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Abstract: The manufacturing of different Ti-6Al-xV (x = 2, 4, 6, and 8 wt.%) alloys using a mechanical
alloying technique was reported. The corrosion behaviors of these newly fabricated alloys after 1,
24, and 48 h exposure to a simulated body fluid (SBF) were assessed using cyclic potentiodynamic
polarization, electrochemical impedance spectroscopy, and chronoamperometric measurements.
Surface morphology and elemental analyses after corrosion for 48 h in SBF were reported using
scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) examinations. An X-ray
diffraction investigation characterized the phase analyses. All results indicated that the increase of V
content significantly decreases both uniform and pitting corrosion. This effect also increases with
prolonging the immersion time to 48 h before measurement.
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1. Introduction

Ti-base alloys have superior properties that have led to their use in several applications, such
as standard engineering materials [1–3]. These include medical, military, marine, and offshore
applications as a result of the excellent biocompatibility, reliable mechanical properties, and high
resistance against many corrosive media, particularly oxidizing and chloride-containing process
streams, among others [4–11]. It has been reported that materials with high strength, low density, and
excellent corrosion resistance have promoted demand for high energy-efficiency in offshore structures
and the marine industry [12–15]. Ti-base alloys are considered as the most attractive metallic materials
for biomedical applications [4–11,16].

In the early 1970s, Ti-base alloys were implanted in various medical applications, including
prosthetic dentistry [17]. One of the most important factors for the use of Ti-base alloys in the dental
implantation system is their high strength and compatibility besides their superior corrosion resistance.
It has been reported [18–20] that the Ti-6Al-4V alloy combines good mechanical, physical, and resistance
properties versus corrosion, which makes it the most applicable Ti alloy. Geetha et al. [21] have confirmed
that Ti-base alloys are the ultimate choice for orthopedic implants. This includes the use of several
alloys like Ti-6Al-4V, Ti-13Cu-4.5Ni, Ti-6Al-7Nb, and others.

Several researchers have reported the corrosion of Ti alloys in various media [22–29]. Long and
Rack [27] found that Ti plays an essential role via its accumulation in the adjacent tissues to the implant
and that Ti ions are released. Here, there is corrosion in vivo contact for extended periods with the
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extracellular body fluids like blood, among others. The formation of a coating layer of TiO2 on the
surface of the Ti-6Al-4V alloy via anodic oxidation in 1.0 M H2SO4 solution to prevent the release of Ti
ions has also been reported [30–33]. Chapala et al. [34] studied the effect of alloying elements on the
in-vitro corrosion of Ti-Nb alloys. Afzali et al. [35] also reported a review of the corrosion behavior of
titanium alloys for medical applications.

The objective of the current study was to manufacture a series of different Ti-based alloys using
the technique of mechanical alloying (MA). These alloys were Ti-6Al-2V, Ti-6Al-4V, Ti-6Al-6V, and
Ti-6Al-8V (all in wt.%). The effects of increasing V content on the corrosion of the fabricated alloys
after being immersed for different exposure periods in simulated body fluid (SBF) solutions were
also reported. Various electrochemical and spectroscopic techniques were employed to evaluate the
corrosion behavior and surface morphology for the tested alloys.

2. Materials and Methods

2.1. Chemicals, Materials, and Fabrication of Ti-6Al-xV Alloys

Simulated body fluid (SBF, Dulbecco’s Modified Eagle Medium, Advanced DMEM (1X)) was
supplied from Gibco® by Life technologies™, Birchwood, Warrington, UK. Ti, Al, and V powders
(99.99%) were purchased from Sigma-Aldrich, Glasgow, UK. The alloys of Ti-6Al-2V, Ti-6Al-4V,
Ti-6Al-6V, and Ti-6Al-8V (all in wt.%) were fabricated as reported in our previous study [36].

