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Abstract: In this study, the response surface method (RSM), back propagation neural network (BPNN),
and genetic algorithm (GA) were used for modeling and multi-objective optimization of the forming
parameters of AA5052 in incremental sheet forming (ISF). The optimization objectives were maximum
forming angle and minimum thickness reduction whose values vary in response to changes in
production process parameters, such as the tool diameter, step depth, tool feed rate, and tool spindle
speed. A Box–Behnken experimental design was used to develop an RSM and BPNN model for
modeling the variations in the forming angle and thickness reduction in response to variations in
process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective
optimization of the ISF process using the GA. The results showed that RSM effectively modeled the
forming angle and thickness reduction. Furthermore, the correlation coefficients of the experimental
responses and BPNN predictions of the experiment results were good with the minimum value being
0.97936. The Pareto optimal solutions for maximum forming angle and minimum thickness reduction
were obtained and reported. The optimized Pareto front produced by the GA can be a rational design
guide for practical applications of AA5052 in the ISF process.

Keywords: incremental sheet forming; RSM; BP neural network; genetic algorithm;
multi-objective optimization

1. Introduction

Incremental sheet forming (ISF) is a flexible sheet-forming process that has gained significant
interest since the pioneering work of Iseki [1]. ISF is a highly localized deformation process in which a
tool is programmed to move along a certain path to create the desired part geometry. A simple ISF
process to manufacture a truncated cone is depicted in Figure 1 [2]. The workpiece/blank is clamped
with a fixture. A pin-like tool is programmed to follow the circumference of a circle. After completing
the first circle, the tool steps down and toward the center to start a new circular pass. After several
passes, a truncated cone can be generated. Compared to the conventional press forming process, ISF can
produce geometries of various parts directly from computer-aided design models and numerical
control codes without complex tools or dies. Thus, this process not only saves energy, but also holds
great potential for rapid prototyping of small quantities of parts. Additionally, it is known that ISF
can significantly increase the formability of the sheet metal workpiece [3]. Furthermore, to enhance
formability, several ISF schemes (micro ISF [4], robot-assisted ISF [5], and heat-assisted ISF [6]) have
been proposed.
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Recently, several papers that investigate the ISF processes through different approaches like 
analytical, numerical, and soft computing methods have been published. Behera [7] presented a 
review that describes the genesis and current state-of-the-art of the ISF process. Minutolo [8] 
researched the formability in the ISF process using the maximum forming angle. Fiorentino [9] 
carried out experimental investigations on formability of sheet metals in the single-point and two-
point ISF processes considering different tool paths and incremental step height. Do [10] developed 
a new method and the associated apparatus to define the forming limit curve at fracture in the ISF 
process. The developed numerical simulation model showed good results to predict the fracture and 
thickness distribution. McAnulty [11] and Gatea [12] presented reviews of experimental results of the 
effects of different process parameters on the performance of ISF. Similarly, according to Leon [13] 
and Kim [14], the forming angle, tool diameter, vertical-step depth, horizontal-step depth, tool 
rotation speed (spindle speed), feed speed, sheet thickness, tool paths, and temperature are important 
forming parameters that affect the final forming result in the ISF process. In the ISF process, better 
formability is obtained when increasing the spindle speed and decreasing the feed rate of tool. At the 
same time, although decrease the size of the tool diameter can increase the formability, it will also 
increase the springback and surface roughness, resulting in a reduction of the accuracy of the formed 
part. Decreasing vertical step depth can improve formability and reduce springback, but it will 
significantly increase the forming time. On the other hand, tool paths optimization can reduce 
springback and enhance the thickness distribution of asymmetric parts. Therefore, the optimization 
of process parameters is required to achieve better formability and product quality in the ISF process. 
The finite element method (FEM) is today able to estimate the process parameter in the ISF process. 
However, the incremental nature of the ISF process requires a huge number of stages to model the 
entire process, implying large simulation times. Furthermore, several mechanical phenomena, like 
springback and bending, act during the process, thus requiring adequate constitutive models with 
many parameters that need to be calibrated [15]. On the other hand, various methods have been used 
in the past for the optimization of the parameters of the ISF process based on the experiment which 
can also give good analysis results. Angshuman [16] used grey relational analysis (GRA) to optimize 
the forming parameters for the ISF of AA5052 sheets. In their research, Taguchi's L9 orthogonal array, 
GRA, and analysis of variance (ANOVA) were used to achieve the optimum parameters for 
maximizing the formability and minimizing the roughness in the rolling, transverse, and angular 
direction. The results showed that lubrication has been identified as the highest contributing factor 
for all three directions, while the vertical step depth and speed were identified as the second and 
third contributing parameters, respectively, for both the rolling and the angular direction. Hani [17] 
presented an optimization of the two-point ISF process for AA1050 sheet using the response surface 
method (RSM). In their research, the Box–Bhenken experimental design (BBD) was utilized 
considering the mandrel angle, tool diameter, sheet initial thickness and step depth as input 
parameters, and the thinning ratio and maximum resultant force as output responses. ANOVA was 
also performed to find the contribution of factors to the responses and it was inferred that all the 
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Recently, several papers that investigate the ISF processes through different approaches like
analytical, numerical, and soft computing methods have been published. Behera [7] presented a review
that describes the genesis and current state-of-the-art of the ISF process. Minutolo [8] researched
the formability in the ISF process using the maximum forming angle. Fiorentino [9] carried out
experimental investigations on formability of sheet metals in the single-point and two-point ISF
processes considering different tool paths and incremental step height. Do [10] developed a new
method and the associated apparatus to define the forming limit curve at fracture in the ISF process.
The developed numerical simulation model showed good results to predict the fracture and thickness
distribution. McAnulty [11] and Gatea [12] presented reviews of experimental results of the effects of
different process parameters on the performance of ISF. Similarly, according to Leon [13] and Kim [14],
the forming angle, tool diameter, vertical-step depth, horizontal-step depth, tool rotation speed (spindle
speed), feed speed, sheet thickness, tool paths, and temperature are important forming parameters
that affect the final forming result in the ISF process. In the ISF process, better formability is obtained
when increasing the spindle speed and decreasing the feed rate of tool. At the same time, although
decrease the size of the tool diameter can increase the formability, it will also increase the springback
and surface roughness, resulting in a reduction of the accuracy of the formed part. Decreasing vertical
step depth can improve formability and reduce springback, but it will significantly increase the forming
time. On the other hand, tool paths optimization can reduce springback and enhance the thickness
distribution of asymmetric parts. Therefore, the optimization of process parameters is required to
achieve better formability and product quality in the ISF process. The finite element method (FEM)
is today able to estimate the process parameter in the ISF process. However, the incremental nature
of the ISF process requires a huge number of stages to model the entire process, implying large
simulation times. Furthermore, several mechanical phenomena, like springback and bending, act
during the process, thus requiring adequate constitutive models with many parameters that need to be
calibrated [15]. On the other hand, various methods have been used in the past for the optimization
of the parameters of the ISF process based on the experiment which can also give good analysis
results. Angshuman [16] used grey relational analysis (GRA) to optimize the forming parameters
for the ISF of AA5052 sheets. In their research, Taguchi’s L9 orthogonal array, GRA, and analysis of
variance (ANOVA) were used to achieve the optimum parameters for maximizing the formability
and minimizing the roughness in the rolling, transverse, and angular direction. The results showed
that lubrication has been identified as the highest contributing factor for all three directions, while
the vertical step depth and speed were identified as the second and third contributing parameters,
respectively, for both the rolling and the angular direction. Hani [17] presented an optimization
of the two-point ISF process for AA1050 sheet using the response surface method (RSM). In their
research, the Box–Bhenken experimental design (BBD) was utilized considering the mandrel angle,
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tool diameter, sheet initial thickness and step depth as input parameters, and the thinning ratio and
maximum resultant force as output responses. ANOVA was also performed to find the contribution of
factors to the responses and it was inferred that all the regression models developed using the RSM
were adequate for correlating the process factors and corresponding responses. It was also found that
the wall angle was the most influential factor affecting thickness reduction, while the sheet thickness
had the greatest influence on the axial force. Dakhli [18] proposed a method that combines two
methods—Taguchi grey relational analysis (TG) and the RSM—in which the multi-response parameters
of surface roughness, forming force, and manufacturing time are optimized by computing the grey
relational grade. Based on the results, the material sheet and the lubricant were the most significant
factors that affect the surface roughness, the forming forces, and the manufacturing time.

