using the zero-mean normalised cross-correlation method
which is formulated in Equation (1). In this equation, Ci denotes the cross-correlation coefficient of ith

subset, R(x, y) denotes the intensity of the pixel at coordinates (x, y) in the reference subset, T(x′, y′)
denotes the intensity of the pixel at coordinates (x′, y′) in the target subset, Rm denotes the mean
intensity of the pixels in the reference subset and Tm is the mean intensity of the pixels in the target
subset. Three-dimensional array of target subsets is stored in the GPU memory to perform a parallel
calculation of the zero-mean normalised cross-correlation coefficient of each reference subset with all
target subsets.

Ci =

∑
(R(x, y) −Rm)(T(x′, y′) − Tm)√∑

(R(x, y) −Rm)
2
√∑

(T(x′, y′) − Tm)
2

(1)

Subsequent to the determination of the matching subsets, displacements are determined using
the final coordinates of the matching pixels using Equation (2) where u denotes the displacement in
x-axis and v denotes the displacement in y-axis.

x′ = x + u(x, y) (2a)

y′ = y + v(x, y) (2b)

After the integer-pixel level coarse-fine matching process, displacement noise for x- and
y-components (in-plane) of displacements are removed by the bi-cubic B-form least-squares spline
interpolation process. The interpolation scheme is employed using the spline function in terms of
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the weighed sum of B-splines as it is given in Equation (3) where Bi,k(x) is the ith and B j,k(y) is the jth

B-splines with a degree of (k− 1) in x- and y-axes, nx and nx are the number of control points in x- and
y-axes and αi, j and βi, j are the coefficients in the dimensions of i and j. Smoothness of the spline function
is determined by adjusting the number of control points. After the smoothing process, matching pixels
in the target condition are updated with the coordinates calculated using the smoothed displacements.

u(x, y) =
nxy∑
i=1

nyx∑
j=1

αi, jBi,k(x)B j,k(y) (3a)

v(x, y) =
nxy∑
i=1

nyx∑
j=1

βi, jBi,k(x)B j,k(y) (3b)

In order to reduce the computation power demand, sub-pixel level correlation is accomplished
around the matching pixels in the target condition. The search areas in the target condition are defined
as separate cost functions using bi-cubic interpolation method which is given in Equation (4) where
Ts(x′, y′) is the intensity at coordinates (x′, y′) in the target and ωi, j is the coefficient at the dimensions
of i and j. The final equation, which has continuous derivatives [35], is distributed on a grid surface of
unit squares.

Ts(x′, y′) =
3∑

i=0

3∑
j=0

ωi, j(x′)
i(y′) j (4)

Functions of the subsets of the target condition are reformulated as cost functions for sub-pixel
level correlation process. The cost function of each target subset is determined using the interpolation
function and the corresponding reference pixel, separately, using Equation (5) provided below.

J(x′, y′) = (Ts(x′, y′) −R(x, y))2 (5)

The gradient descent minimisation process simultaneously updates the x′ and y′ coordinates in
the surface, determined by the bi-cubic interpolation function, along the steepest descent direction
using Equation (6) until the minimum is achieved. In this equation, γ represents the step size which is
kept constant throughout the process. The GPU implementation of this process performs the creation
of the cost functions and the gradient descent minimisation process for each reference subset, which
are stored as a three-dimensional array in the GPU memory, in parallel.

x′ = x′ − γ
∂
∂x′

J(x′, y′) (6a)

y′ = y′ − γ
∂
∂y′

J(x′, y′) (6b)