2.2. Electrochemical Experiments

An electrochemical cell with a conventional three electrodes configuration that accommodates
a 300 mL SBF solution was used. The Ti-base alloys were served as the working electrode. We
used Ag/AgCl as the reference electrode and a platinum wire as the counter electrode, respectively.
The working electrode was prepared before the electrochemical measurement, as reported in our
previous studies [12,37–40]. Surface finishing of the alloys before being immersed in the SBF solution
for corrosion tests was reported elsewhere [37,38]. For all electrochemical measurements, an Autolab
potentiostat-galvanostat (Model PGSTAT-302N, Metrohm, Amsterdam, The Netherlands) was used.
Cyclic potentiodynamic polarization (CPP) tests were claimed by scanning the potential from −900
to 800 mV in the positive direction applying a value of 1.66 mV/s as a scan rate. The potential was
rescanned again in a negative direction at the same scan rate. Electrochemical impedance spectroscopy
(EIS) experiments were performed as reported before in References [37,38]. Chronoamperometric
current-time experiments were collected over 30 min via stepping the potential of the tested alloys at a
fixed value of 0.5 V (Ag/AgCl).

2.3. Characterization Techniques

The fabricated alloys were characterized using X-ray diffraction (XRD) patterns. The XRD
experiments were carried out to identify the phase analysis using D-8 Discover (Bruker, Berlin,
Germany). These patterns were collected at a scanning rate of 2◦/min, and a different angle range was
observed from 10 to 90◦ with a locked scan type at an increment of 0.02◦. SEM micrographs and EDX
spectra were collected using a SEM/EDX machine (JEOl, Tokyo, Japan) operated at 15 kV.

3. Results and Discussion

3.1. XRD Patterns

X-ray diffraction (XRD-D8 discover—Germany) was used to identify the elemental composition
and the available phases created during the fabrication process of the alloys (a) Ti-6Al-2V, (b) Ti-6Al-4V,
(c) Ti-6Al-6V, and (d) Ti-6Al-8V, and the spectra are shown in Figure 1. Based on the XRD pattern
shown in Figure 1, the presence of vanadium peaks was clearly observed. The patterns here identified
the presence of both aluminum-titanium (Al-Ti) and aluminum-titanium carbide (Al-TiC) phases.
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In addition, there was no significant difference and no new compounds detected by XRD through the
different samples except the change in the vanadium peaks intensity, which was directly proportional
to its concentrations in the sintered alloys. The XRD patterns confirmed the composition and phase
analysis for the fabricated alloys.
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2H2O + O2 + 4e− = 4OH− (1) 

Figure 1. XRD (X-ray diffraction) patterns collected for the fabricated, (a) Ti-6Al-2V, (b) Ti-6Al-4V,
(c) Ti-6Al-6V, and (d) Ti-6Al-8V alloys, respectively.

3.2. Cyclic Potentiodynamic Polarization (CPP) Data

Figure 2 shows the CPP curves obtained for the (a) Ti-6Al-2V, (b) Ti-6Al-4V, (c) Ti-6Al-6V, and
(d) Ti-6Al-8V alloys after immersion in SBF for 1 h. The same alloys were tested after immersion for 24
and 48 h, and the curves are depicted in Figures 3 and 4. The values of the corrosion parameters, which
were collected from the plotted CPP curves, are listed in Table 1. These are the cathodic (βc) and anodic
(βa) Tafel slopes, corrosion current density (jCorr), and corrosion potential (ECorr), corrosion rate (RCorr),
and polarization resistance (RP). The parameters values were obtained as per reported studies [37–40]
(i.e., the values for RCorr and RP were calculated as represented in the footnote in Table 1). Figure 2
depicts that the cathodic current decreases with potential because of the oxygen reduction [40,41],
which can be represented as follows:

2H2O + O2 + 4e− = 4OH− (1)
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1
2

O + H2O + 2− = 2OH− (2)

OHads + e− = OH− (3)
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Figure 2. CPP (cyclic potentiodynamic polarization) curves obtained for (a) Ti-6Al-2V, (b) Ti-6Al-4V, 

(c) Ti-6Al-6V, and (d) Ti-6Al-8V alloys after 1 h immersion in SBF, respectively. 
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Figure 2. CPP (cyclic potentiodynamic polarization) curves obtained for (a) Ti-6Al-2V, (b) Ti-6Al-4V,
(c) Ti-6Al-6V, and (d) Ti-6Al-8V alloys after 1 h immersion in SBF, respectively.
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Figure 3. CPP curves for (a) Ti-6Al-2V, (b) Ti-6Al-4V, (c) Ti-6Al-6V, and (d) Ti-6Al-8V alloys after 24 

h immersion in SBF, respectively. 

