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Abstract: Wire and arc additive manufacturing (WAAM) provides a promising alternative to
conventional machining for the production of large structures with complex geometry, as well
as individualized low quantity components, using cost-efficient production resources. Due to the
layer-by-layer build-up approach, process conditions, such as energy input, deposition patterns and
heat conduction during the additive manufacturing process result in a unique thermal history of the
structure, affecting the build-up properties. This experimental study aims to describe the effects of
thermal cycling on the geometrical and material properties of wire arc additive manufactured Al-5356
aluminum alloy. Under consideration, that Al-5356 is a non-heat treatable alloy, a significant effect
on geometrical formation is expected. Linear wall samples were manufactured using pulsed cold
metal transfer (CMT-P) under variation of wire-feed rate, travel speed and interpass temperatures.
The samples were analyzed in terms of geometry; microstructural composition; hardness and residual
stress. Furthermore, the mechanical properties were determined in different building directions.

Keywords: direct energy deposition; WAAM; cold metal transfer; 5356-aluminum; temperature
distribution; mechanical properties

1. Introduction

In recent years, additive manufacturing (AM) of metallic components gained growing interest in a
wide range of industrial sectors such as civil engineering, turbine construction as well as automotive and
aerospace industry [1–4]. Thereby, the economic efficiency compared to conventional manufacturing
processes is mainly determined by high geometrical complexity and/or small series production [5,6].
In order to meet the requirements of different industrial sectors, a variety of AM processes, following
different approaches of material deposition, have been developed. These processes can mainly be
classified into powder-bed, powder and wire-feed processes [7]. Due to higher deposition rates
and significantly higher maximum part size, wire-based processes such as wire and arc additive
manufacturing (WAAM) are particularly suitable for near net-shape production of large components [8].
Furthermore, wire filler metals are more cost-efficient and available in a wider range of materials
compared to powder materials [9,10]. On the other hand, the geometrical accuracy and the attainable
component complexity are lower compared to powder-based processes [7].

During WAAM processing, the component is generated by a layer-wise deposition of molten
filler metal. Melting of the filler material is achieved using electric arc or plasma as a heat source,
thus combining well known arc welding processes such as gas metal arc welding (GMAW), gas tungsten
arc welding (GTAW) or plasma arc welding (PAW) with wire as the feedstock [11–13]. Due to a
simultaneously energy input and wire feed, the wire-feed orientation during GMAW is perpendicular
to the forming substrate, offering advantages in automation and productivity [14].
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Basic prerequisite for the application of AM technologies is that the resulting component properties
meet the requirements of the operation purpose. This applies in particular to mechanical properties
such as hardness, strength and ductility as well as to specific requirements such as corrosion resistance.
Due to the layer-by-layer build-up approach, both the WAAM process itself and the geometrical and
mechanical properties of the resulting components are directly related to the welding parameters and
the deposited material. Compared to conventionally manufactured components, the primary material
of AM components merely consists of weld metal. Accordingly, there is an increasing number of studies
on material-specific processability and component properties. Regarding the resulting geometry,
studies in [15,16] have shown an increase in surface waviness with increased energy input per length
unit, reporting the main dependencies of geometry formation on heat input and heat accumulation
during the AM process. Other than the effects on the resulting geometry, the welding process always
results in a heat treatment of the surrounding material during deposition, causing microstructural
changes in the current layer and the adjacent material. Depending on the deposited material, this can
lead a non-uniform distribution of the mechanical properties [17]. Regarding this, various studies
on WAAM of low-alloy and high-grade steels reported an increase in hardness and grain refinement
towards the top layers of the deposited structure [11,18,19]. Aiming to reduce the influence of thermal
cycling during WAAM and to actively affect the temperature–time regime during deposition as well
as the resulting grain structure, recent studies have explored the implementation of active cooling
systems [20–22]. However, most of the current research regarding the influence of temperature regimes
on the resulting properties during additive manufacturing is focused on steel and titanium alloys.
Research on WAAM using various aluminum alloys is mainly focused on microstructural evolution,
pore formation as well as the effects of different arc modes on microstructure characteristics and
mechanical properties [14,23–26].

Summarizing, the specific objective of this study is to investigate the heat accumulation and the
influence of different temperature-time regimes on the resulting component properties during wire
and arc additive manufacturing of Al-5356, providing a contribution on geometry formation and
mechanical properties.

