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Abstract: This contribution reports the effects of an ultrasonic-vibration assisted ball burnishing
process on the topological descriptors of nickel-based alloy Udimet R©720. This material is of high
interest for the transportation industry, and specifically for the aeronautical sector. Despite the
acknowledged necessity to finish this material to achieve excelling mechanical performances of
parts, surface integrity enhancement by means of plastic deformation through ball burnishing has
seldom been explored in previous references so far. In this paper, different surface descriptors
are used to report how the topology changes after ultrasonic-assisted ball burnishing, and how
burnishing conditions influence that change. The burnishing preload and the number of passes are
the only influential factors on surface change, whereas the feed velocity of the tool and the strategy
reveal not to be relevant on the result. Additionally, the extent to which the process successfully
modifies the objective surfaces is highly divergent depending on the original scale of the treated
surface. The assistance of the process with vibrations also shows that the resulting topologies are
characterized by a periodical pattern of repetitive peaks and valleys that are extended on the surface
with a higher frequency in comparison to the non-assisted process, which could influence in the
functional deployment of workpieces treated through it, and could deliver an advantage with regard
to its non-assisted homologous process.

Keywords: ball burnishing; ultrasounds; Udimet R©; base-nickel; surface topology

1. Introduction

Surface finish is one of the aspects of mechanical workpieces used to define their quality, not only
for the aesthetic appearance of the final piece but for the great importance it has in its in-service
performance. It is a decisive factor defining the expected resistance to wear and corrosion, and the
fatigue life that the part may present when subjected to dynamic stress. As described by Loh and
Tam (1988) [1], the surface texture is determined by all those irregularities that are the consequence of
the production process used to finish that surface. In other words, surface finish is the signature of
the process used to modify the engineering surface during the last stage of manufacturing. One of
the main groups of the finishing processes is made up of surface plastic deformation technologies.
Ball burnishing is included in that group. It manages to correct the surface by plastic deformation
by rolling a ball over the target surface while applying a preloaded force. Like this, the material
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located in the peaks is compressed, thereby reducing the surface texture amplitude descriptors and
reproducing the curved geometry of the ball in the newly generated surface, as a kind of copy effect
that characterizes the resulting surface. The mechanical state of the material that composes the surface
of the workpiece is also effectively modified [2].

Researchers agree on the fact that one of the main issues related to investigations about ball
burnishing is that the number of variables that define the execution of the operation are numerous.
Some of the most relevant ones are the burnishing force [3], the feed, the original texture state of
the target surface, the friction coefficient and the tool’s tip radius [4] or different lubrication/cooling
strategies [5]. Some of them are considered as objects of study, as shall be explained below.

The process is also cited for the positive effects that are simultaneously induced in terms of
residual hardening [6,7]. That is, the process is able to change the metallurgical state of the grains of the
metallic material that compose the surface of the workpiece, as proven by Rodriguez et al. (2012) [8],
and could also be able to enhance the surface integrity of materials subjected to severe processes,
such as friction stir welding [9]. For this reason, ball burnishing is a feasible candidate to treat the
workpieces of highly demanding and competitive industries, such as the aeronautical sector [10,11].
High safety requirements translate into rigorous quality controls, which take into account the finish
and the compliance with the tolerances of all the parts by means of traceable processes that show
high robustness and repeatability. In addition, the research and development of new materials set
the pace for the evolution of the sector. In this context, the 1940s witnessed the expansion of the
first nickel-based alloys for aeronautical applications [12]. Their excellent capability to maintain high
resistance at very high temperatures makes them best material choice for turbine blades and other
aerospace parts. One of the most extended nickel-based alloys is Udimet R©720, which is evaluated and
specified by the standard MSRR 7252. This metal presents one of the highest strength/temperature
ratios in the field of superalloys, and is hardened both by solid solution of molybdenum and tungsten,
and by precipitation of aluminium and titanium, forming intermetallic compounds [13]. On the
whole, it has not only an outstanding mechanical resistance/temperature ratio, but it also has good
resistance to corrosion and oxidation. It has also been cited for its resistance to crack growth at high
temperatures [14].