3. Identification of Discontinuous Displacements

The hDIC technique was previously used to measure displacements on the aluminium tensile test
specimen by the present authors [15]. The displacement measurements corresponding to the elastic
region of the tensile test allowed calculation of Young’s modulus and Poisson’s ratio. Calculated elastic
material properties and the linearity of the longitudinal component of the displacements validated the
measurements of the hDIC technique. Smoothed displacement measurements in the plastic region
were used to calculate strain distribution. However, that procedure of the hDIC did not provide any
information about discontinuous displacements after the break. The GPU implementation of the
hDIC technique with the new smoothing procedure was used for the identification of discontinuous
displacements after the break of the same tensile test specimen. All calculations for the displacement
calculations and benchmark tests were conducted with single precision.
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3.1. Sample Preparation and Profilometry

Tensile test specimen of aluminium alloy 6082/HE30 was prepared using the electric discharge
machining technique which creates an electric arc that causes formation of pits with a depth of a few
microns on the cut surface. Elastic modulus and Poisson’s ratio of HE 30 6082 aluminium are 70 GPa
and 0.33, respectively. The tensile test specimen has a thickness of 2 mm and details of all dimensions
can be found in the paper that presents the hDIC technique [15]. Tension load was applied using a
5kN tensile stage (Deben, Suffolk, UK) until the break and in situ surface profile scans were performed
using an Infinite Focus 3D Profilometer instrument (Bruker Alicona, Graz, Austria). Vertical and lateral
resolutions were kept as 200 nm and 8 µm, respectively, during the profilometry scans. Settings of
the profilometer on the resolution was crucial, because it should be kept the same in order to satisfy
repeatability. On the other hand, optical settings of the device were kept as default. Topography data
corresponding to the reference and target conditions, as well as the information about the triaxial
coordinates of the surface, are illustrated in Figure 2. The gap between the two sides after the break
was minimised until the two edges got in touch, as illustrated in the circled images. The illustration in
that figure shows that some parts of the broken edges are in touch. The top of the right side of the
broken edge has a sharp jut along the top line while the symmetric line on the left side was buckled
towards the centre of the material.
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Figure 2. Topography data of the reference and the target conditions with illustration of the buckled
part on the left side of the break zone.

3.2. Determination of Optimum Subset Size and Smoothness

GPU implementation of the hDIC technique with the new smoothing procedure has two parameters
that need to be determined carefully, which are smoothness and subset size. These parameters were
investigated in terms of the coefficient of variation (CoV) of the error between the pixel intensities of
the reference and the target condition. Optimum parameters are selected from the ones that provide
the minimum CoV of the error. Tests were conducted by running both the integer-pixel and sub-pixel
level correlation stages for each parameter using the same region of interest (ROI) which spreads from
−4 mm to 3 mm along the longitudinal direction in the break zone with respect to the centre of the
gauge, and covers the gauge width with a range of 3 mm, as illustrated in Figure 3.

The first parameter is a subset size that should be determined carefully in order to calculate
discontinuous displacements corresponding to the buckled and damaged sections of the break zone
accurately, because the correlation on the damaged parts is expected to be accomplished by matching
the pixels of the subset that belongs to the undamaged regions. The optimum subset size is determined
by testing different subsets with a varying length of square, from 3 to 41 pixels, while keeping the
smoothing parameter at maximum. Results of this analysis are given in Figure 4 in terms of the
logarithm of the CoV. Minimum CoV is achieved when the subset length is 17 pixels, which corresponds
to a subset of 289 pixels.
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Figure 4. Variation of logarithm of the coefficient of variation (CoV) with respect to subset length (a)
and normalised number of control points (b). There is a connection between (a) and (b) parts of this
figure. The analysis on normalised number of control points is performed using the best subset length
obtained after the analysis on subset length.
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The second parameter is smoothness of the surface function that has crucial importance for
cleaning the noisy displacement distribution and determination of the initial pixel for the iterations
of sub-pixel level correlation stage. In this study, the purpose of the smoothing process is to create
a function of smoothed results for the integer-pixel level correlation to predict coordinates of best
matching pixels, but this smoothing process is not applied to the final results after the sub-pixel level
correlation. The smoothness of the surface function created by the bi-cubic B-form least-squares spline
interpolation [36] process is adjusted by the number of control points. Minimizing the number of
control points increases the smoothness. In order to investigate the effect of smoothness on the CoV,
smoothness is decreased to half, starting from the maximum smoothness while keeping the square
subset length at 17 with 289 pixels. Results given in Figure 4 show that the minimum CoV is achieved
when the smoothness is at maximum. However, this is achieved when the step size between subsets is
one that means all pixels in the ROI were used in the correlation process.

