Article

Comparison of Bayesian Methods on Parameter
Identification for a Viscoplastic Model with Damage

Ehsan Adeli '*, Bojana Rosi¢ 2, Hermann G. Matthies 3, Sven Reinstidler # and Dieter Dinkler

1 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA

2 Applied Mechanics and Data Analysis, University of Twente, 7522 NB Enschede, The Netherlands;
wire@tu-bs.de

Institute of Scientific Computing, Technische Universitat Braunschweig, 38106 Braunschweig, Germany;
h.matthies@tu-bs.de

Institute of Structural Analysis, Technische Universitit Braunschweig, 38106 Braunschweig, Germany;
statik@tu-braunschweig.de (S.R.); d.dinkler@tu-braunschweig.de (D.D.)

Correspondence: e.adeli@sci.utah.edu

check for
Received: 24 May 2020; Accepted: 24 June 2020; Published: 1 July 2020 updates

Abstract: The state of materials and accordingly the properties of structures are changing over the
period of use, which may influence the reliability and quality of the structure during its life-time.
Therefore, identification of the model parameters of the system is a topic which has attracted
attention in the content of structural health monitoring. The parameters of a constitutive model
are usually identified by minimization of the difference between model response and experimental
data. However, the measurement errors and differences in the specimens lead to deviations in the
determined parameters. In this article, the focus is on the identification of material parameters of
a viscoplastic damaging material using a stochastic simulation technique to generate artificial data
which exhibit the same stochastic behavior as experimental data. It is proposed to use Bayesian
inverse methods for parameter identification and therefore the model and damage parameters
are identified by applying the Transitional Markov Chain Monte Carlo Method (TMCMC) and
Gauss-Markov-Kalman filter (GMKF) approach. Identified parameters by using these two Bayesian
approaches are compared with the true parameters in the simulation and with each other, and the
efficiency of the identification methods is discussed. The aim of this study is to observe which one of
the mentioned methods is more suitable and efficient to identify the model and damage parameters
of a material model, as a highly non-linear model, using a limited surface displacement measurement
vector and see how much information is indeed needed to estimate the parameters accurately.

Keywords: viscoplastic-damage model; uncertainty quantification; Bayesian parameter and damage
identification; functional approximation

1. Introduction

In order to predict the behavior of mechanically loaded metallic materials, constitutive models are
applied, which present a mathematical frame for the description of elastic and inelastic deformation.
All inelastic constitutive models contain parameters which have to be identified for a given material
from experiments [1].

There are few investigations on the simplest material model, the elasticity model, to identify
only very few parameters of the model where sampling approaches like the Metropolis algorithm
and its modifications are employed. Pacheco et al. [2] investigated a three-point bending test to
identify elastic behavior and calibration is done by solving the inverse problem in a Bayesian setting
by using the Metropolis-Hastings algorithm. Only elastic moduli are identified without considering
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the error. Slonski et al. [3] also applied a sequential particle filter on an elastic model and Young’s
modulus was estimated, where the Bayesian setting was compared to the deterministic approach,
and the Bayesian setting was preferred. The elastic modulus of a polymeric material is updated by
Zhang et al. [4], where a Markov Chain Monte Carlo method is used, but very high computation time
is reported. Further, Young’s modulus is estimated for a considered material by Gallina et al. [5] by
applying a multi dimensional Markov Chain Monte Carlo method. A similar Bayesian approach for
composite materials to estimate Young’s modulus is carried out by Pieczonka et al. [6]. Arnst et al. [7]
have applied a Markov Chain Monte Carlo method by using polynomial chaos expansion to identify
Young’s modulus of an elastic model.