2. Materials and Methods

The experimental setup is presented in Figure 1a. A Fronius CMT Advanced 4000 R welding
system (Fronius International GmbH, Wels, Austria) was used in CMT-Pulse mode with current
characteristics according to the deposited material. The welding torch was connected to a KUKA
KR22 6-axis robotic system (KUKA Deutschland GmbH, Augsburg, Germany). The presented studies
have been conducted using thin-walled specimen with a length of 300 mm and a build-up height of
approximately 140 mm. The process sequence is given in Figure 1b. Depending on the underlying
process parameters, 100–120 single pass layers were conducted during sample preparation.
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The experimental trials were carried out on Al-6082 base plates with dimensions of 400 × 125 × 15 mm3.
The base plate material was chosen as a typical aluminum alloy ensuring good weldability and thermal
conductivity. As the presented research is focused on the material and geometrical properties of the AM
component, the base plate material does not affect the findings. Prior to welding, organic residues on the
base plate were removed with acetone. The deposited wire was an Al-5356 solid wire electrode with a
diameter of 1.0 mm. The chemical composition of the used materials is given in Table 1.

Table 1. Nominal composition of welding wire and substrate material.

Alloy
Chemical Composition (wt%)

Al Mn Mg Si Fe Cu

Welding Wire: Al-5356 bal 0.15 5.0 0.05 0.15 -
Substrate: Al-6082 bal 0.4–1.0 0.60–1.2 0.7–1.3 <0.5 <0.1

Referring to previous findings, welding parameters such as wire feed and welding speed show a
great influence on the geometrical characteristics of the components processed by WAAM. In order
to further describe the influence of the process parameters on geometrical properties, thin-walled
samples were manufactured with two different settings of process parameters (Series A, Series B).
The process parameters of Series A and Series B were chosen to result in similar energy input per unit
length to ensure a comparable heat input during welding. Aiming to obtain different temperature
profiles during the build-up sequence, thin-walled samples were prepared using different intermediate
times (ti) between layers. Table 2 provides the welding parameters used for processing the samples.
For all specimens, the preheating temperature of the base plate was set at approximately 100 ◦C.
During build-up, a contact tube to work piece distance of 10 ± 3 mm was maintained. Pure Argon
(Ar ≥ 99.996%) was used as shielding gas with a flow rate of 14 L/min.

Table 2. Welding parameters for processing of samples.

Parameter Symbol Unit Series A Series B

Wire feed vW m/min 8 10
Welding speed vS cm/min 60 76

Voltage I V 15.5–16.5 16.5–17.5
Current U A 91–92 111–112

Time between layers ti s 30/60/120 30/60/120

In order to describe the occurring temperatures during welding, type-K thermocouples were
positioned at the base plate at a distance of 9.5 ± 0.8 mm to the fusion line. Further, an infrared
pyrometer (Optris CTlaser 3MH, Optris GmbH, Berlin, Germany) with a measuring range from 100 to
600 ◦C was used to determine the interpass temperature in the middle of the respective topmost layer
during build-up.

Prior to mechanical testing, the specimens were visually examined and measured regarding the
resulting height and width. To assess changes in geometry during build-up, a width measurement
was conducted at ten measurement points in building direction. Further, residual stress was analyzed
by means of X-ray diffraction in the Series A specimen using a cobalt radiation source. Several
measurements were taken in welding direction on the top layer and against the building direction.
To produce a homogeneous surface for the measurement, electrolytic polishing was performed in the
measuring area before testing. Stresses were determined from diffraction patterns by means of the
sin2Ψ method using the (hkl) crystalline plane {331} of aluminum at eight Ψ-angles between 144◦ and
154◦. The elastic constant was 0.5S2 = 18.93 mm2/N.

Samples for metallographic cross-sections, hardness measurement and tensile testing were
sectioned from the AM structures as depicted in Figure 2. The start and end sections of the thin-wall



Metals 2020, 10, 952 4 of 11

were discarded. Metallographic samples were polished and etched using 2% hydrofluoric acid for
macroscopic examination and Kroll etchant for microsections. Hardness measurements (HV1) were
conducted equidistant on the cross-sectional samples using hardness testing according to Vickers
(TUKON1202, ITW Test & Measurement GmbH, Esslingen, Germany). In addition, the micro hardness
(HV0.005) was measured at different areas of the microsections depending on the microstructure
composition. Samples for tensile testing were prepared and tested according to EN ISO 6892-1 standards
(Figure 2b) at an extension rate of 3.2 mm/min.
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Figure 2. Schematic representation of sample extraction (a) and dimensions of tensile samples according
to DIN 50125 (b).