3.3. Discontinuous Displacements after Break

After the parameter analysis of GPU implementation of the hDIC technique with the new
smoothing procedure, optimum subset length and smoothness were used to determine discontinuous
displacements on the tensile test specimen after break. Figure 5 illustrates smoothed displacements
determined after the integer-pixel level cross-correlation stage and the sub-pixel level correlation stage
displacement calculations without smoothing on the undeformed shape of the ROI. Results show that
the range between maximum and minimum values of displacement were changed, clusters of pixels
that have similar displacements appeared and discontinuous edges were visible after the correlation.
As expected, the path of the discontinuous edge on the right side of the break zone appeared in the
illustrations of x- and z-displacements and the continuous increase in z-displacement, up to the path of
the discontinuous edge, was observed on the left side of the break zone. The path of the discontinuous
edge on the right side of the break zone is less visible in the illustration of y-displacement.
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Figure 5. Results of the hDIC calculations after integer-pixel level cross-correlation and sub-pixel level
correlation stages represented in the undeformed ROI in units of micron.

Displacements on the deformed shape of the ROI are illustrated as the transition from the
microscopy image to the calculated displacements in Figure 6. This illustration shows the distribution
of displacements on the deformed body calculated after the sub-pixel level correlation stage. Results of
x- and z-displacements show a perfect match between the path of the discontinuous edge on the
right side of the break zone in the microscopy image and the hDIC calculations. The discontinuous
region becomes visible in the representation of all components of dispalcement but it becomes sharply
visible in the z-displacement results seen in the middle column of Figure 6. This result shows the
importance and benefits of using surface topography information for the purpose of the determination
of discontinuous displacements.
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Figure 6. Illustration of the hDIC sub-pixel level displacement calculations in the deformed ROI and
their transition from microscopy image of the deformed tensile test specimen in units of micron.

Local standard deviation around the break zone was calculated for better representation of
discontinuous edges and illustrated in Figure 7. Coordinates on the microscopy image are the same with
coordinates given in Figure 6 and in order to get a clear representation of the break zone, coordinates are
not presented in this image. As expected, local standard deviations of x- and z-displacements provide a
very clear view of the discontinuous edges on the right side of the break zone. The representation of local
standard deviation of z-displacements also makes the beginning of the buckled field on the left side of the
break zone visible, especially on the central parts of the gauge width, because in that region buckling is
higher, but its distribution is not continuous.
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GPU parallel computing implementation of the hDIC technique was created based on Compute
Unified Device Architecture (CUDA) parallel computing platform. In order to investigate the
performance improvement gained by the GPU parallel computing, benchmark tests were conducted to
compare serial calculations of Intel i7-8700 CPU (Intel, Santa Clara, CA, USA) and parallel calculations
Nvidia Quadro P2000 GPU (Nvidia, Santa Clara, CA, USA). Tests were performed in ROIs with varying
size and the results are illustrated in Figure 8. Normalised solution times show that the subpixel level
correlation stage is completed five times faster in both CPU and GPU solutions which are linearly
dependent on the number of pixels. The speedup gained by GPU parallel computing increases with
the increasing number of pixels at each correlation stage. Maximum speedup is 6.2 times of the CPU
calculations which was achieved when the ROI was created using the maximum number of pixels in
the integer-pixel level cross-correlation stage.
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parallel GPU computing.