To further improve the performance of Udimet R©720 parts, this paper aims to analyze the effect
of the ball burnishing process on the surface texture of a ball-end milled part, as the application
of advanced surface techniques is one of the main ways to enhance the reliability of critical
components [15]. To do this, the 3D texture descriptors have been measured. The influences of the
following variables on the results were considered: burnishing force, number of passes, feed velocity,
the initial surface texture and the strategy that determines the order and direction of the passes. We
also intended to determine whether there is any significant interaction between the burnishing force,
number of passes and feed.

The process used in this work to modify surface integrity was an ultrasonic vibration-assisted
ball burnishing (VABB) executed through a tool developed and characterized by Jerez-Mesa et al.
(2018) [16]. Vibration assistance as a means of enhancing the execution of conventional processes has
already been successfully explored in numerous machining (e.g., drilling [17]) and plastic deformation
processes, as it delivers different positive effects on the surface integrity. In the case of the VABB
process, it has proven to be stable enough to deliver robust results and be feasible for expansion
to productive contexts [18]. In terms of material modification, the effects of VABB were previously
tested on AISI 1038 steel surfaces. Jerez-Mesa et al. (2018) [19] explained that VABB prevents surface
scratching and microdefects that could eventually act as stress concentrators, unlike the complementary
non-assisted version, thereby highlighting the positive effect of the process itself to favor ball rolling.
In this contribution, the effects of VABB are explained as a combination of three effects: surface texture
reduction; redistribution to a Gaussian state; and in some cases, reorientation of surface features.
The improvements delivered by vibration assistance are also related to a higher degree of residual
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work-hardening generated in comparison to the non-vibration assisted ball burnishing (NVABB)
process [20].

Regarding the nickel-based alloys such as the one on which this paper focuses, a literature
review shows that the application of VABB on this type of material has seldom been reported. In this
sense, Prevey et al. concluded in 2000 that the application of ball burnishing on 4-point bending
fatigue specimens made of Inconel 720 resulted in a 30% increase of the cyclic load bearing [21].
The same author concluded that BB showed superior results when compared to other typical finishing
processes, such as shot peening or laser shock peening, presenting deeper (to almost 1 mm) and
more stable residual stress in comparison to shot peening [22]. The same material subjected to ball
burnishing was studied by other authors. Lopez de la Calle et al. (2007) [23] highlighted that, due to
its ductile behavior, the maximum pressure eligible to ball-burnishing Inconel 718 surfaces should
not be higher than 12 MPa. Residual hardening of the superficial material on cylindrical specimens
was observed by Sequera et al. (2014) [24], especially for burnishing pressures higher than 20 MPa.
Klocke et al. (2009) [25] found a direct correlation of burnishing pressure with maximum residual
stress achieved in depth, 250 bar being the highest successful value. Nagarajan et al. (2017) [26,27]
introduced in the discussion the treatment of IN100 and RR1000 nickel-based alloys by ball burnishing.
Rain refinement was obtained and residual work hardening till the depths of around 400 µm
were observed.

Despite the advantage that ball burnishing can provide for the enhancement of nickel-based alloys,
previous references that deal with this topic are scarce. This work aims to characterize the surface
texture modification of Udimet R©720 ball-end milled surfaces by varying numerous ball-burnishing
process parameters. After an analytical and statistical study, we intended to determine the best
burnishing conditions in order to enhance the surface properties. The results obtained are of great
importance for Udimet R©720 manufacturers in order to optimize the designs of the final pieces and the
manufacturing processes, and to expand the knowledge related to surface modification of this group
of alloys by means of plastic deformation-based processes.

2. Materials and Methods

2.1. Sample Preparation

The raw material used was a 117-mm diameter cylindrical block of Udimet R©720. Its properties
and composition are listed in Tables 1 and 2, according to the datasheet of Special Materials
Corporation [28].