Figure 3. CPP curves for (a) Ti-6Al-2V, (b) Ti-6Al-4V, (c) Ti-6Al-6V, and (d) Ti-6Al-8V alloys after 24 h
immersion in SBF, respectively.
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Figure 4. CPP curves for (a) Ti-6Al-2V, (b) Ti-6Al-4V, (c) Ti-6Al-6V, and (d) Ti-6Al-8V alloys after 48 

h immersion in SBF, respectively. 
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Table 1. The data obtained from the polarization curves for the titanium alloys in SBF solution.

Alloy Parameter

βc/ V/dec−1 ECorr/V βa/ V.dec−1 jCorr/µA.cm−2 *Rp/kΩ.cm2 **RCorr/ mpy

Ti-6%Al-2%V (1 h) 0.105 −0.740 0.120 0.40 60.9 0.00348
Ti-6%Al-4%V (1 h) 0.098 −0.715 0.105 0.35 63.0 0.00305
Ti-6%Al-6%V (1 h) 0.092 −0.705 0.108 0.27 80.0 0.00235
Ti-6%Al-8%V (1 h) 0.088 −0.690 0.112 0.23 93.2 0.00200
Ti-6%Al-2%V (24 h) 0.112 −0.495 0.105 0.25 94.3 0.00217
Ti-6%Al-4%V (24 h) 0.110 −0.775 0.100 0.15 153.4 0.00131
Ti-6%Al-6%V (24 h) 0.100 −0.455 0.095 0.13 162.9 0.00113
Ti-6%Al-8%V (24 h) 0.095 −0.445 0.100 0.11 192.6 0.00096
Ti-6%Al-2%V (48 h) 0.115 −0.455 0.090 0.13 168.9 0.00113
Ti-6%Al-4%V (48 h) 0.095 −0.375 0.100 0.11 192.6 0.00096
Ti-6%Al-6%V (48 h) 0.088 −0.345 0.095 0.10 198.6 0.00087
Ti-6%Al-8%V (48 h) 0.080 −0.438 0.085 0.08 224.0 0.00070

*RP = 1
jCorr

(
βc .βa

2.3(βc+βa)

)
, **RCorr = jCorr

( k.EW
d.A

)
. Where, k is a constant to define the unit for RCorr, k = 3272 mm

(amp−1 cm−1 year−1), EW is the equivalent weight of the Ti alloy, EW = 12-gram equivalent, d is the density of the Ti
alloy, d = 4.51 gm cm-3, and A is the area of the surface of the Ti alloy A = 1 cm2.

Meanwhile, the anodic reaction could be the dissolution of Al and the formation of titanium
oxide, TiO2, aluminum oxide, Al2O3, and vanadium oxide, V2O5. This is because the current alloys, in
addition to Ti, contain both Al and V as alloying elements that may take part in the surface reactions.
The current increases in the anodic side due to the lower negative applied potential than ECorr, as a result
of Al dissolution (i.e., Al is the most active metal in these alloys), which may react as follows [41–44]:

Al = Al3+ + 3e− (4)
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The current then slow down slightly due to the adsorption of hydroxide ions on the fresh surface
of Al to form aluminum hydroxide;

Al(S) + 3OH− = Al(OH)3,ads + 3e− (5)

This Al(OH)3, in turn, is transformed into hydrated aluminum oxide as follows [6]:

2Al(OH)3,ads = Al2O3·3H2O (6)

A rapid increase in the current occurred after the short passivation region due to the dissolution
of the formed oxide layer represented by Equation (6). It has also been reported [45] that Ti-base alloys
tend to form a spontaneous passive film of TiO2 layer when its surface is exposed to air or is immersed
in a solution that contains water [46];

Ti = Ti2+ + 2e− (7)

2Ti(S) + 4OH− = 2Ti(OH)2 + 4e− (8)

2Ti(S) + 2O2− = 2TiO2(S) + 4e− (9)

The hydroxide ions that reacted with Ti were produced in the SBF solution, either via Reaction (1)
or Reaction (3) or together. The Ti(OH)2 produced by Reaction (8) could passivate the surface of the
alloy, causing the deceleration of the increase of current. The formation of Al2O3 and TiO2, in addition
to the formation of the V2O5 layer, adds more protection to the alloy surface.

