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Abstract: A new sintering method, namely ultrasonic assisted sintering (UAS), has been proposed
using mechanical heat converted from high frequency motion between particles. Pure aluminum
specimens with diameter of 5 mm and thickness of ~2 mm have been successfully sintered in two
seconds. Based on the thermodynamic analysis, the underlying heating mechanism is quantitatively
interpreted, which involves high-frequency interparticle friction and plastic deformation driven by
ultrasonic squeezing. Consequently, temperature rises rapidly at a speed of about 300 K/s, and the
maximum temperature reaches up to 0.9 times of melting point of the aluminum during UAS.
The sintered specimens have a high density of dislocations, under the combined effects of dislocations
and undulating stress field, volume diffusion coefficient for sintering increases by several orders of
magnitude, therefore, rapid densification can be accomplished in seconds. In addition, the sintered
aluminum has ultrahigh nanohardness (~1.13 GPa), which can be attributed to the hierarchical
structure formed during UAS process.

Keywords: ultrasonic assisted sintering; high-frequency friction; high-frequency plastic deformation;
rapid densification

1. Introduction

Sintering is one of the most economic and widely used technologies to fuse particles into bulk
form. Over the past decades, the quest for a more efficient sintering process has lent lots of impetus
to the development of new sintering methods [1,2]. Pressure assisted sintering, such as hot pressing
and hot isostatic pressing, enables processing temperatures at level of about 200–400 degrees Celsius
lower than conventional pressureless thermal sintering, and sintering time can be reduced to several
hours under the assistance of pressure [3,4]. Field assisted sintering technology (FAST) mainly utilizes
interparticle joule heating as internal heat source, take the representative spark plasma sintering (SPS)
for example, it exhibits a high heating rate to the order of ~1000 K/min. As a result, densification rate
is greatly accelerated, and sintering time is dramatically reduced to several minutes [5–7]. However,
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sintering at high temperatures even lasting for minutes could lead to severe grain coarsening, and lose
the benefits of initial fine microstructure before sintering [8,9]. Therefore, great efforts are continuously
devoted to the development of faster sintering methods.

Friction occurs whenever two solid bodies slide against each other, mechanical work is applied
against the friction. As a result, partial of the mechanical work are dissipated in the form of friction
heat [10]. To utilize the frictional heat, sliding speed and frequency need to be increased to improve
efficiency of local energy supply. Ultrasonic vibration is the vibration beyond those audible to human
ear, that is, at frequency greater than 20 kHz [11], under such high frequency, heat can build up
readily [12]. Hence, many ultrasonic vibration relevant technologies have been developed and applied
in various industrial processes, such as ultrasonic machining, ultrasonic welding, and ultrasonic
forming [13,14]. During the processing, high-frequency vibration could drive the adjacent components
to rub against each other, friction of the contacting surfaces raise the temperature of the sliding bodies,
which facilitate the mechncial processing [15–18].

Recently, ultrasonic vibration has been introduced into powder consolidation, known as ultrasonic
powder consolidation or ultrasonic powder compaction. These techniques are primarily based on
vibratory repacking of powder to produce green compacts with low relative density at a level of about
80~90% [19,20] and need external assisted heat for further densification sintering, no interparticale
fusing was involved during the ultrasonic consolidation process [21–23]. Aluminum alloy has relative
low melting point therefore needs relative small amount of energy to sinter. However, the presence of
stable Al2O3 layer on the aluminum powder is an adverse factor affecting the sintering process, which
makes aluminum difficult to sinter [24,25]. To fully exploit the frictioanl energy, a novel sintering
method—ultrasonic assited sintering (UAS)—has been developed in this study. Using pure alumium
particles, the underlying sintering mechanism has been quantitatively illuminated. The aluminum can
be sintered in two seconds employing the friction heat under the assistance of local plastic deformation,
and a high density of dislocations is retained and hierarchical structure is formed. As a result, the
obtained aluminum sample has much higher hardness compared with coventional aluminum.