Artificial intelligence is widely used in various industries. Using artificial intelligence, not only is it
possible to make good predictions but also optimize single or multiple objectives. The back propagation
neural network (BPNN) is a machine learning tool that can be used to learn the relationships between
the input and output variables to predict system performance. It works as a black box model that
requires no detailed parameters of the system. The BPNN working principle was inspired by that of the
human brain, and the network consists of inputs, several layers of neurons, and outputs. In its simplest
form, an input is multiplied by weights, and then the product and a bias are summed up and sent into
a transfer function to produce the final output. More recently, the artificial intelligence algorithms
that train neural networks with the back propagation method have been applied to various problems
in plasticity. Do [19] conducted research on the effect of hole lancing on the forming characteristic of
ISF. In their study, the hole lancing on the blank shoulder near the forming area was designed and the
BPNN algorithm was used to predict the springback in the ISF process. The results showed that hole
lancing not only improved the formability considerably (the maximum forming angle increased from
60◦ to 64◦), but also reduced profile error from 1.32 mm to 1.12 mm. Furthermore, the BPNN algorithm
with the Levenberg–Marquardt approximation successfully predicted springback amount in the ISF
with the average error of 4.052%. Simultaneously, Forcellese [20] presented multivariable empirical
models based on artificial neural networks (ANN) to predict the flow and forming limit curves of
the AZ31 magnesium alloy thin sheets. The results showed that the ANN captured the influence of
temperature, strain rate, and fiber orientation on the flow curve shape, the stress values, and the effects
of the process parameters on the forming limit curves without a priori knowledge of the complex
microstructural mechanisms occurring during warm forming.