Figure 2 and Table 1 indicate that the Ti-6Al-2V alloy shows the highest value of the corrosion
parameters. Moreover, the higher current values in the reverse direction compared to the currents
in the forward direction resulted in the appearance of a large area of a hysteresis loop. This loop
confirmed the occurrence of pitting corrosion. Increasing the content of V to 4% (Figure 2b) decreased
the values of jCorr and RCorr and the size of the hysteresis loop, while it increased the value of RP.
The higher concentration of V, i.e., 6% and 8%, offered the highest resistance to uniform corrosion, as
well as minimized the size of the hysteresis loop indicating the lowest uniform and pitting corrosion.

Prolonging the exposure time to 24 h in the SBF solution decreased the uniform and localized
corrosion for the tested alloys via decreasing the values of jCorr, RCorr, and the size of the hysteresis
loop, as well as increasing the values of corrosion resistance, RP. The effect further increased with
the vanadium content from 2 to 8%, as can be seen from Figure 3 and Table 1. After immersion for
48 h (Figure 4), the corrosion resistance in SBF increased for all alloys towards both the uniform and
pitting attack. The decrease of uniform corrosion was confirmed via decreasing jCorr and increasing
RP. The decrease of pitting corrosion was achieved through the disappearance of the hysteresis loops.
CPP data indicated that the increase of V content, as well as the increased immersion time, significantly
increased the corrosion resistance of the titanium alloy in SBF solutions.

3.3. EIS Data

The Nyquist plots recorded for the (a) Ti-6Al-2V, (b) Ti-6Al-4V, (c) Ti-6Al-6V, and (d) Ti-6Al-8V
alloys after 1 h immersion in SBF are shown in Figure 5. Nyquist plots were also collected after 24 and
48 h immersion, and the spectra are depicted in Figures 6 and 7, respectively. All EIS measured data were
fitted to the equivalent circuit model presented in Figure 8. This circuit consists of solution resistance
(RS), constant phase elements Q (YQ, CPEs), polarization resistance (RP1), double layer capacitor
(Cdl), and second polarization resistance (RP2). The values of all these elements are summarized in
Table 2. It is worth mentioning that the same circuit was also used to fit EIS data for other metals and
alloys [35,37,38]. The use of Q and Cdl has been reported [47] to consider possible deviations from
ideality in the capacitive response systems. The admittance, impedance of a CPE can also be defined
via these equations [48];

YCPE = −Y0(jω)n (10)
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ZCPE = −(1/Y0)(jω)n (11)
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and Figure 8. The symbols of the circuit are defined in text, and its values are listed in Table 2.

Table 2. Impedance data obtained for the tested titanium alloys in SBF test solutions.

Alloy

Impedance data

RS/
Ω cm2

Q
RP1/

Ω cm2
Cdl/

µ Fcm−2
RP2/

Ω cm2 chi/ Sq.YQ/
µ Fcm−2 n

Ti-6%Al-2%V (1 h) 43.6 ± 2 0.113 ± 0.01 0.69 ± 0.02 3377 ± 17 0.481 ± 0.01 5830 ± 15 0.1095

Ti-6%Al-4%V (1 h) 44.8 ± 2 0.132 ± 0.01 0.71 ± 0.02 5382 ± 20 0.438 ± 0.01 6300 ± 18 0.0509
Ti-6%Al-6%V (1 h) 45.9 ± 2 0.099 ± 0.01 0.75 ± 0.02 5856 ± 22 0.332 ± 0.01 7150 ± 20 0.0846
Ti-6%Al-8%V (1 h) 46.3 ± 2 0.093 ± 0.01 0.77 ± 0.02 6260 ± 18 0.194 ± 0.01 8610 ± 22 0.0758