3. Results

3.1. Temperature Formation During WAAM

In order to describe temperature related effects on structural and mechanical properties of additive
manufactured structures, temperature measurements were carried out on both the base plate and on
the top layer during build-up. This allowed the determination of the temperature–time regimes during
WAAM build-up with different intermediate times between layers. Due to similar energy input per
unit length, both regarded parameter settings (Series A, B) resulted in comparable temperature profiles.
Differences in the resulting geometry based on varying parameter settings, as described in Section 3.2,
only showed a minor influence on the heat distribution due to a similar heat input. For the purpose of
improved clarity, only temperature profiles of Series B are discussed below. However, the results can
be transferred to Series A likewise.

The resulting temperature-time regime at the base plate is shown in Figure 3. Particular differences
in temperature distribution can be detected during the first 10 to 15 build-up layers. For intermediate
times of 120 s and 60 s, the graphs show a slight decrease in the average temperature due to heat
dissipation at the base plate and the welding table. During build-up with an intermediate time of 30 s,
no significant decrease in the base plate temperature could be observed. Further progression of the
temperature profiles shows an increase in base plate temperature, reaching a peak at approximately
half of the build-up height. During further build-up the base plate temperature decreases. The visible
discontinuities in the curves for intermediate times of 120 s and 30 s near the top layers are caused
by process interruptions. Due to their location outside of the tensile samples gauge length, the
interruptions have no major effect on further results.
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Figure 3. Temperature distribution on the baseplate by example of Series B specimen.

The resulting temperature profiles on the base plate can be explained by basic mechanisms of heat
flow. The heat flow in the thin-walled structure is described by terms of heat conduction, convection
and thermal radiation. Neglecting the heat flow by thermal radiation, the heat flow at the base plate
is mainly determined by heat conduction and convection. The heat conduction in the thin-walled
structure is given by (1) with thermal conductivity λ, the cross-section area A and the wall height h:

.
Qh = −λ · A ·

dT
dh

(1)

Further, the heat flow to the environment due to convection is given by (2) with the heat
transfer coefficient η, the surface area of the wall S and the temperature difference between wall and
room temperature:

.
Qc = η · S · (TW − T0) (2)

Relating to the periodically growing wall structure, the wall height increases over time, leading to
a constant decrease of the heat flow

.
Qh. By contrast, the heat flow due to convection increases over

time as the wall surface increases, leading to a higher heat transfer to the environment. In combination,
the temperature on the base plate decreases with increasing wall height, after reaching a maximum at
a build-up height of about 70 mm.

The following Figure 4 shows the development of interpass temperature for the examined
intermediate times between layers during additive manufacturing. The data indicates a correlation
between interpass and base plate temperature during the first 30 layers. Further build-up leads to
increasing interpass temperatures, reaching saturation depending on the intermediate time between the
layers. Thereby, the determined interpass temperature substantially exceeds the base plate temperature
for intermediate times of 60 s and 30 s.Metals 2020, 10, x FOR PEER REVIEW 6 of 12 
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The results on temperature distribution identify that the measuring point is of key importance
in order to describe the heat distribution and correlations between energy input and occurring
temperatures. Based on the examined thin-walled structure, a direct influence of the continuously
changing geometry during additive manufacturing on the temperature distribution within the
component could be shown.

3.2. Effects on Resulting Geometry

During additive manufacturing of complex components with high requirements on geometrical
and material accuracy, information about the effects of process parameters on the resulting geometry is
of primary importance. Aiming to describe the influence of the underlying welding parameters at
different temperature–time regimes on the resulting geometry, the average layer height as well as the
wall width were determined at the final samples.

The material accumulation during WAAM is presented in Figure 5 by means of cross-section
micrographs taken from the center of the respective thin-walled structures. Overall, the micrographs show
a defined deposition pattern throughout the considered range of the building parameters. What stands
out is a periodical lateral shift of the layers at the Series A (ti = 30 s) sample. These shifts only show minor
influence on the overall waviness of the wall surface. By visual inspection, a more even surface could
be obtained using an intermediate time between layers of ti ≤ 60 s resulting in interpass temperatures
Ti > 125 ◦C. Further, a fine dispersed porosity could be detected in the Series A (ti = 120 s) sample.
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Figure 5. Cross-section micrographs of wire and arc additive manufacturing (WAAM) samples with
varying process strategies.