Table 1. Properties of Udimet R©720 alloy.

Property Units Value
25 ◦C 875 ◦C

Elongation % 4 17
Yield strength (0.2%) MPa 950 540

Tensile strength MPa 1100 665
Density g cm−3 8.08

Coefficient of expansion µm m−1 ◦C−1 12.24

Table 2. Material composition of Udimet R©720 in weight %.

Ni Cr Co Ti Mo Al W Zr C B

* 15.5–16.5 14.0–15.5 4.75–5.25 2.75–3.25 2.25–2.75 1.0–1.5 0.025–0.050 0.01–0.02 0.01–0.02

On one of the circular bases of the block, three different surfaces have been machined following
different routines to evaluate the effect of the original topology on the process results. These surfaces
were prepared through a milling process carried out by successive adjacent passes in the same direction
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with a 10 mm diameter hemispherical milling tool. To obtain the three different original topologies,
the lateral offset between passes ae was varied. Table 3 includes the machining parameters applied for
the operation.

Table 3. Milling parameters for the machining preparation of the three original surfaces.

Original Surface ae (mm) ap (mm) vc (m/min) fn (mm/rev)

S0
1 0.5

0.2 60 0.1S0
2 0.7

S0
3 1.1

2.2. VABB Tool

To perform the VABB operations, the tool presented in Figure 1a was used. As detailed by
Jerez-Mesa (2018) [16], the tool is made up of three different modules. A spring inside the tool
holder allows the regulation of the force exerted on the surface of the material proportionally to the
compression length, according to Hooke’s law. The intermediate module contains four piezoelectric
disks, which generate a vibration in phase with the alternate voltage that polarizes them. The last
module supports the burnishing ball and allows both preload force and vibration to be transmitted to
the workpiece. With this tool, it is also possible to work without vibration when the piezoelectric disks
are not excited.

Figure 1. (a) Basic structure of the VABB tool used for the experiments. (b) Overview of the distribution
of the 54 runs on the workpiece.

2.3. Design of Experiments

In this study, the influences of five factors were analyzed at three levels (Table 4). The values for
the levels were decided based on a preliminary set of tests deployed to have a new approach to the
issue, and so that the results obtained here could be compared to previous experiments applied on
other materials [19,20].

• Preload force (Fp). Static compression load exerted by the tool spring on the material surface at
the beginning of the process, and kept constant during the test.

• Number of passes (np). Number of iterations performed on the same study area. A greater
number of passes is expected to apply a greater plastic deformation in the affected area.

• Feed velocity (v f ). Linear speed at which the tool moves on the surface during the
burnishing process.
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• Original surface topology (S0). Surface finishing pattern obtained by different ball-end milling
routines, as explained above.

• Strategy (St). It represents the path followed by the tool to cover the study area in the number
of passes of each test, as represented in Figure 2. Of all three, only the bn90/0 contemplates a
change in the direction of the passes. In all cases, the lateral offset between passes is 0.3 mm.

Table 4. Factors and levels considered in the DOE to generate the Taguchi orthogonal array.

Factor Levels
1 2 3

Fp (N) 150 300 450
np 1 3 5

v f (mm/min) 300 600 900
S0 S0

1 S0
2 S0

3
St nb0 bn90/0 bn0

Figure 2. Representation of the path followed for each strategy depending on the number of passes.

Using a traditional factorial design to plan the experiments would involve a large number of
tests to evaluate the five factors at all three levels. In order to reduce them, the method described
by Taguchi (2005) [29] was applied, which minimizes the number of experiments while still being
demonstrative of the first order effects of all factors. Specifically, an L27 array was selected, which is
capable of evaluating up to 13 factors at 3 levels, with only 27 experiments. In this case, five factors
were included in the plan, and the degrees of freedom of the experimental design that were still
available were used to evaluate the second order influences of the pairs Fp ∗ np, np ∗ v f and v f ∗ Fp,
as is described in detail in Jerez-Mesa et al. (2018) [19]. Table A1 in Appendix A reflects the combination
of parameters applied for each run. It should be noted that the fact of being burnished with or without
vibration is not considered as a factor in the DOE. To compare the effects of both processes, two L27
matrices were actually used on the workpiece. Therefore, a total of 54 experiments were performed,
distributed in the study surfaces as shown in Figure 1b.