2. Materials and Methods

Ultrasonic assisted sintering was performed using a specially modified ultrasonic welder (Branson
2000X, Branson ultrasonic, St. Louis, MO, USA), which was equipped with a large-powder execution
device 4000 W and high resolution recording system (~2.5 µm in displacement and ~1 ms in time).
During the sintering process, force and displacement were recorded by S-beam load cell and encoder
integrated in the equipment. As shown in Figure 1, low frequency electricity (60 Hz) was converted to
high frequency electricity (20 kHz) by power supply. Through a piezoelectric transducer, the high
frequency electricity was transformed into ultrasonic vibration. Then, the vibration amplitude was
improved by a booster. And, the high frequency vibration was delivered by punch to the aluminum
powder filled in the cylindrical cavity of the mold. Load was applied by a pneumatic cylinder mounted
on the top of the ultrasonic device. Four levels of pneumatic cylinder pressures: 300, 400, 500, 600 kPa
were selected, sintering time were set as 2 s to ensure fully loading. During sintering, temperature rise
was measured using a thermocouple embedded in the bottom of the powder.
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Morphology of the powder was observed using scanning electron microscope (SEM ZEISS SUPRA 
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were measured, at least three tests were performed for each sintering parameter, relative density was 
calculated with reference to the theoretical density of cast aluminum ρth = 2.7 g/cm3 [26]. Structure of 
the sintering specimen was detected using X-ray diffractometer (Rigaku Ultima IV, Rigaku, Japan). 
Microstructure was observed using SEM equipment after surface polishing and electrolytic etching, 
and fine structure was characterized by a transmission electron microscope (TEM JEM–3200FS, JEOL, 
Japan) equipped with a 300 kV field emission gun. To explore the mechanical properties, 
nanoindentations were conducted using a nanoindenter (Hysitron TI 950, Hysitron, United States). 
At least 10 indent tests were performed for each specimen, the conventional aluminum provided by 
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implies high densification capability of the newly developed UAS method. 
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Figure 1. Schematic diagram of the ultrasonic assisted sintering (UAS) apparatus.

Gas atomized pure aluminum powder with commercial purity was used for the sintering test.
Morphology of the powder was observed using scanning electron microscope (SEM ZEISS SUPRA 55,
Carl Zeiss AG, Germany). Based on the Archimedes principle, densities of the sintered aluminum
were measured, at least three tests were performed for each sintering parameter, relative density was
calculated with reference to the theoretical density of cast aluminum ρth = 2.7 g/cm3 [26]. Structure of
the sintering specimen was detected using X-ray diffractometer (Rigaku Ultima IV, Rigaku, Japan).
Microstructure was observed using SEM equipment after surface polishing and electrolytic etching, and
fine structure was characterized by a transmission electron microscope (TEM JEM–3200FS, JEOL, Japan)
equipped with a 300 kV field emission gun. To explore the mechanical properties, nanoindentations
were conducted using a nanoindenter (Hysitron TI 950, Hysitron, United States). At least 10 indent
tests were performed for each specimen, the conventional aluminum provided by Hysitron company
was selected as the standard sample for hardness comparison.

3. Results and Discussion

3.1. Ultrasonic Assisted Sintering Process

Figure 2a presents morphology of the gas-atomized pure aluminum particles, most of the particles
have spherical shape, and some satellite particles with small tail can be found. Diameter of the particles
are measured, which are ranging from 2 to 80 µm, then the average diameter is calculated to be ~8 µm.
Figure 2b displays a typical bulk aluminum specimen sintered at pneumatic pressure of 600 kPa,
the specimen has diameter of 5 mm and thickness of ~2 mm, the shiny polished surface implies high
densification capability of the newly developed UAS method.
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Figure 2. (a) Morphology of the original aluminum powder. (b) Bulk aluminum specimen sintered by
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The aluminum particles were filled into the mold with height of 6 mm, load was applied by the
pneumatic cylinder. Figure 3a shows the load–time curves during UAS process, the load increases
gradually over time until a flat stage with full load achieved. As expected, the full load increases with
the preset pneumatic pressure. To be specific, the full load increases from 952 to 1855 N when the
pressure increase from 300 to 600 kPa. Based on the extracted full load, nominal stress applied on the
particles can be calculated using equation σn = F/A, here F is the full load, A is cross-section area of the
punch. The calculated nominal stress ranges from 48 to 94 MPa (see Table 1), relatively higher than
that normally used in field assisted sintering [7]. Figure 3b presents resultant shrinkage curves of the
aluminum samples during sintering, different from load–time curves, there are several fluctuations
during shrinkage. For example, under pneumatic pressure of 600 kPa, after the initial loose particles
repacking stage driven by the gradually increasing load, a significant shrinkage step, start from about
1.1 s, can be observed. Careful observation reveals another small shrinkage step that occurs at about
1.4 s. The shrinkage steps indicate that certain internal events can expedite the shrinkage rate in the
later stage of sintering. Under smaller pressure, the shrinkage fluctuations are less distinct, suggesting
that the densification is a stress dependent process during UAS.
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UAS process.

Table 1. Full load, nominal stress, density and temperature of the ultrasonic assisted sintering process.