Previous findings reported in [27,28] have shown the influence of wire feed and welding speed on
the height and width of the resulting geometry. It was reported that the wall width increases at higher
wire-feed rates and decreases at higher welding speeds, whereas the wire feed shows a dominant
influence. Further, the layer height increases at higher wire feed and decreases at higher welding speed
with dominant influence of the welding speed.

Figure 6 compares the resulting layer height (Figure 6a) and the wall width (Figure 6b) as a
function of the intermediate time ti between each layer for both welding strategies considered. For both
welding strategies, the average layer height shows a steady increase with increasing waiting time
between layers. This indicates that higher interpass temperatures lead to a reduction in layer height.
On average, the layer height of Series A is about 0.15 mm higher compared to Series B, confirming the
dominant influence of the welding speed on the average layer height reported in [27]. Although the
difference in height is low in regard to single layers, the differences add up during build-up and may
cause process instability or errors. The wall width showed higher values for Series B specimen due
to the influence of a higher wire feed used compared to Series A specimen. Further, the wall width
was found to increase in the building direction, indicating an influence of the interpass temperature.
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Since the interpass temperatures increase in building direction (Section 3.1.), it can be concluded that
higher interpass temperatures lead to an increase in wall width. This also leads to comparatively high
deviations due to average determination on basis of ten measured values in building direction.
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The investigation of the resulting geometry indicated a different geometrical formation despite
similar energy input per length unit for the welding strategies considered and thus confirming a
different emphasis of the main welding parameters influence on geometrical formation during WAAM.
Accordingly, a verification of the geometry after any adaption of the process parameters is suggested.

3.3. Residual Stress and Mechanical Properties

The longitudinal residual stress was analyzed on samples of Series A in the as-welded condition
manufactured. Figure 7a shows the stress distribution determined on the top layer of the specimens.
The residual stress in welding direction varies along the measuring path from approximately −75 MPa
to +150 MPa. The individual scatter at discrete measuring locations from the sin2-calculation is in the
order of ±30 to ±50 MPa due to coarse microstructure. However, a clear influence of the intermediate
time between layers is not visible.

Metals 2020, 10, x FOR PEER REVIEW 8 of 12 

 

the scatter is smaller. The residual stress ranges from approximately 0 MPa to +50 MPa at an 

intermediate time of 120 s. A tendency of decreasing residual stress can be observed near the top 

layers at an intermediate time of 30 s. 

  
(a) (b) 

Figure 7. Residual stress in welding (a) and building (b) direction (Series A). 

Overall, the residual stress in the investigated WAAM aluminum structure appears to be of low 

magnitude. This can be explained by the heat conduction properties of the alloy in combination with 

its low yield strength. This leads to homogeneous temperature distributions during relatively fast 

cooling times. Further, the metal is relatively soft causing yielding of residual stress. These effects are 

also known from conventional fusion welding of aluminum alloys. 

The hardness test according to Vickers was conducted using cross-section samples from the 

bottom, middle and top part from the thin-walled samples (see Figure 2). The hardness distributions 

for different intermediate time between the layers in the as-build condition are given in Figure 8 by 

example of Series B specimen. Hardness values ranged from 66 to 72 HV1 showing no significant 

dependency on the build-up height and therefore stating independency of hardness values on 

temperature distribution. This result can be explained by the fact that the investigated aluminum Al-

5356 is a non-heat treatable alloy. 

 

Figure 8. Hardness distribution depending on build-up height and intermediate time between layers 

by example of Series B. 

Aiming to describe the tensile properties of additive manufactured Al-5356 depending on the 

investigated process settings, yield strength (Rp0.2), tensile strength and elongation were determined 

horizontally and vertically to the welding direction. The results on tensile properties can be compared 

in Figure 9. 

Figure 7. Residual stress in welding (a) and building (b) direction (Series A).

Figure 7b depicts the residual stress distribution at the side of the specimens, measured from
top layer downwards. The abscissa indicates the distance of the measuring point from the top layer
with positive values directing to the base plate. In addition, shown here are the residual stresses in
the welding direction. The residual stress magnitudes are more homogeneous than on the top layer
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and the scatter is smaller. The residual stress ranges from approximately 0 MPa to +50 MPa at an
intermediate time of 120 s. A tendency of decreasing residual stress can be observed near the top layers
at an intermediate time of 30 s.