Only few investigations were carried out on enriched material models such as a viscoelastic model
to identify the few parameters by employing the Metropolis-Hastings technique and the classical
Markov Chain Monte Carlo method. Rappel et al. [8] studied an elastic and a viscoelastic model where
the measurement error is considered. Bayesian inference is applied to estimate only the elasticity
modulus by applying an adaptive Metropolis-Hastings technique. An et al. [9] investigated a crack
model by a classical Markov Chain Monte Carlo method in order to estimate the parameters of a model
which represent the size and position of the crack in the Bayesian setting. Also Hernandez et al. [10]
applied a Markov Chain Monte Carlo method on a viscoelastic model in order to update its model
parameters in a Bayesian setting, but the posterior distributions of the parameters are not updated
properly. In fact, the parameters are not identified properly. Mahnken [11] has also applied a
Markov Chain Monte Carlo method to estimate few parameters of a plasticity model. The damage
parameters of a truss structure under model uncertainties are studied by Zheng et al. [12], where a
multi-level Markov Chain Monte Carlo method is applied and the true values are not well estimated.
Further, this approach suffers from high computation time. Another damage detection approach is
applied by Nichols et al. [13] by applying a modified version of the Markov Chain Monte Carlo method.

There are other investigations in the Bayesian setting using the Markov Chain Monte Carlo
method, and Madireddy et al [14], Wang and Zabaras [15], and Oh et al. [16] have carried out
investigations on the identification of a material model by using its modified method. In studies
carried out by Alvin [17], Marwala and Sibusiso [18], Daghia et al. [19], Abhinav and Manohar [20],
Gogu et al. [21,22], and Koutsourelakis [23,24], the elastic parameters of the model are estimated
stochastically. Fitzenz et al. [25], Most [26], and Sarkar et al. [27] investigated elastoplastic materials
and thermodynamical material models to identify their model parameters. Other studies on
viscoelastic models are carried out by Zhang et al. [28], Mehrez et al. [29], and Miles et al. [30].
Further investigations on viscoelastic models to estimate a higher number of model parameters are
studied by Zhao and Pelegri [31], and by Kenz et al. [32]. The estimation of fatigue parameters using
Markov Chain Monte Carlo methods is also studied by An et al. [33].

Few investigations in which the Kalman filter and its modifications are employed to identify the
material model parameters can be found in literature. Hoshi et al. [34] have estimated the Young's
Modulus and Poisson’s ratio parameters of an organ model by an extended version of Kalman filter.
The same study on an elastic model is carried out to identify the elastic constants of anisotropic
materials using Kalman filter by Furukawa et al. [35]. Conte et al. [36] applied some modifications of
Kalman filter on a nonlinear structural model to identify its parameters. Hendriks [37] investigated
the possibility of identification of few parameters on a viscoelastic model representing the behavior
of solid materials by using Kalman filter. Few parameters to identify on the crack path is carried
out by Bolzon et al. [38] by employing Kalman filter. Nguyen et al. and Mahmoudi et al. [39-41]
applied an extended Kalman filter on an elastoplastic model to identify the model parameters.
Wall [42] and Nakamura et al. [43] also applied a modification of Kalman filter on a viscoplastic
model to determine its model parameters probabilistically. Further, Agmell et al. [44] have determined
the Johnson—Cook constitutive model constants for an orthogonal cutting process by using the
Kalman filter. Sevieri et al. [45-47] investigated the parameter identification of structural models
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in the framework of structural health monitoring. Marsili et al. [48-52] investigated the update the
finite element model using functional approximation of the system response.

Elastic—plastic graded materials are observed by Bocciarelli et al. [53] and Gu et al. [54] in order to
identify their model parameters by employing Kalman filter. The parameters of an elastic-damage
interface model are also identified by Corigliano et al. [55,56] where the extended Kalman filter method
is applied. Further, Ebrahimian et al. and Hariri-Ardebili et al. [57-62] investigated the damage
parameter identification in the framework of structural health monitoring by using an extended
version of Kalman filter. Damage detection for the purpose of health monitoring is also done by
Yan et al. [63] by using the Kalman filter and other stochastic approaches by Kourehli et al. and
Gharehbaghi et al. [64-66].