Ti-6%Al-2%V (24 h) 44.8 ± 3 0.054 ± 0.01 0.78 ± 0.02 6130 ± 20 0.079 ± 0.01 7320 ± 26 0.0787
Ti-6%Al-4%V (24 h) 47.2 ± 3 0.053 ± 0.01 0.80 ± 0.02 7231 ± 22 0.063 ± 0.01 7607 ± 24 0.0715
Ti-6%Al-6%V (24 h) 47.1 ± 3 0.052 ± 0.01 0.82 ± 0.02 7378 ± 25 0.076 ± 0.01 8140 ± 23 0.0828
Ti-6%Al-8%V (24 h) 48.2 ± 3 0.051 ± 0.01 0.82 ± 0.02 8102 ± 28 0.057 ± 0.01 9320 ± 27 0.0965
Ti-6%Al-2%V (48 h) 47.5 ± 4 0.049 ± 0.01 0.83 ± 0.02 5539 ± 22 0.051 ± 0.01 11060 ± 25 0.1030
Ti-6%Al-4%V (48 h) 50.4 ± 4 0.047 ± 0.01 0.84 ± 0.02 7603 ± 26 0.046 ± 0.01 12080 ± 28 0.0694
Ti-6%Al-6%V (48 h) 48.1 ± 4 0.046 ± 0.01 0.85 ± 0.02 10147 ± 24 0.041 ± 0.01 12590 ± 34 0.0829
Ti-6%Al-6%V (48 h) 52.2 ± 4 0.042 ± 0.01 0.86 ± 0.02 10602 ± 30 0.039 ± 0.01 13070 ± 38 0.0709
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And the constant phase element, Q, is defined as follows [36,49];

ZCPE = [Q(2πfi)n]−1 (12)

The Nyquist plots in Figure 5, obtained after 1 h exposure in SBF solution for the manufactured
alloys show almost similar spectra. In addition, Table 2 shows that the values of RS, RP1, and RP2

increase with the increase of the vanadium content in the alloy. The corrosion resistance of each
fabricated alloy is the sum of its polarization resistances, i.e., RP1 + RP2. Moreover, the presence of
different time constants proved that the EIS anodic films were associated with a complex structure.
This is because of the formation of two layers. An inner layer results from dominant impedance at
a high-frequency region and another outer layer that is porous and dominates the impedance at the
low-frequency region [36,47]. Here, the constant phase element, Q, with an n value close to unity, is
considered as a double-layer capacitor, which also confirms that the outer layer has some pores.

The presence of a Cdl represents another indication of the ability of V to increase the passivity of the
alloy in the test SBF solution. Immersing the Ti-base alloys in the SBF solutions for 48 h decreases the
obtained real and imaginary resistance, as shown in Figure 7. The data listed in Table 2 also indicate that
prolonging the time of exposure increases the resistance for all alloys. The collected results for EIS agree with
the CPP data, and both indicated that the increase of V concentration in the Ti-base alloy and prolonging the
immersion time from 1 to 48 h increases the corrosion resistance for all tested alloys in the SBF solution.