Overall, the residual stress in the investigated WAAM aluminum structure appears to be of low
magnitude. This can be explained by the heat conduction properties of the alloy in combination with
its low yield strength. This leads to homogeneous temperature distributions during relatively fast
cooling times. Further, the metal is relatively soft causing yielding of residual stress. These effects are
also known from conventional fusion welding of aluminum alloys.

The hardness test according to Vickers was conducted using cross-section samples from the
bottom, middle and top part from the thin-walled samples (see Figure 2). The hardness distributions
for different intermediate time between the layers in the as-build condition are given in Figure 8 by
example of Series B specimen. Hardness values ranged from 66 to 72 HV1 showing no significant
dependency on the build-up height and therefore stating independency of hardness values on
temperature distribution. This result can be explained by the fact that the investigated aluminum
Al-5356 is a non-heat treatable alloy.
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Aiming to describe the tensile properties of additive manufactured Al-5356 depending on the
investigated process settings, yield strength (Rp0.2), tensile strength and elongation were determined
horizontally and vertically to the welding direction. The results on tensile properties can be compared
in Figure 9.
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Depending on the welding parameters and test direction, the average values of yield strength reach
115–120 MPa, ultimate tensile strength 254–277 MPa and elongation 14–28%. Therefore, all batches
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achieved both strength and ductility properties of wrought material (EN AW-5019 (F): Rm ≥ 250 MPa;
Rp0,2 ≥ 110 MPa; A ≥ 14%). What stands out is that tensile strength and elongation were generally
found to be lower for batches in vertical direction compared to horizontal samples (see Figure 9).
Especially at long intermediate times between layers, i.e., lower interpass temperatures, the elongation
showed up to 40% lower values in vertical direction. The higher deviation in the values for vertical
specimens from Series B welded with ti = 30 s can be attributed to fracture locations near the end
of the gage length and therefore measurement of elongation could contain errors. The result of an
anisotropic material behavior may be explained by an inhomogeneous microstructure at the fusion
line boundaries, resulting in less favorable conditions for the vertical load direction. On basis of the
microscopic examination shown in Figure 10, three distinct areas of different metallurgical properties
in the layer structure could be determined. Near the fusion line boundary, regions with a fine grain
microstructure and comparatively high micro hardness are formed (Figure 10a). By contrast, regions
below the interlayer boundary are characterized by coarse grain microstructure with an increased
formation of segregations (Al8Mg5) at the grain boundaries and lower hardness (Figure 10c). The grain
growth may be explained by the thermal influence of the following layer. An interlayer boundary
zone with a further increased occurrence of segregations can be identified (Figure 10b). In these
regions, primary stages and segregations merged at the grain boundaries as a result of comparatively
long heat exposure. Due to the difference in hardness, grain size and the formation of segregations,
these areas can act as metallurgical notches, thus affecting the mechanical properties in vertical loading
direction. The most consistent results regarding the anisotropic material behavior could be found for
Series B specimen with intermediate time between layers of 30 s. Although interpass temperature was
increasing during the built-up sequence, no distinct effect of sample allocation on the tensile properties
could be observed.Metals 2020, 10, x FOR PEER REVIEW 10 of 12 
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4. Conclusions

Within the underlying study, the effects of different temperature-time regimes during wire and
arc additive manufacturing of Al-5356 on both the geometrical and mechanical properties have
been systematically investigated. Linear thin-walled samples were built and analyzed with the
following conclusions:
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• Temperature profiles during WAAM processing indicated that the temperature distribution
is directly related to the geometry of the additive manufactured component. Due to a
continuously changing geometry, a non-steady temperature distribution during WAAM can
be assumed. However, steady geometrical build-up results can be expected by obtaining uniform
temperature fields.

• Although different process strategies, using the same energy input per length unit, lead to
comparable temperature distributions and cooling rates, they showed differences in the resulting
geometry of the component. An increase in wire feed and welding speed resulted in lower layer
height and increased wall width. Furthermore, higher interpass temperatures led to an increase in
wall width and lower layer height.

• Residual stresses in the top layer and on the surface of the wall specimen appeared of low
magnitude due to small temperature gradients combined with a comparably low yield strength of
the regarded material.

• Material properties were evenly distributed over the build-up geometry with values comparable
to AlMg5 wrought material. No significant dependency on the temperature-time regime during
processing could be detected. However, the mechanical properties, especially the elongation at
fracture, showed dependencies on the loading in relation to the build-up direction.
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