Although these discussed research for the identification of mechanical material models has been
carried out, most of these previous research did not identify many parameters, e.g., hardening and
damage parameters of the complex mechanical material models, did not quantify mostly the modeling
uncertainties, did not properly deal with the ill-conditioning inherent based on the available data,
and the methods employed have a high computation time even for the simplest material model
considering a very few uncertain parameters. However, the uncertainty associated with the material
model predictions can have a significant impact on the decision-making process in design, control,
and health monitoring process.

In this paper, a viscoplastic model of Chaboche with damage is studied. The model contains five
material parameters and three damage parameters which have to be determined from experimental
data by using two Bayesian approaches, i.e., Transitional Markov Chain Monte Carlo method [67,68]
and Gauss-Markov-Kalman filter approach [69-72]. The results of these two methods are compared
and different aspects of them are evaluated. It should be noted that virtual data is employed instead of
real experimental data. In addition, a cyclic tension-compression test is applied in order to extract the
virtual data. A cyclic test is employed since the hardening equations as well as the damage equation
could get involved so that the information from these equations can be observed.

Sections 3 and 4 explain how to propagate the uncertainty in the model. The probabilistic model
is reformulated from the deterministic model, and once the forward model is provided, the model
parameters are updated using two mentioned stochastic approaches.

In Section 5 the desired parameters are identified from the measured data and the efficiency of
methods is studied. In fact, the parameters which have been considered as uncertain parameters are
updated and their uncertainties are narrowed using Bayesian techniques. The results are thoroughly
studied and the identified parameters as well as the corresponding model responses are analyzed.
Finally the prediction of the models is then compared with the measured data.

2. Model Problem

For viscoplasticity, the dissipation potential is given by

k For \ 11 . 5 B
P <ﬁ> with Gy = ey —0y — R and (-) = max(0, x) (1)

‘Pvp(&) = k

in terms of the effective equivalent stress 7,; and the isotropic hardening R as time-varying variables.
On the contrary, the yield stress ¢y, as well as k and 7 are further model parameters constant in time.
Based on the von-Mises yield-criterion the effective equivalent stress

Gug = \/31 (& — x)" + D (h (& — X)) )

is described by the second Invariant

Lo -x=3er((@ -2 (- x)7) ©
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applied to the deviatoric part of the effective stress tensor &/ = & — x incorporating the kinematic
hardening tensor x. The second term in Equation (2) takes into account that the elastic capacity is
reduced when the material is damaged. Note that the first invariant

L(6—x)= %fr (6 —x) 4)

is equivalent to the hydrostatic stress. The partial derivative of the dissipation potential ¢,, with
respect to ¢ leads to the equation for the effective viscoplastic strain

_ 84>z;p . <(~Tex >”85’ex )

“r= %5 “\k/ o9&

given in rate formulation. More details are given in Appendix A. The Chaboche model allows for
isotropic and kinematic hardening, which is considered in order to describe the Bauschinger effect
observed at steel material under high cyclic loadings, see Simo and Hughes [73]. The evolution of the
isotropic and kinematic hardening is described by the ordinary differential equations

R=0bgr(Hr—R) p and (6a)
, 2 00, .
x=%<gﬂa§—x>p (6b)
respectively, depending on the rate of accumulated equivalent viscoplastic strain
. Tex \"
p=(5) )

using the McAuley bracket. The parameter br affects the speed of evolution, whereas the value of
the parameter Hy, is the threshold for the isotropic hardening. With the same influence and meaning,
the parameters b, and H, control the kinematic hardening.