Genetic algorithms (GAs) are based on the principles of genetics found in nature. They are parallel
and global search algorithms based on Darwin’s theory of survival of the fittest [21]. GAs are an
efficient comprehensive search method which automatically acquires and accumulates knowledge
of the search space during the search process and has proper characteristics to control the search
process to find the best solution. Liu [22] applied a Pareto-based multi-objective GA to optimize the
sheet metal forming process. In their proposed optimal model, blank-holding force and draw-bead
restraining force were optimized as design variables in order to simultaneously minimize the objective
functions of fracture, wrinkle, insufficient stretching, and thickness varying. The results showed that
this approach is more effective and accurate than the traditional finite element analysis method and
the trial-and-error procedure. Non-dominated sorting GA (NSGA-II) was used by Umeonyiagu [23]
for multi-objective optimization of the flexural and tensile strength of bamboo-reinforced concrete
material. The optimization objectives were the maximization of flexural and tensile strength, as well as
the minimization of cost. The research results showed that the Pareto optimal solution would be an
effective design guide for engineers for the optimal design of structures using the cost, and flexural and
tensile strength of bamboo-reinforced concrete material as design parameters. Yang [24] used NSGA-II
to obtain optimum process parameters during stainless steel 316L hot-wire laser welding. During the
optimization process, NSGA-II was employed to search for multi-objective Pareto optimal solutions
based on ensemble metamodels. The verification tests indicated that the obtained optimal process
parameters were effective and reliable for producing the expected welding results. Han [25] conducted
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a multi-objective optimization of a corrugated tube with a multi-channel twisted tape (CMCT) to obtain
the optimal performance using RSM and NSGA-II. In Li [26], an efficient optimization methodology
via the Taguchi method, RSM, and NSGA-II was proposed to optimize a multi-objective problem in
the fiber-reinforced composite injection molding process. The results show that RSM can establish
efficient predictive models for finding the product quality optimum. Furthermore, the optimum design
parameter values determined by NSGA-II were superior to those of the Taguchi method.

The main objective of this study is to carry out an inverse analysis and multi-objective optimization
of an ISF process base on the experimental. To that end, a series of experiments are conducted following
the BBD for developing RSM and BPNN models with the tool diameter, spindle speed, step depth,
and speed rate as the inputs, and the forming angle and thickness reduction as the outputs. Afterward,
the effects of the input process parameters on the performance measures are analyzed through the
graphs of the main and interaction effect plots. Furthermore, a multi-objective (maximum forming
angle and minimum thickness reduction) optimization utilizing the desirability function method and
NSGA-II were performed based on the developed RSM models. For the multi-objective optimization
of the ISF process, unlike the traditional Taguchi method or RSM, which can only provide a single
optimization combination, the Pareto optimal solutions obtained by NSGA-II in this research will
provide engineers and designers with better guidance for actual production applications.

2. Materials and Methods

2.1. Materials and Experiments

The material used in this study is an AA5052-H32 sheet with a thickness of 1 mm. The chemical
composition of the AA5052-H32 alloy is given in Table 1. To obtain the flow stress–strain relation,
a series of uniaxial tensile tests were performed following the ASTM-8 standard procedure at a constant
tensile speed of 3 mm/min with a gauge length of 50 mm. All experiments were processed by a 3D
digital image correlation (DIC) system. Through the uniaxial tensile tests, the mechanical properties of
AA5052-H32 were obtained, as presented in Table 2.

Table 1. Nominal and actual chemical composition of AA5052-H32 alloy (%).

Composition Cr Mg Si Cu Mu Zn Fe Al

Nominal 0.18 2.23 0.14 0.01 0.05 0.001 0.31 Remaining
Actual 0.15 2.24 0.25 0.10 0.10 0.10 0.40

Table 2. Mechanical properties of AA5052-H32 alloy.

Direction 0◦ 45◦ 90◦

Young’s modulus [GPa] 69.53 69.39 70.22
Yield stress [MPa] 165.3 154.8 156.2

Ultimate tensile strength [MPa] 223.8 215.1 218.3
Elongation [%] 11.2 14.4 12.1

R-value 0.697 0.562 0.946

The ISF experiments were carried out using a 3-axis computer numerical control (CNC) vertical
milling machine (NEXMECCA Inc., Korea) in this research (Figure 2). At the same time, an AA5052-H32
specimen with a size of 130 mm × 130 mm was cut for forming. For lubrication, slide way oil with a
kinematic viscosity of 68 was used. Simultaneously, the profile forming tool path used in this study is
shown in Figure 3. All the experiments were completed following the experiment design, which is
detailed in Section 2.3.
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2.2. Formability and Thickness Reduction Measurements

In general, the maximum forming angle is used to evaluate formability in ISF process. In this
study, the model of varying wall-angle conical frustums (VWACF) [27–32] was used to obtain the
maximum forming angle. As shown in Figure 4, in the VWACF model, as the forming depth increases,
the forming angle gradually increases from 40◦ to 90◦. After forming until fracture, the maximum
forming angle ∅ can be obtained using the following formulas:

H = L−D + r (1)

∅ =
π
2
− arcsin

( H
r + R

)
(2)

where D is the depth when fracture happens, R is 50 mm, L is 38.3 mm, and r is the tool diameter.
The ISF experiments were performed for the VWACF model according to the experimental

conditions. As shown in Figure 4, forming was performed until a fracture occurred in the specimen at
the bottom of the model during each experiment. After the forming process, the sheet was cut by the
wire cutting to expose the cross-section. As shown in Figure 5a,b, the formed thickness t of all the
sheets was measured using a video microscope at a depth of 15 mm from the top plane. The thickness
reduction ∆t can be derived as follows:

∆t = 1− t (3)
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2.3. Experimental Design