Pneumatic
Pressure (kPa) Full Load (N) Nominal

Stress (MPa)
Density
(g/cm3)

Relative
Density (%)

Temperature
(◦C)

300 952 48 2.59 ± 0.03 96.0 223

400 1254 64 2.61 ± 0.03 96.5 276

500 1575 80 2.63 ± 0.06 97.6 379

600 1855 94 2.69 ± 0.01 99.6 621

As shown in Figure 4a, density of the sintered aluminum increases with the pneumatic
pressure from 2.59 to 2.69 g/cm3, attaining 99.6% of the theoretical density, that is, near-full-density
sample can be obtained by UAS. It demonstrates a remarkable sintering ability of the UAS method.
To explore the underlying mechanism, temperatures were in-situ measured during sintering process
(see Supplementary Figure S1). The maximum temperatures are extracted and shown in Figure 4b,
telling that significant temperature rise takes place during the ultrasonic compaction process.
The maximum temperature T increases with the preset pneumatic pressure, specifically, T increase from
223 to 621 ◦C, reaching up to 0.9 times of melting temperature Tm (Tm = 660 ◦C) of the pure aluminum,
which provides a basic thermodynamic requirement for the sintering. It is worth mentioning that
temperature rise can also be supported by the extruded strips near the ultrasonic punch during
sintering (as shown in Figure S2 of Supplementary Materials).
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measured maximum temperature T during ultrasonic sintering. Theoretical calculated temperature
rise caused by interparticle friction ∆Tf and plastic deformation ∆Td are also presented for comparison.

3.2. Structure of the Sintered Specimens

Figure 5a shows the X-ray diffraction (XRD) curves of the sintered aluminum specimens, where
typical diffraction peaks of face-centered cubic (FCC) structure can be observed. Closer examination
reveals decrease of the diffraction intensity and broaden of the peaks with the increase of the sintering
pressure, the reason might lay in the introduction of lattice strain under the applied high pressure
during UAS, which can be approximated by Cauchy and Gaussian functions [27]

(δ2θ)2

tan2θ
=
λ
d

(
δ2θ

tanθsinθ

)
+ 2〈e2

〉 (1)

where δ2θ is the measured integral breadth of diffraction peak, θ is the peak maximum position, λ is
the wave length, d is the average crystallite size, and e is the lattice strain. Furthermore, the lattice
strain is related with the dislocation density ρ through equation: ρ = 2

√
3〈e2
〉/(d× b), here b is the

Burgers vector (2.86 × 10−10 m for Al). It can be found that the dislocation density increases from
0.44 × 1014 m−2 to 2.54 × 1014 m−2 with the increase of applied pneumatic pressure (see Figure 5b),
the value is in the same order as that of aluminum sample obtained by severe plastic deformation
3.64 × 1014 [28], indicating severe plastic deformation has been involved during the UAS process, it is
also supported by the following microstructural observation results.
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Figure 5. (a) XRD patterns of the sintered aluminum specimens. (b) Dislocation density of sintered
specimens extracted from the XRD diffraction peaks.

Figure 6a shows the typical SEM microstructure of the sintered aluminum specimen after etching,
clear sintering trace can be easily identified as interparticle interface. Some debris can be found
located in the interface region, which is caused by the break of oxide layer during high frequency
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friction [29]. Figure 6b displays high resolution TEM image of the sintered aluminum, it is found
that metallurgical bond forms between adjacent particles, and a lot of dislocations are located near
the interface. A closer observation reveals that high-density dislocations entangle with each other,
leading to the formation of dislocation forest, wall, and cell structures [30], in agreement with the above
XRD results. Furthermore, many dislocations are emitted from stress concentration sites located at
interface where surface curvature changes direction, it suggests stress concentration plays an important
role during UAS process. In addition, it is found that the dislocation cell has a flattened shape with
thickness of ~700 nm, therefore, hierarchical structure with internal microscale grains surrounded by
outer nanoscale dislocation cells is formed in the UASed aluminum specimens.
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3.3. Mechanism of Ultrasonic Assisted Sintering

In the initial sintering stage after particle repacking, the ultrasonic-vibration punch pushes the
aluminum particles to rub against each other with high frequency in relatively small space, therefore
temperature rise will take place, consistent with our previous paper [18]. Besides, it is well known that
pure aluminum has a relatively low yielding stress at about 140 MPa, which is close to the applied
maximum nominal pressure 90 MPa during UAS process. Furthermore, due to small contact area
between spherical particles, much higher contact stress could be met in the interparticle region for the
aluminum. Therefore, local plastic deformation is inevitable involved during UAS [31], which is also
confirmed by the high density dislocations in Figure 6b. In addition, ultrasonic vibration exerted by the
punch drives the particles to squeeze against each other with ultrasonic frequency, leading to plastic
deformation occurs at high speed; therefore, most plastic deformation energy can be converted into
heat [32]. Consequently, temperature rise during ultrasonic sintering is the synergy result of interfacial
friction and local plastic deformation, this can be expressed by a simple relation:

T = T0 + ∆Tf + ∆Td (2)

where T0, ∆Tf, and ∆Td are the room temperature, temperature rise caused by friction, and plastic
deformation, respectively.