The evolution equation for the local damage proposed by Kowalsky et al. [74] reads:

. - a0,
D= (cl + cze*C3p+) pT+cy(cs—D) <tr<;&q;’7+> > ®)

It is regularized by the model parameter c; up to c5 and only activated if the threshold efﬁ, for
the viscoplastic strain is reached, thus \/2/3 €y : €5p > €5h. Achieving a model where damage only
accumulates with positive hydrostatic stress, Equation (8) is formulated by the active accumulated
plastic strain p ™, an internal variable increasing with

= () ©

see Pirondi and Bon [75]. For the parameter identification, the initial conditions R(0) =0, x(0) =0
and D(0) = 0 are assumed. The complete material model is summarized in Table 1.

The governing equations above are numerically solved using the space-time finite element
method (ST-FEM), see Hughes and Hulbert [76]. The ST-FEM is the consistent extension of the
finite element method [77] with a time integration scheme following the Galerkin method, thus both,
in space and time, the differential equations of the structure are approximately solved with the same
numerical method.
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By gathering all the desired material parameters to identify into the vector
g = [k Gbg by 0y ¢ ¢ c3], where x and G are bulk modulus and shear modulus respectively,
the goal is to estimate g given measurement displacement data, i.e.,

u=Y(q) +e (10)

in which Y(g) represents the measurement operator and ¢ the measurement (also possibly the model)
error. Being an ill-posed problem, the estimation of g given u is not an easy task and requires
regularization. This can be achieved either in a deterministic or probabilistic setting. Here, the latter
one is taken into consideration as further described in the text.

Table 1. Chaboche-type material with hardening and damage.

Elastic strains
E () =C1:5(t) with C(G,x)

Viscoplastic strains

Eaplt) = <M>aa

Isotropic and kinematic hardening
R =bg (H R — R) P

Local damage

) N _ o0
D= (cl + cpe~ 3P > pT +cq(c5s — D) <tr(ag(;q p+) >

Initial conditions
&,(0) =0, évp(O) =0, R(0)=0, x(0) =0and D(0) =0

Parameters and their units

G [N/mm?], x [N/mm?], (elastic strains)

oy [N/mm?], k[N /mm?), n[—], (viscoplastic strains)
bg [—], HR [N/mm?], by [—], Hy [N/mm?], (hardening)
cal-]cl-]cal=]cal-] 5[] (local damage)

3. Bayesian Identification

The main methods are applied on the case study and their efficiencies will be studied in Section 5.
The first method is the so-called Transitional Markov chain Monte Carlo method and the other one is
the Gauss-Markov-Kalman filter which are presented in the following.

3.1. Transitional Markov Chain Monte Carlo Method

The Transitional Markov Chain Monte Carlo (TMCMC) method is proposed by
Ching and Chen [67,68]. The generation of samples from the posterior PDF can be a difficult
task due to the lack of information about the geometry of the probability density function and in order
to overcome this problem, the TMCMC algorithm uses a sequence of intermediate PDFs that converge
to the target posterior PDF, which are defined by:

£j(0) e f(6| M) f(DI M, 6)" (11)
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wherej =0,1,2,..,Mand 0 = ryg < r; <rpy <..<rpy = 1inwhich the index j denotes the stage
number. As one can see, this construction fulfills the desirable properties: the series of intermediate
PDFs starts from the prior PDF, i.e., r; = 0, and ends with f(8| M, D), i.e., r; = 1, by considering that
fo(0) = f(6] M) and fp1(0) = f(6] M, D), which means:

ri=0  fo(6) < f(6] M) (12)

ri=1  fu(6) xf(6|M,D) (13)

The idea is that although the geometry change from f(0|M) to (6| M, D) can be dramatic,
the change between two adjacent intermediate PDFs can be small. This small transition makes it
possible to obtain efficiently samples from f;,1(0) based on samples from f;(8).

Transitional MCMC Algorithm

The idea behind TMCMC is described in detail in this subsection. The entire algorithm is presented
in the following [67,68,78].

In the first step, j = 0 is set and from fy(6) = f(0|M) a set of N samples are picked up.