Variation of the speedup in the sub-pixel level correlation stage shows that the increasing trend
continues with increasing number of pixels, but the rate of the increase in the speedup decreases with
increasing number of pixels. The speedup gained using this GPU has a potential to increase with
increasing number of pixels in the sub-pixel level correlation stage, if the number of pixels is increased.
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The expectation for the maximum speed up in the sub-pixel level correlation stage is to reach a closer
value obtained in the integer-pixel level correlation stage.

4. Conclusions

The hDIC technique was initially developed for the purpose of the determination of continuous
displacement fields in three axes at the surface of a material using surface topography [15]. The proposed
solution procedure of the hDIC technique and the use of the optimised subset size and smoothness
allowed for the identification of discontinuous displacements involuntarily using surface topography
information without any need for user interaction and guiding data. The new form of the hDIC
technique correlates the surface topography information of reference and damaged states successfully in
the regions where the material was buckled or broken. Boundaries of the discontinuous edges become
sharply visible in the displacement results. The performance of the proposed method was improved by
GPU implementation. The use of the paging method allowed us to speedup integer-pixel and sub-pixel
level correlation stages. Visual representations of discontinuous edge on the right side of the break
zone showed perfect agreement with the illustrations in microscopy image. Further improvements can
be achieved by increasing the density of topography data.
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Nomenclature

(x′, y′) coordinates in the target subset
Bi,k(x) ith B-splines with a degree of (k− 1)
B j,k(y) jth B-splines with a degree of (k− 1)
nx, nx number of control points
Rm denotes the mean intensity of the pixels in the reference subset
Tm mean intensity of the pixels in the target subset
Ts(x′, y′) intensity of a pixel at coordinates (x′, y′)
(x, y) coordinates in the reference subset
αi, j, βi, j coefficients of the spline function
ωi, j coefficient at the dimensions of i and j
i, j dimensions of the spline function
N an odd number to determine subset size
R(x, y) intensity of a pixel at coordinates (x, y)
T(x′, y′) intensity of a pixel at coordinates (x′, y′)
u displacement in x-axis
v displacement in y-axis
γ step size of the gradient descent function
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25. Jandejsek, I.; Gajdoš, L.; Šperl, M.; Vavřík, D. Analysis of standard fracture toughness test based on digital
image correlation data. Eng. Fract. Mech. 2017, 182, 607–620. [CrossRef]

26. Hosdez, J.; Witz, J.F.; Martel, C.; Limodin, N.; Najjar, D.; Charkaluk, E.; Osmond, P.; Szmytka, F. Fatigue crack
growth law identification by Digital Image Correlation and electrical potential method for ductile cast iron.
Eng. Fract. Mech. 2017, 182, 577–594. [CrossRef]

27. Bourdin, F.; Stinville, J.C.; Echlin, M.P.; Callahan, P.G.; Lenthe, W.C.; Torbet, C.J.; Texier, D.; Bridier, F.;
Cormier, J.; Villechaise, P.; et al. Measurements of plastic localization by heaviside-digital image correlation.
Acta Mater. 2018, 157, 307–325. [CrossRef]

28. Cinar, A.F.; Barhli, S.M.; Hollis, D.; Flansbjer, M.; Tomlinson, R.A.; Marrow, T.J.; Mostafavi, M. An autonomous
surface discontinuity detection and quantification method by digital image correlation and phase congruency.
Opt. Lasers Eng. 2017, 96, 94–106. [CrossRef]