2.4. 3D Texture Parameters

The surface roughness has usually been characterized with the R parameters in 2 dimensions.
However, these values are biased, as they are based on roughness lines that do not represent the
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overall surface texture. Loh and Tam (1988) [1] pointed out that two similar values can be obtained
for completely different topologies, so that a bias in result assessment is much more likely to happen
with 2D parameters. In the specific case of ball burnishing, it must be considered that the roughness
perpendicular to the burnishing process shall always be greater than the one calculated on a parallel
profile, due to the high anisotropy of the generated surface. For all these reasons, using 2D parameters
to define burnished surfaces should be avoided if possible. That is why in this work the 3D texture
or S parameters are chosen to represent the surfaces resulting from the tests, with no risk of losing
information by neglecting the 2D R parameters. According to Dong et al. (1993) [30], the 3D roughness
analysis and visualization techniques not only allow obtaining a global analysis of the entire study
surface but also help to understand the frequent variation of the 2D parameters.

The S parameters can be classified in four main groups; namely: amplitude parameters that refer
to the height distribution of the surface, and it is the only parameter set with a direct correlation with
the 2D parameters; spatial parameters that define the directionality of the topology; hybrid parameters,
a mix of the amplitude and spatial sets; and the miscellaneous parameter that sets the angle of the
main direction of the texture pattern with the y-axis. The reader can find details about all of them in
the works developed by Dong et al. (1994) [31,32], and also a brief definition in Appendix B of this
manuscript. The S parameters calculations in this work follow the ISO 25178 standard.

The explained parameters were calculated on height datasets acquired for all burnished patches
with a CCS Prima Optical sensor for topographical measurements based on a chromatic confocal
system by STIL Marposs (France). As explained in Jerez-Mesa et al. (2018) [19], the size of the patch for
each kind of surface must be different so that the overall burnishing effects are sufficiently represented
on all original surfaces. Consequently, a 3 mm × 3 mm patch was acquired for the tests on the S0

1
surface, 4.5 mm × 4.5 mm for S0

2 and 6 mm × 6 mm for S0
3. The datasets were processed with software

SPIP 6.6.5 (Image Metrology A/S, Lyngby, Denmark) and the statistical analysis was performed
through Minitab 19.

3. Results Discussion

3.1. Initial Surfaces

Figure 3 includes the texture values obtained for each initial surface. All the amplitude and spatial
parameters grow from S0

1 to S0
3. The main amplitude parameters Sa and Sq show that by increasing the

lateral offset in the machining routine to perform the longitudinal ball-end milling passes, the scale
of the surface grows (Figure 3a). Additionally, the progressive increase of the spatial parameter Sal
indicates that the repetition frequency decreases; that is, the periodic peaks and valleys of the surface
are typical of a bigger-in-scale surface. In addition, it presents a greater difference in height between
the deepest valleys and the highest peaks (S10z). This trend confirms that S0

3 is the most abrupt starting
surface, while S0

1 is the smoothest one, although the all three values of the Sdr hybrid parameter are
well below 1%, meaning that all three machining routines end up in already finished surface topologies
(Figure 3b).