2. rjy1 should be selected in a way that the coefficient of variation of f(D|M, Gl(cj ))rf“_rf where
k=1,2,..,Nis equal to a prescribed value. Accordingly, the coefficient of variation serves as an
indicator of how close is f;(8) to f;,1(8).

3.  The plausibility weight w(Gl((j)) = f(DIM, Blgj))rf“frf is calculated for k = 1,2, .., N and the
parameter S/ = YN | w((-),((j )) /NJ is computed.

4. Samples Bj 1 fork =1,2,..,N are provided from f(8)/*! by Metropolis-Hastings algorithm.
In other words the k-th sample is picked up from a Markov Chain that starts from one of
the samples 9] wherei =1, 2 ., N which is selected randomly. The i-th initial sample 9(] )i

chosen with probability w( ) /N w6 )) As proposal distribution, a Gaussian which is
centered at the current sample in the k-th chain is applied in Metropolis-Hastings algorithm.
Also, the covariance matrix:

e [o0 ] =]

Xi= 0 (14)
Zk 1w( )
where )
wi = Z{il w(el] )61] (15)
] - . .
£, w(o)

in which B is a prescribed scaling factor which is used as the rejection rate in Metropolis-
Hastings algorithm.

5. Steps two to four are repeated until rp; = 1. At the final step, sarnples B(M) fork=1,2,..,,N
are distributed according to f(0|M, D) and it is turned out that S = ITZ OS] is asymptotically
unbiased for f(D|M).

One of the significant advantages of modified Metropolis-Hastings, which is applied in TMCMC,
is that the first levels allow a free exploring of the sample space, while, in the last simulation
levels, the sampling is performed from a narrower neighborhood of the sample space. Furthermore,
the proposal distribution changes within the same simulation level and this property causes a better
local behavior. This is accomplished by modifying the proposal distribution for each level, in such a
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manner that its standard deviation is small for higher simulation levels, while the average value drives
the sampling towards the most important neighborhood of the sample space [67,68,78].

3.2. Gauss-Markov-Kalman Filter Using Functional Approximation

Some methods used for estimation of Bayes’s theorem unlike Monte Carlo methods do not use
all information but only part of information as approximations are considered. Hence the balance
between time consumption, considered amount of information and the accuracy of approximations
can be achieved. Incidentally, this leads to Kalman filter (KF) [79-81] method as it was related to
Gauss-Markov theorem which is developed without any reference to Bayes’s theorem. Moreover,
the polynomial chaos expansion is also used along with the ensemble Kalman filter (EnKF) [69,82] in
order to be completely independent from any time consuming computational implementations such
as Monte Carlo method. This leads to the Gauss-Markov-Kalman filter [69-72] which is discussed in
this section and more details are provided in Appendix B.

3.2.1. The Linear Filter

The minimization problem as in the Equation (A26) is to be solved and it lies in infinite
dimensional space. Hence it is to be approximated using Galerkin method in finite dimensional
subspaces. The chosen desired subspace to solve the problem is 27 C 2o, C 2. Hence the desired
subspace is shown in Equation (16) where the affine maps @ are certainly measurable [69-71,83].

21={z:z=0(y) =L(y(w))+b,Le L(Y,Q),be Q} C 2, C 2 (16)

The Equation (17) is obtained from the minimization problem as given by the Equation (A26)
where the optimal affine map is introduced via so-called Kalman gain K € .2 (Y, Q). The Kalman gain
is represented as K := cov(q,y)cov(y)~! where cov(q,y) is the covariance of g and y, cov(y) is the
auto-covariance of y and a € Q read as a := g — K(¥).

g = (K(y) + @)% = min (g = (L) + )13 17)

It should be noted that as &7 C 2 is a true subspace, then obviously some information is
disregarded when using this approximation g(y) = K(y) + a. Although the computation becomes
easier, some information that we may learn from the measurement is neglected. Equation (18) is
determined from the Equation (A23) and from the described algorithm.

da1L = q5 + (K(#) —K(y)) = 95 + K — y) (18)

This linear filter is called Gauss-Markov-Kalman filter (GMKF) with the linear minimum mean
square error K(77) defined as in [69-72]. It should be noted that Gauss-Markov-Kalman filter is a
general form of the original Kalman filter which is considered only for the mean values of the random
variables of the parameters included in Equation (18). Accordingly the Equation (A25) representing
the algorithm turns to the Equation (19).