BBD is one of the best experiment designs in RSMs and was used to optimize the production
process parameters in this research. As mentioned in the introduction, the main forming parameters
of the ISF process include tool diameter, step depth in the z-direction, sheet thickness, forming
temperature, forming speed (feed speed, spindle speed), forming tool path, and others. From previous
research reported in literature and from our own experience, it transpires that the tool diameter and
step depth in the z-direction have the greatest influence on the formability and thickness distribution
at room temperature. In addition, the forming time is a long-standing problem in the ISF process,
and it is also necessary to optimize the processing speed, while satisfying the quality requirements.
Therefore, in this study, the tool diameter, step depth in the z-direction, and forming speed were
selected as variable parameters. Their selected values and corresponding levels are shown in Table 3.
According to BBD, a total of 27 experiments were designed and the results of each experiment are
shown in Figure 6, while Table 4 shows the details of the design matrix of the parameters in the actual
units employed in the RSM along with the observed responses for forming angle ∅ and thickness
reduction ∆t. Furthermore, the forming force in the z-direction of the ISF process for the VWACF shape
under different combinations of variables was evaluated in the preliminary experiment. As shown in
Figure 7, the maximum vertical force component (Fz) for the AA5052-H32 sheet with a thickness of
1 mm is about 1000 N. At the same time, due to the significant influence of the feed speed and step
depth, the forming time ranges from 4 to 74 min.
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Table 3. Level of selected parameters and their levels.

Parameter Notable Unit

Levels

1 2 3

−1 0 1

Tool diameter A mm 6 8 10
Spindle speed B rpm 60 120 180

Step depth C mm 0.2 0.4 0.6
Feed rate D mm/min 400 800 1200
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Table 4. Design of experiments and measured responses.

Exp. No A B C D Maximum Forming
Angle (◦)

Thickness
Reduction (mm)

1 0 −1 −1 0 79.704 0.561
2 0 1 0 −1 80.969 0.536
3 1 0 1 0 79.974 0.559
4 0 0 0 0 79.541 0.569
5 0 1 0 1 79.974 0.561
6 −1 0 0 1 79.541 0.567
7 0 −1 0 1 81.169 0.542
8 0 1 1 0 81.169 0.548
9 1 −1 1 0 80.769 0.558

10 1 0 0 −1 81.169 0.551
11 −1 0 −1 0 80.704 0.558
12 1 0 −1 0 79.974 0.557
13 0 0 1 −1 81.169 0.541
14 1 0 0 1 79.974 0.565
15 1 1 0 −1 81.624 0.535
16 0 1 −1 0 80.704 0.548
17 0 0 −1 1 81.169 0.538
18 −1 1 1 1 80.704 0.545
19 −1 0 1 0 80.704 0.547
20 −1 −1 0 0 80.769 0.56
21 0 −1 1 0 80.704 0.552
22 0 −1 0 −1 81.169 0.54
23 0 0 −1 −1 79.704 0.563
24 −1 −1 −1 −1 79.974 0.558
25 1 0 −1 1 79.974 0.55
26 −1 0 0 0 81.169 0.549
27 0 0 1 1 79.704 0.56

3. Modeling of Process

3.1. RSM Modeling

RSM is a type of statistical technique useful for the modeling of any output of interest as a function
of the contributing independent input variables. Following the RSM, an empirical relationship obtained
is generally a polynomial, which includes interaction terms:

Y = α0 +
k∑

i=1

αiXi +
k∑

i j=1

αi jXiX j +
k∑

i=1

αiiX2
ii + . . . (4)

where the parameters α are the regression coefficients, which are obtained using a least square error
minimization technique. A geometrical interpretation of the response function is its corresponding
response surface. Using the response surface, the variation in the responses or dependent variables with
respect to the independent factors can be presented graphically. The response surface analysis is then
carried out utilizing the fitted approximate surface. If the fitted surface is an adequate approximation
of the true response function, the analysis of the fitted surface will be approximately equivalent to that
of the actual process. In this study, the adequacy of the RSM models was checked through the analysis
of residual variances and coefficient of determination (R2).

The coefficients of the RSM regression equation (Equation (3)) were calculated using Design-Expert
software. The model equations for the responses (forming angle ∅ and thickness reduction t) to the
input parameters A, B, C, and D as listed in Table 2 are as follows:
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∅ = 80.63− 0.72A− 0.014B− 0.47C + 0.017D− 0.14A2 + 0.044B2
− 0.063C2

− 0.024D2

−0.077AB + 0.12AC− 0.035AD + 0.0044BC + 0.018BD− 0.015CD
(5)

t = 0.55 + 0.0075A− 0.001137B + 0.01C− 0.000206D + 0.00445A2 + 0.00174B2
− 0.00072C2

−0.00185D2 + 0.00131AB− 0.00262AC− 0.00189AD + 0.00195BC + 0.00171BD− 0.00116CD
(6)

The ANOVA values used to derive Equation (4) for the forming angle are shown in Table 5.
The F-value of 32.18 implies the model is significant and there is only a 0.01% chance that an F-value
this large could occur due to noise. The values in column Prob > F less than 0.05 indicate that the
model terms are significant, thus, A, C, and AA are significant model terms. In this study, four types of
relational expressions dependent on each parameter were constructed—linear, quadratic, 2FI, and cubic.
The adequacy measures included, R2, adjusted R2, and predicted R2, are shown in Table 6. All the
adequacy measures are in logical agreement and indicate a significant relationship. The ANOVA
results for the forming angle model show that the quadratic model captures the best the effect of the
four forming parameters (tool diameter, spindle speed, step depth, and feed rate), which, along with
the interaction effects of the four parameters, are significant model terms. According to the ANOVA
results, all the developed regression models are adequate for quantifying the relationship between
process factors and corresponding responses.

Table 5. ANOVA for forming angle model.