All three original surfaces are platykurtik but with an increasing trend of the kurtosis Sku value,
that being S0

3 the surface with Sku closer to 3 (Gaussian value) (Figure 3c). As for skewness Ssk,
the surface S0

1 shows the closest value to 0 and there is also an increasing trend through positive
values. As the offset set in the milling process grows, the material shifts to the peaks. It is worth
mentioning that all Sa and Sq values are related by a 0.84–0.86 ratio, agreeing with the relationship
established by King and Spedding (1982) [33] in quasi-Gaussian surfaces, as is the case. For this reason,
the simultaneous analysis of both values is redundant and the results of Sa shall be henceforth ignored
due to its lack of statistical essence, in favor of Sq, which refers to the standard deviation of the points
included in the dataset.
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Figure 3. 3D texture parameters of the original surfaces. (a) Amplitude parameters Sa, Sq and S10z,
and spatial parameter Sal . (b) Hybrid parameters Sdq and Sdr. (c) Surface skewness Ssk and kurtosis Sku.

3.2. VABB Results

In this subsection, the surfaces obtained after VABB are characterized and discussed. To that
effect, comments are organized and divided based on the triple effect of VABB described by
Jerez-Mesa et al. (2018) [19].

3.2.1. Surface Texture Reduction

To characterize how the scale of the surface is affected after VABB, the Sq, S10z, Sal , Sdr and Std
parameters are considered. Previous results exposed by Jerez-Mesa et al. (2018) [19] indicate that these
parameters are enough to define to what extent the surface is reduced. Figure 4 shows how they evolve
as the number of passes and preload force are increased, that is, as more plastic deformation can be
induced. The tests are shown so that results are grouped by the original surface topology. It can be
seen how Sq and S10z values gradually decrease as the plastic deformation increases. Despite that,
in the same way as the results obtained by Jerez-Mesa (2018) [19], in the transition from five passes
to one pass when the force increases—that is, from 150N&5p to 300N&1p and from 300N&5p to
450N&1p—there is an upturn of both of them. It is because even if the preload is higher, just one pass
is not enough to increase the net plastic deformation compared to the previous run with lower preload
but five passes. The same source also evidences that for the smoother initial surface S0

1, there was
a threshold of plastic strain that leads to surface harm by increasing Sq. In this analysis, this limit
does not appear, and this could mean that the Udimet R©720 surface texture can still be improved by
applying further plastic strain.
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Figure 4. Sq, S10z, Sal and Sdr parameters that characterize all surfaces after VABB.

The trend shown by hybrid parameter Sdr is also decreasing, which means that with surface
reduction, a more superfinished state is achieved, as was expected. However, the Sal parameter
is decreased when a low force and one pass are applied, but does not evolve from that point on.
The periodicity of peaks and valleys is not therefore substantially modified by the process.

The statistical influences of all described parameters can be analyzed through an ANOVA. Table 5
shows that the extent to which the surface texture is reduced does not depend on the strategy followed
or the feed velocity. The original surface, preload and number of passes are the only influential
parameters with which to define the final results. Increasing the preload and the number of passes
allows improved surfaces in terms of amplitude, as proven by the influences on the Sq and S10z
parameters, and more finished surfaces if considering Sdr. As for interactions, no influence is detected
on the results. For all these considerations, a confidence level of α = 10% has been considered. Further
experiments could lead to reducing this confidence level and reach the same deductions.
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Table 5. The p-values obtained for all ANOVA calculations. Shaded values are lower than α = 10%.

Fp np v f S0 St Fp ∗ np Fp ∗ v f np ∗ v f
Sq 0.024 0.045 0.967 0 0.832 0.807 0.778 0.840

S10z 0.084 0.028 0.895 0 0.554 0.758 0.469 0.786
Sal 0.291 0.616 0.998 0 0.862 0.971 0.813 0.623
Sdr 0.081 0.069 0.607 0.001 0.212 0.125 0.144 0.421

Unlike the previous three parameters, Std remains 90◦ in all cases, as in the original surfaces.
This texture direction is dominated on the original surfaces by the ball-end milling furrows even
after VABB. Sal does not change either by the effect of factor variation, which could be expected,
considering Figure 4. This in conjunction with the fact that Std keeps being 90o after VABB means
that the process is not effective enough to reorientate the surface as reported in other works [19],
probably because of not enough preloading or too few passes being exerted. This means that there
is still improvement capacity for VABB to modify Udimet R©720. Figure 5 evidences this observation
showing how S0

1 evolves as the number of passes is increased, applying 450 N of preload. It is evident
that the peaks of the surface are progressively flattened, but even after five passes, the original marks
of ball-end milling are still present. However, it is also conspicuous how the traits of the surface are
starting to be aligned according to the VABB direction, and it seems as if the application of a slightly
higher preload or a sixth pass could have led to an effective reorientation of the machining direction.
The same Figure shows in contrast how the effect is hardly conspicuous in the S0

3 surface, whose scale
is too large to be modified even by the level of force selected in this experimental design.