Gn1 = Gn + K((Gni1) = (Y(qn) +€)) = gn = K(Y(qn) +€)) + K(@n11) (19)

Equation (20) is determined from the Equation (18) by introducing the Kalman gain and by
considering the random variables as the argument. By considering the error the Kalman gain is
defined as K := cov(qf,y)(cov(y) + cov(e))*.

9a(w) = q45(w) + K@ - y(w)) (20)
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The Gauss-Markov-Kalman filter as described in Equation (20) needs to be discretized in order to
implement numerically as it is related with the random variables.

3.2.2. Sequential Gauss-Markov-Kalman Filter

The process of updating can be done several times on the whole time interval. Once a high
non-linear chaotic system is divided to very small time steps, the problem turns to plenty of continuous
linear systems so that the GMKF approach can update the model parameters in a much better way if it
is applied several times to update the model parameters on each time step. Eventually this approach
helps to update the uncertain parameters of a non-linear system. Therefore the Gauss-Markov-Kalman
filter as in Equation (20) can be written as like in Equation (21) on the k-th time step for the 7 total time

steps, where the Kalman gain reads K(¥) := cov(q}k),y(k) )(cov(y®) + cov(e))*.

7 (@) = g (w) + KO ® — 5B (w)) 21)

The Equation (21) is called sequential Gauss-Markov-Kalman filter. Schematically the process of
sequential Gauss-Markov-Kalman filter is shown in Figure 1 where the posterior of one update is the
prior of the next update.

|
YA\RRTIN |
e M o £ ' AL o
i ) (RECLEE - . . ) (RENN s
|

e b

Figure 1. Sequential GMKF method.

The approaches such as sampling and spectral approximation or functional approximations to
compute the linear filter approximations are discussed in this section.

3.2.3. Sampling

Considering N random variables an ensemble of sampling points w = [wy, ..., wy| are taken into
account [82]. The Gauss-Markov-Kalman filter as shown in Equation (20) for the considered ensemble
of sampling points results in Equation (22).

Vi=1,.,N: ga(we) = q¢(wy) + C,W(Cy + Ce)+(g —y(wy)) (22)

The Equation (22) is the basis of ensemble Gauss-Markov-Kalman filter where Cg,, = cov(qy,y),
Cy = cov(y) and Cc = cov(e). g5(w;) and qa(w;) are shown as particles in the extended version.

3.2.4. Functional Approximation

The discretization of the random variables are performed by spectral or functional approximations
instead of sampling [70,84,85]. Hence the desired random variables are described as functions of known
random variables {61 (w), ..., 0;(w), ...}. As only finite random variables can be dealt, a finite vector
random variables in functional representation 6(w) = [01(w), ..., 0x(w)] can be considered where n
random variables 0 are taken into account.

The polynomial chaos expansion [86,87] is chosen as system of functions but also other possibilities
exist. It should be noted that the finite set of linear independent Hermite functions { Hy }sc7,, of
variables 8(w) should include all the linear functions of 8 with polynomials such as polynomial chaos
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expansion [69-71]. The multi-index is represented by « and the set 7 is a finite set with cardinality M.
The functional approximation of a random variable g(w) is shown in Equation (23).

q(w) = ), 4aHa(6(w)) = ), 4uHa(6) = 4(6) (23)
x€JTm x€JIm

The argument w is neglected in the Equation (23) because the probability measure P on () is
transported to @ = @1 x ... x @;. The range of 8 showing Py = P; x ... X P, as a product measure,
where P, = (6,) P is the distribution measure of the random variable 6, and it is noted that the random
variables 6, are independent. Therefore all computations are performed on © which is typically a
subset of R". Hence the Gauss-Markov-Kalman filter as shown in Equation (20) for the considered
expansion results in Equation (24), with the indicated inverse sign t, which is known as spectral

Gauss-Markov-Kalman filter.