Source Df Sum of
Square

Mean
Square F-Value P-Value

Prob > F Significant

Model 14 10.0953 0.72109 32.18 <0.0001 Significant
A 1 5.8935 5.89345 263 <0.0001 Significant
B 1 0.002 0.00201 0.09 0.769
C 1 2.9176 2.91762 130.2 <0.0001 Significant
D 1 0.0039 0.00389 0.17 0.684

AB 1 0.0208 0.02081 0.93 0.354
AC 1 0.0745 0.07445 3.32 0.093
AD 1 0.0067 0.0067 0.3 0.594
BC 1 0.0001 0.00009 0 0.949
BD 1 0.0015 0.0015 0.07 0.8
CD 1 0.0012 0.00115 0.05 0.824
AA 1 0.1071 0.10713 4.78 0.049 Significant
BB 1 0.0091 0.00906 0.4 0.537
CC 1 0.0165 0.01645 0.73 0.408
DD 1 0.0024 0.00242 0.11 0.748

Residual 12 0.2689 0.02241
Cor Total 26 10.3642

Table 6. Model summary for forming angle response.

Source Std. Dev R Squared Adjusted R
Squared

Predicted R
Squared Press Suggested

Linear 0.164015 0.942897 0.932515 0.91355 0.895982
Quadratic 0.149696 0.974054 0.943784 0.881749 1.225576 Suggested

2FI 0.167485 0.956695 0.92963 0.881063 1.232687
Cubic 0.173 0.997112 0.924919 Aliased

Table 7 shows the ANOVA results for the thickness reduction model, where the F-value of 17.48
implies that the model is significant. For the thickness reduction, A, C, and AA are significant model
terms. Adequacy measures, R2, adjusted R2, and predicted R2 are shown in Table 8, which shows the
quadratic model is also the best for the thickness reduction.
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Table 7. ANOVA for thickness reduction model.

Source Df Sum of
Square

Mean
Square F-Value P-Value

Prob > F Significant

Model 14 0.00238 0.00017 17.47566 <0.0001 Significant
A 1 0.00065 0.00065 66.90042 <0.0001 Significant
B 1 0.000014 0.000014 1.463945 0.2496
C 1 0.00134 0.00134 137.9412 <0.0001 Significant
D 1 0.0000006 0.0000006 0.056772 0.8157

AB 1 0.000006 0.000006 0.615023 0.4481
AC 1 0.000037 0.000037 3.829763 0.0740
AD 1 0.0000195 0.0000195 2.007373 0.1820
BC 1 0.000018 0.000018 1.870631 0.1965
BD 1 0.000014 0.000014 1.399562 0.2597
CD 1 0.0000066 0.0000066 0.674061 0.4276
AA 1 0.0001 0.0001 10.41962 0.0072 Significant
BB 1 0.000014 0.000014 1.429612 0.2549
CC 1 0.000002 0.000002 0.219143 0.6481
DD 1 0.000014 0.000014 1.48132 0.2470

Residual 12 0.000117 0.0000097
Cor Total 26 0.002495

Table 8. Model summary for thickness reduction response.

Source Std. Dev R Squared Adjusted R
Squared

Predicted R
Squared Press Suggested

Linear 0.004302 0.836777 0.8071 0.753348 0.000615
Quadratic 0.003118 0.953245 0.89869 0.752982 0.000616 Suggested

2FI 0.004214 0.886135 0.81497 0.688526 0.000777
Cubic 0.00125 0.999374 0.983716 Aliased

3.2. Parametric Influence

3.2.1. Analysis of Forming Angle Effect on Process Parameters

The relationships between the forming angle and four forming parameters are shown in Figure 8a–c.
Normal probability plots of residuals for forming angle are shown in Figure 8a. It was observed that
the residuals were normally distributed as most of them were clustered around the straight reference
line. It was observed that the regression model fitted the observed values fairly well. Figure 8b shows
the perturbation plot of the four factors influencing the forming angle response. The perturbation
plot is an important diagrammatic representation to compare the effects of all factors at a particular
point in the design space. The response is plotted by changing only one factor over its range while
holding other factors constant. From Figure 8b, as the results show, the input parameters tool diameter
and step depth have a significant effect on the forming angle; the tool diameter has the most effect
on the forming angle. The plot of the experimental responses versus predicted responses shown in
Figure 8c demonstrates that there is a very good correlation between the observed value and the values
predicted by the model.

Figure 9 shows the three-dimensional contour plot of the effect of each parameter on the forming
angle. Each plot shows the effect of two process variables within their experimental study ranges
with the other variable fixed at the central point values. Combined with Figure 8b, the experimental
results prove that a smaller tool radius enables a higher forming angle than can be achieved by a larger
one. In the case of a small tool radius, there is a highly concentrated zone of deformation that causes
high strain and leads to better formability. It is also found that a decrease in step depth cause a higher
forming angle. This is because a larger step depth will generate a pulling effect caused by a large
tensile force along the wall of the formed ISF part, which will compromise the stabilization effect from
the bending in the contact area. The impact of the tool on the sheet resulting from the high speed
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movement of the tool will make the pulling effect even more pronounced. However, the forming time
will increase as the step depth decreases; thus, a smaller step depth should be used within a reasonable
range in the tool path control and optimization.
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In addition, the feed rate and spindle speed are found to have almost no significant effect on
the forming angle in this case. Usually, the forming angle increases along with the forming speed
due to heating caused by the relative motion and friction between the tool and the blank. However,
in this work, the spindle speed and feed rate are not high enough to cause significant heating effects to
improve the forming angle.