3.4. Chronoamperometry

Change of the chronoamperometric (potentiostatic) current with time (CCT) at constant potential
experiments were performed to understand the role of V content on the uniform and pitting corrosion
of the Ti alloy in the SBF solution after 1, 24, and 48 h exposure periods. Figure 9 shows the CCT
curves obtained at 0.50 V (Ag/AgCl) for all alloys after 1 h immersion in SBF, respectively. The CCT
measurements were also performed after 24 and 48 h, and the curves are depicted in Figures 10
and 11, respectively. Figure 9 depicts that the current increases upon the application of the positive
potential value, 500 mV, as a result of the dissolution of a surface oxide film. The current then decreases
gradually after the first few minutes up to the end of the run as a result of oxide film thickening.
The highest absolute current values were recorded for Ti-6Al-2V. The current obtained from this alloy
also showed some fluctuations indicating that it had the highest rate of uniform corrosion with the
possible occurrence of a pitting attack. Increasing the content of V from 2 to 4%, i.e., 6% and 8%,
decreased the value of the obtained current with time with no indications of the occurrence of pitting
corrosion. This revealed that the increase of V% decreased the corrosion of the titanium alloy and
eliminated the occurrence of a pitting attack.
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Figure 11. CCT curves collected at 0.50 V (Ag/AgCl) for the (1) Ti-6Al-2V, (2) Ti-6Al-4V, (3) Ti-6Al-6V,
and (4) Ti-6Al-8V alloys after 24 h immersion in SBF, respectively.
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After 24 h immersion (Figure 10), almost similar behavior to the curves obtained after 1 h
immersion (Figure 9) is shown. The disappearance of the fluctuations in the current values obtained
for the Ti-6Al-2V alloy was the only difference. The increase of the exposure period to 24 h also proved
that the increase of V content decreased the collected current values, and no pitting corrosion occurred.
Further increasing the exposure time to 48 h before measurement (Figure 11) showed the same trend but
with lower current values for all alloys. The decrease in the obtained values of current with increasing
time may have resulted from the high corrosion resistance of the alloys’ surface due to the oxide film
thickening, which took place due to the long immersion periods in the SBF solution. The CCT results
confirmed the data obtained by the CPP and EIS that the corrosion resistance of the fabricated alloys
increased with the increase of V content, i.e., Ti-6Al-8V > Ti-6Al-6V > Ti-6Al-4V > Ti-6Al-2V alloy.

3.5. Surface Examinations

The surface examinations were performed using a scanning electron microscope (SEM).
The elemental analysis was obtained using an energy dispersive X-ray (EDX) analyzer unit after
all alloys were exposed to corrosion conditions in the SBF solutions. Figure 12 shows the (a) SEM
micrograph and (b) EDX profile analysis obtained for the Ti-6Al-2V alloy after 48 h immersion in
SBF solution before stepping the potential to 500 mV (Ag/AgCl) for 30 min. SEM micrographs and
EDX profile analyses were also collected for Ti-6Al-4V, Ti-6Al-6V, and Ti-6Al-8V alloys, as shown in
Figure 13, Figure 14, and Figure 15, respectively.
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The SEM micrograph depicted in Figure 12 for Ti-6Al-2V alloy exhibits a smooth surface that has
a homogeneously distributed thin corrosion product layer with few shallow pits that are clearly formed.
The pitting corrosion may occur due to the presence of some corrosive species. That is, anions such as
Cl−, HCO3

−, SO4
2−, among others, and cations such as Na+, Mg2+, Ca2+, among others, within the

SBF solution [50]. The weight percentages (wt.%) obtained for the elements detected by EDX analysis
(Figure 12b) were Ti = 62.10%, O = 14.30%%, Al = 6.91%, V = 3.45%, Na = 7.03%, and Cl = 5.70%.
The presence of Ti was lower than expected due to the formation of a corrosion product layer on the
alloy surface. Moreover, the presence of a high percentage of O that indicated the presence of some
oxides, possibly Al2O3, TiO2, and V2O5. These oxides are protective and decrease the corrosion of the
alloy in SBF solution. Moreover, the presence of Na and Cl reveals that the white color seen on the
surface of the alloy might have resulted from the deposition of NaCl salt that was already present in
the SBF test solution. The formation of few pits can now be confirmed via the attack of the chloride
ions (Cl−) that is present in the SBF solution on the alloy surface under the application of 500 mV
(Ag/AgCl) for 30 min. Since Al is the most active metal in the alloy, the dissolved aluminum cations
(Al3+, see reaction 4) react with the present Cl− to form aluminum chloride, AlCl4−, as follows;

Al3+ + 4Cl− = AlCl4− (13)

It has been reported [41–44,51,52] that the Cl− ions are chemically adsorbed onto the oxide film
formed on the alloy without entering it. Hence, the Cl− ions cause a breakdown and dissolution
of the oxide film leading to the production of an oxychloride complex, Al(OH)2Cl2−, as per the
following reaction;

2Al3+ + 2Cl− + 2OH− = Al(OH)2Cl2− (14)