Frictional heating is concentrated in the real contact area between two bodies in relative motion,
based on the tribology theory, the problem can be treated as moving heat source on stationary body [33],
temperature rise caused by friction can be calculated using following equation.

∆T f =
2qa

κ
√
π(1.273 + Pe)

(3)
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where q is the rate of heat generated per unit area, q = µvσc; µ is the coefficient of friction, µ = 1.3
for pure aluminum [34]; v = Avib/t0 is the relative friction speed, calculated to be 3 m/s; Avib is the
vibration amplitude at about 75 µm; t0 is half period of the ultrasonic vibration (2.5 × 10−5 s), a is the
contact diameter (at nanoscale), κ is the thermal conductivity taken as 237 W/m·K [35]; Pe is Perclet
number, expressed as Pe = va/2k, k is thermal diffusivity (0.95 cm2/s), the Pe values are at order of
0.001 for different pressures. The calculated ∆Tf is 95 ◦C under the pneumatic pressure 300 kPa, and
gradually increases to 148 ◦C under 600 kPa, as shown in Figure 4b. These theoretical frictional
temperature rises are smaller than that obtained during Ti-based amorphous powder consolidation [18],
because aluminum has much larger thermal conductivity compared with Ti-based amorphous alloy
(6.7 W/m·K), interparticle frictional heat can be more easily transferred to the internal body of the
particles, reducing the heat concentration at interface region.

For the heat induced by high speed plastic deformation, temperature rise can be written as:

∆Td =
β

ρc

∫ ε

0
σdε (4)

where β is the thermal conversion efficiency of the mechanical energy (take as β = 0.8), σ is the
applied stress, which can be taken as normal stress, ε is the vibrational strain, given by hc/d, hc is the
contact depth variation and d is the average diameter of the particle, ρ is density, and c is specific heat
(921 J/kg·K) of aluminum [35]. Based on Equation (4), ∆Td are calculated to be ranging from 101 to
274 ◦C.

The sums of the theoretical calculated temperature rises are shown in Figure 4b for comparison,
it can be found that the theoretical calculation agree well with the experimental data, verifying the
above theoretical analysis. Note that the temperature gap at a high pneumatic pressure of 600 kPa
might be caused by intense work hardening during later stages of plastic deformation, which has not
been taken into consideration by the simple model. On the basis of above analyses, one can find that
the mechanical ultrasonic vibration under pressure is the determinant factor contribute to the internal
heating during the UAS process, which provides the driving force for the ultrafast friction and plastic
deformation, and allows rapid heat accumulation in the interparticle contact zone during sintering.
As a result, sintering can be accomplished in such short period of time.

Shrinkage rate curves of the UAS process are shown in Figure 7. In the early stage of sintering,
a sharp downward trend can be observed, indicating that shrinkage rate decreases greatly with the
increase of density. Thereafter, several rate rebounds appear in the curves, which echo shrinkage
displacement steps in Figure 3b. The larger the applied pneumatic pressure, the higher the intensity of
rebound. Combined with previous theoretical analysis, the UAS process can be divided into three
stages—I. particle rearranging, II. interparticle heating, III. final densification—as schematically shown
in the inset of Figure 7. In the first sintering stage, because the particles are loosely filled in the die
cavity at the beginning, there are plenty of room for the punch to move downward through particle
rearranging, therefore the shrinkage rate is high. With the increase of applied pressure, aluminum
particles gradually rearrange to denser state, thus the shrinkage rate decreases. To a certain state, the
particles need to squeeze against each other to rearrange further. Driven by the ultrasonic vibration,
high speed interparticle sliding takes place, frictional heating begins and reduces the resistance of
densification, manifested as the first shrinkage rate rebound [18]. When a more densely packed
state is arrived at without sliding space left between particles, the shrinkage rate drops once again.
With further increase of cylinder pressure, local contact stress between particles will climb to the
yielding point of aluminum. Under the vibrational stress, high-speed plastic deformation engenders
further heating up and therefore improves the densification rate, represented as the second shrinkage
rate rebound. In the final densification stage, with an increase of interparticle contact area, the local
contact stress decreases gradually. As a result, mechanical heating stops working and the densification
process slows down in the end. Overall, the excellent agreement between the shrinkage rate curves,
morphologies of sintered specimen, and theoretical analysis confirms that the sintering mechanism of
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UAS can be attributed to the mechanical friction assisted by plastic deformation at ultrasonic frequency,
and the whole sintering can be divided into three stages roughly.
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3.4. Hardness of the Sintered Aluminum Specimens