3.2.2. Thickness Reduction

The relationships between the thickness reduction and forming parameters are shown in
Figure 10a–c. Normal probability plots of residuals for the thickness reduction demonstrate that
they were normally distributed, as shown in Figure 10a. From Figure 10b, the input parameters tool
diameter and step depth have a significant effect on the thickness reduction, while the step depth has
the largest effect on the thickness reduction. The plot of experimental versus predicted responses
shown in Figure 10c demonstrated that there is also a very good correlation between the observed and
the values predicted by the model.
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Figure 11 shows the three-dimensional contour plots of the effect of each parameter on the
thickness reduction. In addition, combined with Figure 10b, an increase in tool diameter increases the
thickness reduction. During the ISF process, the surface between the sheet and the tool is affected by
friction due to the sliding and rolling motion of the tool. The friction increases with the tool diameter
increase because the wider area is subjected to friction. This causes an increase in temperature on
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the interface of the tool and the sheet that enhances the ductility of the material. In such conditions,
tension increases in the material during forming and causes higher thickness reduction. It is also
found from the figure that an increase in the step depth causes higher thickness reduction. During
the ISF process, for higher value of step depth, the tension due to bending of the sheet material also
increases and causes a sudden reduction in thickness that restricts formability, which leads to further
thickness reduction.

Metals 2020, 10, x FOR PEER REVIEW 13 of 21 

 

such conditions, tension increases in the material during forming and causes higher thickness 
reduction. It is also found from the figure that an increase in the step depth causes higher thickness 
reduction. During the ISF process, for higher value of step depth, the tension due to bending of the 
sheet material also increases and causes a sudden reduction in thickness that restricts formability, 
which leads to further thickness reduction. 

 
Figure 11. Three-dimensional contour plots effect of each parameter on thickness reduction. 

At the same time, it can be noticed that the feed rate has almost no effect on the thickness 
reduction. That is because the range of feed rate changes is too small to cause the effects to change 
the thickness reduction. 

3.3. Multi-Objective Optimization Using RSM 

Table 9 shows the results of the response optimization solution including single-response and 
composite desirability obtained using Design-Expert software. From Table 7, the optimal result is 
achieved when the tool diameter is 6 mm, spindle speed is 120 rpm, step depth is 0.2 mm, and feed 
rate is 800 min/mm, respectively, with which the maximum forming angle is 81.711° and the 
minimum thickness reduction is 0.534 mm, respectively. 

Table 9. Result of optimization. 

Tool Diameter 
(mm) 

Spindle 
Speed 
(RPM) 

Step Depth 
(mm) 

Feed Rate 
(mm/min) 

Maximum 
Forming 
Angle (°) 

Minimum 
Thickness 

Reduction (mm) 
6 120 0.2 800 81.711 0.534 

3.4. BPNN Modeling 

A typical BPNN comprises an input layer, hidden layers, and an output layer (Figure 12). 
Depending on the nonlinearity and complexity of the model, it may have several hidden layers of 
neurons. The neurons in each layer add up the values delivered from the previous layer, process 
them, and pass them to the next layer of neurons. Finally, the final value obtained at the output layer 
is compared with the sample data obtained from the test, the error is analyzed, and the learning 
process is conducted by adjusting the weights of each neuron by the backpropagation method. 

Figure 11. Three-dimensional contour plots effect of each parameter on thickness reduction.

At the same time, it can be noticed that the feed rate has almost no effect on the thickness
reduction. That is because the range of feed rate changes is too small to cause the effects to change the
thickness reduction.

3.3. Multi-Objective Optimization Using RSM

Table 9 shows the results of the response optimization solution including single-response and
composite desirability obtained using Design-Expert software. From Table 7, the optimal result is
achieved when the tool diameter is 6 mm, spindle speed is 120 rpm, step depth is 0.2 mm, and feed
rate is 800 min/mm, respectively, with which the maximum forming angle is 81.711◦ and the minimum
thickness reduction is 0.534 mm, respectively.

Table 9. Result of optimization.

Tool Diameter
(mm)

Spindle Speed
(RPM)

Step Depth
(mm)

Feed Rate
(mm/min)

Maximum Forming
Angle (◦)

Minimum Thickness
Reduction (mm)

6 120 0.2 800 81.711 0.534

3.4. BPNN Modeling

A typical BPNN comprises an input layer, hidden layers, and an output layer (Figure 12).
Depending on the nonlinearity and complexity of the model, it may have several hidden layers of
neurons. The neurons in each layer add up the values delivered from the previous layer, process them,
and pass them to the next layer of neurons. Finally, the final value obtained at the output layer is
compared with the sample data obtained from the test, the error is analyzed, and the learning process
is conducted by adjusting the weights of each neuron by the backpropagation method.
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The weighted sum from the input layer to the hidden layer:

netk = b + wTx = bk +
∑

wkjx j (7)

where k and j are the number of hidden layers and input variables, respectively, b is a bias vector,
w is a weight between each neuron, and x is an input vector. The value derived in the above process
is applied to a nonlinearity activation function, thereby predicting the forming angle and thickness
reduction observed in the VWACF experiment. In this study, the sigmoid function and the identity
function are used as the activation function for the input layer, and the forming angle ϕangle angle can
be derived as follows.