http://dx.doi.org/10.1179/174328406X101283
http://dx.doi.org/10.1088/0957-4484/18/39/395504
http://dx.doi.org/10.1016/j.actamat.2008.08.044
http://dx.doi.org/10.1016/j.matdes.2018.08.052
http://dx.doi.org/10.1007/BF02321649
http://dx.doi.org/10.1016/j.actamat.2016.06.039
http://dx.doi.org/10.1016/j.taml.2016.08.003
http://dx.doi.org/10.1364/AO.49.004044
http://www.ncbi.nlm.nih.gov/pubmed/20648187
http://dx.doi.org/10.1007/s11431-017-9090-x
http://dx.doi.org/10.1007/3DRes.04(2012)6
http://dx.doi.org/10.1016/j.ijmecsci.2019.06.014
http://dx.doi.org/10.1007/s11340-013-9799-1
http://dx.doi.org/10.1007/978-3-319-30954-5_3
http://dx.doi.org/10.1016/S0013-7944(02)00058-9
http://dx.doi.org/10.1016/j.ijfatigue.2011.08.004
http://dx.doi.org/10.1016/j.ijfatigue.2016.03.006
http://dx.doi.org/10.1111/j.1475-1305.2007.00345.x
http://dx.doi.org/10.1016/0013-7944(87)90124-X
http://dx.doi.org/10.1016/j.mspro.2014.06.256
http://dx.doi.org/10.1016/j.prostr.2016.06.331
http://dx.doi.org/10.1016/j.engfracmech.2017.05.045
http://dx.doi.org/10.1016/j.engfracmech.2017.05.037
http://dx.doi.org/10.1016/j.actamat.2018.07.013
http://dx.doi.org/10.1016/j.optlaseng.2017.04.010


Metals 2020, 10, 1037 13 of 13

29. Uzun, F.; Salimon, A.I.; Statnik, E.S.; Besnard, C.; Chen, J.; Moxham, T.; Salvati, E.; Wang, Z.; Korsunsky, A.M.
Polar transformation of 2D X-ray diffraction patterns and the experimental validation of the hDIC technique.
Measurement 2019, 107193. [CrossRef]

30. Craven, P.; Wahba, G. Smoothing noisy data with spline functions—Estimating the correct degree of
smoothing by the method of generalized cross-validation. Numer. Math. 1978, 31, 377–403. [CrossRef]

31. Woltring, H.J. On optimal smoothing and derivative estimation from noisy displacement data in biomechanics.
Hum. Mov. Sci. 1985, 4, 229–245. [CrossRef]

32. Palanca, M.; Tozzi, G.; Cristofolini, L. The use of digital image correlation in the biomechanical area: A review.
Int. Biomech. 2016, 3, 1–21. [CrossRef]

33. Li, X.; Zhao, J.; Shuai, J.; Zhang, Z.; Wu, X. Accurate Reconstruction of High-Gradient Strain Field in Digital
Image Correlation: A Local Hermite Scheme. In Advancement of Optical Methods & Digital Image Correlation
in Experimental Mechanics, Volume 3; Lamberti, L., Lin, M.-T., Furlong, C., Sciammarella, C., Reu, P.L.,
Sutton, M.A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 173–175.

34. Réthoré, J.; Gravouil, A.; Morestin, F.; Combescure, A. Estimation of mixed-mode stress intensity factors
using digital image correlation and an interaction integral. Int. J. Fract. 2005, 132, 65–79. [CrossRef]

35. Russell, W.S. Polynomial interpolation schemes for internal derivative distributions on structured grids.
Appl. Numer. Math. 1995, 17, 129–171. [CrossRef]

36. Amiri-Simkooei, A.R.; Hosseini-Asl, M.; Safari, A. Least squares 2D bi-cubic spline approximation: Theory
and applications. Meas. J. Int. Meas. Confed. 2018, 127, 366–378. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.measurement.2019.107193
http://dx.doi.org/10.1007/BF01404567
http://dx.doi.org/10.1016/0167-9457(85)90004-1
http://dx.doi.org/10.1080/23335432.2015.1117395
http://dx.doi.org/10.1007/s10704-004-8141-4
http://dx.doi.org/10.1016/0168-9274(95)00014-L
http://dx.doi.org/10.1016/j.measurement.2018.06.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The hDIC Technique with GPU Implementation 
	Identification of Discontinuous Displacements 
	Sample Preparation and Profilometry 
	Determination of Optimum Subset Size and Smoothness 
	Discontinuous Displacements after Break 

	Conclusions 
	References