Figure 5. Pseudo-color view of S0 surfaces burnished with 450 N, and one pass (#21), three passes (#23)
and five passes (#25).

In summary, it is surface S0
1 that is mostly affected by the process, whereas S0

2 and S0
3 are more

timidly modified by the process. Indeed, if the improvement ratio 1 − Sq/S0
q is considered and

subjected to an ANOVA, it can be seen that surface S0
1 has a much higher potential of improvement

than the other two (Figure 6). At sight of this result, it can be said that the finer the original surface,
the higher improvement potential it exhibits. Another obvious result evidenced after this analysis
is that, as the preload increases and more passes are performed, the surface is improved to a higher
extent, as argued above.



Metals 2020, 10, 915 10 of 15

Figure 6. Mean effects graph derived from ANOVA considering the improvement ratio of Sq with
regard to the original value (1 − Sq/S0

q).

3.2.2. Surface Redistribution

The effects of VABB in terms of surface redistribution are represented by the skewness and
kurtosis values. It is assumed that the Gaussian values for these parameters (0 and 3, respectively),
represent a balanced surface in terms of height and void equilibrium and average abruptness of the
surface features, which ultimately guarantees a good functional performance of the surface. Taking a
look at how kurtosis and skewness evolve as more plastic deformation is done in Figure 7; it can be
found that the three surfaces perform differently. The effects on S0

2 and S0
3 skewness seem to fall from

the original values, meaning that the peaks gain protagonism in the newly generated surfaces. On the
contrary, all VABB tests deliver platykurtic surfaces with kurtosis kept at values around 1.5. It is S0

1
that depicts a different behavior. Although the skewness values seem to be held at values around 0,
kurtosis rises and tends to evolve towards Gaussian value 3 as more plastic deformation is performed.

Figure 7. Skewness and kurtosis S parameters that characterize all surfaces after VABB.

The exposed evolution of Ssk and Sku agree with how the height histograms evolve (Figure 8).
Platykurtic surfaces are represented by bimodal distributions in S0

2 and S0
3. At these levels of preload

and number of passes, VABB is not able to redistribute the surface. At sight of the amplitude results,
this can be attributable to the fact the peaks of the surface are hardly deformed. On the contrary,
S0

1 evolves from a platykurtic bimodal surface to an almost unimodal distribution when 450N&5p are
applied, confirming the previous results.
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Figure 8. Evolution of height distribution histograms for all tests with five passes.

3.3. Comparison of VABB and NVABB

To assess what the effect is of the introduction of vibrations in the process, all the S parameters
presented by VABB and NVABB surfaces are juxtaposed in Figure 9, evidencing that the surfaces
obtained after both processes can be compared in all senses: amount of texture reduction and
redistribution. VABB seems to deliver superior results only in some cases for surface S0

1, but this
should be the object of a more thorough investigation in future research phases.

Figure 9. Comparison of Sq, Ssk and Sku parameters obtained after VABB and NVABB testing.
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Although the numerical values seem to indicate that vibration-assistance does not introduce a
significant change in the surface descriptors, a direct visual inspection evidences that both processes
do not have the same actual effect on the surface. For instance, Figure 10 shows a 3D view of the
topologies of the surfaces burnished on S0

1 with 450 N and three passes. It can be observed that,
although their descriptors are similar, the VABB surface presents surface features that are repeated
more periodically. It would seem that the vibration movement of the burnishing ball interacts more
heterogeneously with the peaks of the profile. As this difference has to do with a spatial condition of
the surface, it can be indeed detected by the Sal parameter, which proves to be lower in all surfaces
obtained by performing VABB on the S0

1 surface. Again, the finer the surface, the most sensitive
to vibration-assistance. The implications of this Sal being lower due to vibration assistance could
have an impact in terms of functionality by reducing chatter and vibration of the surface, if it is
in dynamic contact with another one. In all cases, this assertion should be confirmed with further
experimental research.