Figure 13 shows the SEM/EDX taken for the Ti-6Al-4V alloy at the aforementioned conditions.
The surface is covered with a layer of corrosion products that has some flower shapes on top of it.
The image also shows that the surface of the alloy has no pits, which means that applying 500 mV
(Ag/AgCl) for 30 min after 48 h immersion in the SBF solution could not cause any flawed regions in
the formed layer on the surface. Compared to the Ti-6Al-2V alloy, the surface of the Ti-6Al-4V alloy
was more passivated due to the increase of V content. The wt.% of the elements found on the surface
(Figure 13b) were as follows: Ti = 62.70%, O = 19.98%%, Al = 6.31%, V = 4.50%, Na = 2.82%, Cl = 2.23%,
and less than 1% for both P and Ca. The percentages of both V and O increased compared to their
detected percentages on the surface of the Ti-6Al-2V alloy, which indicated a higher possibility of oxide
film formation. Moreover, the percentage of the deposited NaCl was lower than the percentages of Na
and Cl that were detected in lower amounts.

Figure 14 represents the SEM/EDX investigations obtained for the Ti-6Al-6V alloy, where a surface
layer of corrosion products had some flower shapes distributed on it. The surface also shows no pitting
corrosion was found. The increase of V content to 6% improved the corrosion of the alloy against both
uniform and pitting attacks. EDX profile analysis gave the following wt.% for the elements found on
the surface: Ti = 59.26%, O = 17.67%, Al = 9.99%, V = 8.24%, Na = 2.95%, and Cl = 1.95%. The wt.% for
Ti was much lower than its original % in the alloy due to the surface coverage with corrosion products.
Additionally, Al and V were in higher wt.% than its initial contents, which indicated that the surface
was rich with Al and V. The presence of a high amount of O also revealed that the oxides of both Al and
V were formed on the surface causing its high passivation compared to the alloys with lower V content.

The SEM image and EDX profile obtained for the Ti-6Al-8V alloy (Figure 15) also exhibited a thin
corrosion product layer that was homogeneously distributed but with no indications of the formation
of any pits. The formed layer on the surface had some flower-shaped areas, and these flowers were
formed from the reaction between the alloy surface and the SBF solution. The elements detected by
EDX analysis were collected as follows: Ti = 52.19%, O = 19.03%, Al = 8.32%, V = 9.68%, C = 1.17%,
Na = 5.16%, and Cl = 4.45%. The presence of Ti with this percentage was very low compared to
its original presence of 86%, which meant that the chemical composition of the surface of the alloy
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was completely different from the composition of the alloy itself. This was due to the formation of a
corrosion product layer mainly composed of oxides like Al2O3, TiO2, and V2O5, which are protective.
The current surface (SEM/EDX) analyses are in good agreement with the results obtained by the
electrochemical measurements. All measurements confirmed that the increase of V content in the
alloys played an important role in the passivation of the Ti-6Al-V alloys. Moreover, the increase of
exposure periods from 1 to 48 h increased the corrosion resistance. This resulted from the formation
and thickening of Al2O3, TiO2, and V2O5 on the surface of the tested alloys with increasing time.

4. Conclusions

The manufacturing of Ti-6Al-2V, Ti-6Al-4V, Ti-6Al-6V, and Ti-6Al-8V alloys was carried out using
the MA method. Characterization of these alloys was performed using XRD analysis, SEM, and EDX
surface investigations. The effects of increased V additions on the corrosion in SBF solutions after 1, 24,
and 48 h exposure using CPP, EIS, and CCT measurements were investigated at room temperature.
CPP results indicated that the increase of V content decreased the corrosion of these alloys through
decreasing the values of jCorr and RCorr and increasing the values of RP. EIS experiments proved
that the increase of V additions increases the corrosion resistance by increasing the values of RS and
RP. The measurements obtained by CCT indicated that the uniform corrosion decreases with the
increase of V percentage, and pitting corrosion takes place only for Ti-6Al-2V, when applying a more
positive potential value, 500 mV vs. Ag/AgCl for 30 min. All results also confirmed that prolonging
the exposure time in SBF solutions before measurement decreases the corrosion for all manufactured
alloys. SEM and EDX analyses were in accordance with the electrochemical results, and they proved
that the corrosion products formed on the surfaces were a mixture of oxides, most probably Al2O3,
TiO2, and V2O5.
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