Sigmoid : f (netk) =

{
2

[1 + exp(−2 ∗ netk)]

}
− 1 (8)

Identity : ϕangle = f (netk) = max(0, netk)= ϕpredicted (9)

Furthermore, the mean square error (MSE) was defined to compare the difference between the
predicted angle and the actual angle as follows:

E = 1/Q
{∑[

ϕactual(m) −ϕpredicted(m)
]2
}

(10)

where Q, ϕactual, ϕpredicted are the number of data, forming angle obtained in the experiment, and the
forming angle predicted by the neural network, respectively. In this research, the Levenberg–Marquardt
approach [33], which is one of the backpropagation techniques, was used to train the BPNN.
The Levenberg–Marquardt technique is given by the following formula:

wi+1 = wi − [JT J + µidiag
(
JT J

)
]
−1

JTn (11)

where w is the weight of each neuron, i is the number of repetitions, J is the Jacobian matrix, µ is the
damping factor, and n is the residual between the actual forming angle and the forming angle predicted
by the neural network. In this case, the Jacobian matrix is defined using the backward difference
method as follows:

J =
∂r(w)

∂w
=

r1 − ri−1

∆w
(12)

In Equation (10), µidiag
(
JT J

)
is a diagonal matrix extracted from the Hessian matrix, i.e., the matrix

of eigenvalues of the Hessian matrix, or the curvatures. The Levenberg–Marquardt technique was
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proposed to solve the step size problem in the Levenberg method, which was an improvement on the
Gauss–Newton method. In summary, the neurons of the BP network learn to minimize errors through
the above iterative process.

In this study, the tool diameter, spindle speed, step depth, and feed rate were applied as input
variables, and the forming angle and thickness reduction were used as output variables. After many
trials, a hidden layer with ten neurons was found to be the most suitable. Figure 13 shows the structure
of the BPNN used in this research.
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Figure 13. Architecture of the back propagation neural network (BPNN) for forming angle and forming
depth prediction.

In this model, we randomly selected 19 out of the 27 datasets for training (70% of total data)
and four validation set and testing (15% of data), respectively. Figure 14a,b shows the correlation
between the experimentally obtained forming angle and thickness and their BPNN-predicted values.
As shown in Figure 14a,b, the correlation coefficients for the forming angle and the thickness reduction
are 0.99769 and 0.97546, respectively, which are both close to the target of 1.
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Figure 14. Correlation among training set data: (a) forming angle and (b) thickness reduction.

The forming angle and thickness reduction predicted using the BPNN were calculated and
summarized in Table 10. When comparing the predicted forming angle and thickness with their actual
values, the average error was about 0.03% and 0.26%, respectively, which confirmed that the forming
angle and thickness reduction can be accurately estimated using the proposed model.
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Table 10. Results of BPNN.

Exp. No Actual Forming
Angle (◦)

Predicted Forming
Angle(◦)

Actual Thickness
Reduction (mm)

Predicted Thickness
Reduction (mm)

1 79.704 79.614 0.561 0.561
2 80.969 81.072 0.536 0.536
3 79.974 79.987 0.559 0.559
4 79.541 79.541 0.569 0.569
5 79.974 79.976 0.561 0.562
6 79.541 79.544 0.567 0.567
7 81.169 81.164 0.542 0.54
8 81.169 81.184 0.548 0.553
9 80.769 80.740 0.558 0.557

10 81.169 81.169 0.551 0.55
11 80.704 80.698 0.558 0.552
12 79.974 79.972 0.557 0.552
13 81.169 81.168 0.541 0.541
14 79.974 79.974 0.565 0.564
15 81.624 81.628 0.535 0.535
16 80.704 80.699 0.548 0.548
17 81.169 81.171 0.538 0.541
18 80.704 80.705 0.545 0.546
19 80.704 80.845 0.547 0.549
20 80.769 80.826 0.56 0.559
21 80.704 80.695 0.552 0.554
22 81.169 81.161 0.54 0.54
23 79.704 79.705 0.563 0.562
24 79.974 79.962 0.558 0.558
25 79.974 80.004 0.55 0.551
26 81.169 81.159 0.549 0.549
27 79.704 79.602 0.56 0.557

4. Multi-Objective Optimization

The objective of this research was to achieve the minimum thickness reduction while maximizing
the forming angle in the ISF process for the AA5052 alloy. These multi-objectives can only be achieved
through multi-objective optimization. Because changing one objective necessarily affects another
objective, optimization does not have a single solution, but rather a series of solutions on a Pareto front
called the non-dominated solutions [34]. The Pareto front solutions are efficient because moving away
from the Pareto front in order to improve one objective would lead to making one or more objectives
worse off. The Pareto front provides a convenient choice for practical applications, which could be used
to select an optimal solution depending on the requirement of the part to be formed in the ISF process.

4.1. GA for Optimal Pareto Front

GAs are computational models developed to mirror the evolution of the natural world and are
global optimizers [35,36]. In the GA model developed for this study, the process input parameters
(tool diameter, step depth, spindle speed, and speed rate) constitute the genes (chromosomes). Various
combinations of the genes (chromosomes) constitute a population. The GA procedure involves
first generating an initial population and then using the fitness function to assess the fitness of the
population members. After the assessment, the most suitable population members are selected for
transfer to the next generation. Usually, about half of the initial population is chosen for this purpose.
The selected population undergoes cross breeding and mutation in the second generation, and during
the process, the population size is culled back to the initial size. Similarly, half of the population of
the second generation will be chosen to propagate to the next third generation based on their fitness.
The population regeneration process occurs again in the third generation through cross breeding and
mutation. The process continues until the optimum or close to the optimum solution is achieved.