To explore mechanical properties of the sintered aluminum specimens, nanoindentation tests
were performed. Force–depth curves are shown in Figure 8a with standard aluminum also presented
for comparison, it can be found that the sintered specimens have much smaller penetration depth
compared with standard aluminum under the same force 8000 µN, and the depth decreases with
increase of sintering pressure. Using Oliver-Pharr approach [36], hardness data is extracted and
shown in Figure 8b, increases from 0.90 to 1.13 GPa, which is much larger than standard aluminum
(~0.4 GPa) [37]. It is known that hardness correlates linearly with strength [38], as expressed by equation
H = 3σ. The estimated yielding strength of the UASed pure aluminum reaches up to ~300–380 MPa,
close to yielding strength of AA2xxx-series aluminum alloy. Such high strength might be caused by the
hierarchical structure—i.e., microscale grains surrounded by nano dislocation cells—obtained during
the UAS process (Figure 6b), which has better efficiency to impede dislocation motion and results in
higher strength. In addition, the thickness of the aluminum oxide layer presented on the surface of
original particles is about tens of nanometers [24], volume fraction can be estimated to be ~2%. Due to
the short processing time, volume fraction changes little during UAS, therefore its effect on hardness is
negligible [39]. In-depth explanation for the high hardness needs further symmetrical investigation.
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Before closing, it is worth mentioning that many FAST variants have recently been developed
to improve efficiency of sintering further, such as medium-frequency electrical resistance sintering
(MF-ERS), it uses medium frequency electric current to achieve sintering within one second [40–42].
Compare with the MF-ERS method, UAS utilizes the mechanical energy as heat source; broadly, there
are three similarities between UAS and MF-ERS: (1) Short processing time in one or two seconds.
(2) Low processing pressures around 100 MPa with assistance of ultrasonic friction or medium-frequency
electrical energy to achieve very high densities. (3) Possibility of operating in the air. However, UAS
merges the consolidation and sintering into a single step, which need no pre-compaction. High density
of dislocations accumulated during plastic deformation are retained after sintering caused by the short
processing time and localized contact of the adjacent particles during UAS. As a result, the hardnesses
of UASed aluminum specimens are much larger. These further emphasize the great significance of
the newly developed UAS method. Due to internal interparticle heating, the maximum heating rate
can attain ~300 K/s, which is one order of magnitude higher than that of spark plasma sintering [43].
Such high heating rate provides the basic thermodynamic requirement for fast sintering. In addition,
during the high-frequency plastic deformation, numerous dislocations are generated underneath the
contact zone, and lots of vacancies are created by motion of dislocation kinks, which further reduces
the activation energy of diffusion by more than half. As a result, diffusion coefficient can be increased
by several orders of magnitude [44,45]. Besides, it is reported that volume diffusion can be further
accelerated by the ultrasonic force field [46,47]. The much larger diffusion coefficient offers kinetic
requirement for fast sintering. Consequently, rapid densification can be achieved in seconds during
UAS. Furthermore, fine structure of the original particle can be maintained during this fast sintering
process, and severe plastic deformation are introduced, leading to further grain refinement [48];
therefore, UAS provides a new approach to fabricate materials with hierarchical structure and better
mechanical performance.

4. Conclusions

In summary, using mechanical energy, a novel ultrasonic assisted sintering (UAS) method has
been proposed, and near-full-density pure aluminum specimens have been successfully sintered in
2 s. The rapid heating effect is caused by internal thermal energy converted from high-frequency
interparticle friction and plastic deformation driven by the ultrasonic punch, and the underlying
sintering mechanism is quantitatively interpreted accordingly. The densification process of UAS can
be divided into three stages—I. Particle rearranging, II. Interparticle heating, III. Final densification.
In addition, the sintered aluminum specimens have ultrahigh hardnesses due to the hierarchical
structure formed during sintering.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/10/7/971/s1,
Figure S1: Temperature rise during ultrasonic assisted sintering process, Figure S2: The snapshots showing
aluminum strips squeezed out from the gap between punch and mold during ultrasonic assisted sintering.
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