Figure 10. 3D views and height histograms of surfaces processed with 450 N and three passes.
(Left) VABB. (Right) NVABB

4. Conclusions

In this paper, the effect of ultrasonic VABB applied on Udimet R©720 has been quantified and
analyzed in qualitative terms. In overall, the effects of vibration-assistance are positive, but results
show that the process is more effective on surfaces that present lower texture amplitude. Given the
the typologies of the surfaces studied in this paper, a quasi-Gaussian surface with Sq < 4 is a good
description of how previous surfaces should be prepared to be subjected to VABB and maximize its
effects. In terms of material processing, 450 N and five passes are the best processing parameters
found to improve texture on ball-end milled Udimet R©720 surfaces. However, from the triple effect
of VABB described by Jerez-Mesa et al. (2018) [19], only surface scale reduction and redistribution
were observed with the processing conditions included in these works. Visual inspection revealed that
the third effect of reorientation of the surface texture features could be achieved by applying higher
preloads, which could also accentuate the scale reduction and redistribution effects.

The results found in this paper prove that, although the preload and number of passes have
similar effects on topology reduction and redistribution, it seems that a single pass cannot succeed
in delivering a fully modified surface. This observation has productive consequences that should be
explored in future works, as it could be a drawback for the eventual industrial implementation of the
process. Future research lines also include the assessment of residual stress and hardening caused by
the process on this specific Ni-based alloy.
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Abbreviations

The following abbreviations are used in this manuscript:

Fp Burnishing preload
np Number of passes
v f Feed velocity
S0

i Original surface i
St Burnishing strategy
ANOVA Analysis of variance
NVABB Non-vibration-assisted ball burnishing
VABB Vibration-assisted ball burnishing

Appendix A. Particular Taguchi Orthogonal Array

Table A1. L27 orthogonal array called for the design of the experiment.

Run Fp (N) np v f (mm/min) S0 St

1 150 1 300 1 nb0
2 150 1 600 2 bn90/0
3 150 1 900 3 bn0
4 150 3 300 2 bn0
5 150 3 600 3 nb0
6 150 3 900 1 bn90/0
7 150 5 300 3 bn90/0
8 150 5 600 1 bn0
9 150 5 900 2 nb0

10 300 1 300 3 bn90/0
11 300 1 600 1 bn0
12 300 1 900 2 nb0
13 300 3 300 1 nb0
14 300 3 600 2 bn90/0
15 300 3 900 3 bn0
16 300 5 300 2 bn0
17 300 5 600 3 nb0
18 300 5 900 1 bn90/0
19 450 1 300 2 bn0
20 450 1 600 3 nb0
21 450 1 900 1 bn90/0
22 450 3 300 3 bn90/0
23 450 3 600 1 bn0
24 450 3 900 2 nb0
25 450 5 300 1 nb0
26 450 5 600 2 bn90/0
27 450 5 900 3 bn0
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Appendix B. Definition of Surface Descriptors Included in This Manuscript

The calculations of the surface parameters S used to define the topology of the surface,
and included in the following list, were performed according to the ISO 25178 standard.

Sa Average surface texture amplitude
Sq Root mean square surface texture amplitude
S10z Mean 10 height-peak texture amplitude
Sdr Developed surface to area ratio
Std Surface texture direction
Sal Fastest decay correlation length
Sdq Root mean square of the slopes of the surface
Ssk Skewness of the surface height distribution
Sku Kurtosis of the surface height distribution
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