A variant of the GA procedure for multi-objective optimization called the non-dominated sorting
genetic algorithm II (NSGA-II) is used in this research. As shown in Figure 15, the evaluation of the
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fitness of the population members in NSGA-II is done using a fitness function, which relates the input
parameters to the outputs, given by Equations (4) and (5) in this research. The RSM-NSGA-II algorithm
multi-objective optimization system is shown in Figure 16.Metals 2020, 10, x FOR PEER REVIEW 17 of 21 
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4.2. Optimization Procedure Based on NSGA-II Algorithm

The objectives of the NSGA-II optimization algorithm in this work were the maximization of
the forming angle and minimization of the thickness reduction in the ISF process. The upper (1)
and lower (−1) levels of the experimental input parameters tool diameter, spindle speed, step depth,
and speed rate were used as the limits of the GA algorithm. The population size used by the GA
was 50, while the crossover and mutation rates were set at 0.8 and 0.01, respectively. The maximum
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number of generations was set to 500 in order to ensure that the algorithm runs to completion.
The optimized Pareto front obtained after 102 iterations of the GA is shown in Figure 17, while detailed
results of the 18 solution sets are shown in Table 11. Each point from Figure 17 represents a specific
optimal solution, and the corresponding input parameters in Table 11 can be selected according to the
requirements of the part geometry with a desired forming angle and thickness reduction. For example,
the forming condition which was maximum forming angle 81.73◦ and thickness reduction 0.535 mm is
corresponding to solution no. 1 in Table 11, tool diameter is 6 mm, spindle speed is 159 rpm, step depth
is 0.2 mm, and feed rate is 1169 mm/min. It can be seen that the difference between the maximum and
minimum optimal value of the forming angle was 2.39, while the difference between the maximum
and minimum optimal value of thickness reduction was 0.04, respectively.
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Table 11. Optimal parameter combination by Pareto front.

Solution No. A (mm) B (rpm) C (mm) D (mm/min) Forming Angle (◦) Thickness
Reduction (mm)

1 6 159 0.2 1169 81.733 0.535
2 6 86 0.6 715 80.510 0.559
3 10 176 0.6 775 79.339 0.572
4 6 165 0.5 1099 81.074 0.551
5 6 159 0.4 1153 81.184 0.548
6 8 161 0.6 873 80.277 0.560
7 7 150 0.6 1160 80.590 0.556
8 9 93 0.5 624 80.002 0.561
9 8 162 0.6 825 80.184 0.560
10 6 147 0.2 1165 81.634 0.537
11 7 174 0.5 1153 80.772 0.555
12 10 63 0.5 529 79.729 0.568
13 6 89 0.5 915 80.876 0.554
14 10 73 0.4 630 79.854 0.565
15 7 169 0.4 1150 81.236 0.545
16 6 159 0.3 1161 81.578 0.539
17 10 163 0.6 746 79.407 0.570
18 9 163 0.6 585 79.554 0.568

4.3. Comparison between NSGA-II and RSM

As shown in Table 12, the optimal result from RSM is similar to the first row of the Pareto
results shown in Table 11. However, compared to the optimization using the NSGA-II algorithm,
the optimization using the RSM method does not produce a Pareto front. It is important to mention
here that the Pareto optimal solutions can provide the maximum forming angle for a specified value
of deformed sheet thickness reduction of a metal part to be formed in ISF. Conversely, because of its
limitations, the optimal values obtained through RSM can mislead designers and engineers.
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Table 12. Comparison between the optimal results using the RSM and the genetic algorithm (GA).

Method Tool Diameter Spindle Speed Step Depth Feed Fate Maximum Forming
Angle (◦)

Minimum Thickness
Reduction (mm)

RSM 6 120 0.2 800 81.711 0.534
GA 6 159 0.2 1169 81.733 0.535

5. Conclusions

In this research, modeling the ISF process included for forming parameters (tool diameter, spindle
speed, step depth, and feed rate) using RSM and an ANN algorithm were conducted. Moreover,
this research has shown the applicability of GA to optimization of the forming parameters. The following
conclusions can be drawn:

• The relationships between the output (forming angle and thickness reduction) and input parameters
were established by RSM. According to the results, it was found that second-order polynomial
regression models offer a good fit for both the forming angle and the thickness reduction.

• The effect of each parameter on the forming result is analyzed by RSM. Among them, the tool
diameter and step depth of the tool have a significant impact on the forming angle and thickness
reduction. Increasing the tool diameter and step depth lead the lower formability and pronounced
thickness reduction. However, the range of feed rate considered in this research was too small to
cause a significant change in the forming results.

• A BPNN was effectively used to model and predict the relationship between the parameters and
the response in the ISF process.

• Both RSM and NSGA-II can effectively be used for multi-objective optimization of the ISF forming
process. However, an optimal Pareto front solution from the NSGA-II can provide multiple choices,
which means it can offer a rational design guide for practical applications of the ISF process.

6. Future Works

FEM is employed in the manufacturing industry to predict the behavior of the formed sheet metal
component. However, there are many issues associated with FEA when it comes to simulating the ISF
process, in which problems such as the accuracy of the FEM results and the long analysis time require
more research. Simultaneously, tool path generation is a key topic in the ISF process. It is essential to
develop dedicated tool paths to improve the efficiency and accuracy of this process.
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