7a(8) = q£(6) + Cqpy (Cy + Ce) ' (7 — y(6)) = q£(8) + K(y — y(6)) (24)

It should also be noted that in spectral approximation the Gauss-Markov-Kalman filter as shown
in the Equation (20) has the same form as of the sampling approach but the only difference is the
functional approximation of random variables, i.e., the Hermite functions are used to calculate the
covariance matrices. For instance Cy, can be easily computed as given in Equation (25).

Copy = X ! (4 (8) () (8))" (25)
a>0
While the Equation (20) is applied on samples or particles in sampling approach, in spectral
approximations it is applied on the coefficients as shown in Equation (23) which are the functional
approximation of the random variables.

4. Numerical Results

The identification of the material constants in the Chaboche unified viscoplasticity model with
damage is a reverse process based on virtual data. The aim of the parameter estimation is to find a
parameter vector g introduced in the previous section. The bulk modulus (x), the shear modulus (G),
the isotropic hardening coefficient (br), the kinematic hardening coefficient (by) and the yield stress (o)
as well as damage parameters (c;, ¢; and c3) are considered as uncertain parameters of the
constitutive model.

As both kinds of hardenings are taken into account and the studied model is a damaged material
model, one appropriate way of the identification of parameters is to use the results of the cyclic tests
as observation, since more information can be obtained from virtual data rather than from creep and
relaxation tests, especially information regarding hardening and damage parameters as the hardening
and damage equations are involved in this case.

Two tests are studied to observe the efficiency of the identified parameters using different Bayesian
approaches which are discussed in the following.

Validation Procedure for Viscoplasticity Model with Isotropic and Kinematic Hardening Behavior

The Transitional Markov Chain Monte Carlo method and Gauss-Markov-Kalman filter using the
polynomial chaos expansion are applied on a viscoplastic model considering both the isotropic and
kinematic hardening behavior.

The parameters which are set as the uncertain parameters are bulk modulus (x), shear modulus (G),
the isotropic hardening coefficient (br), the kinematic hardening coefficient (b)) and the yield stress (cy).
Hence the vector of unknown parameters is g = [x(w), G(w), br(w), by(w), oy (w)].

A preliminary study in the following of our previous studies [88-90] is on a regular cube, modeled
with one 8 node element. The minimal number of freedoms that have to be constrained is six and
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many combinations are possible. As shown in Figure 2, all three degrees of freedom at point B
are fixed. This prevents all rigid body translations, and leaves three rotations to be taken care of. The x
displacement component at point A is constrained to prevent rotation about z, and the z component
is fixed at point C to prevent rotation about y. The ¥ component is constrained at point D to prevent
rotation about x [91].

E

g
—
N
>,
2
A

Figure 2. Boundary condition considered.

The normal tractions, which is a Neumann boundary condition are applied cyclically in x, y and z
directions on front and back faces and the magnitude of tractions in all directions are shown in Figure 3
where green, red and blue colors represent the stress values in x, y and z directions respectively.

15 x 10
1
0.5
Z
g 0
o
L
-0.5 /
1 — sigma(0)
= sigma(1)
— sigma(2)
-15 - -
0 5 10 15

Time [s]
Figure 3. Decomposed applied force at point E according to time.
By considering the parameters listed in Table 2, for the top right corner node on back face, point

E, as shown in Figure 2, the related displacement graph is obtained as shown in Figure 4 where green,
red and blue colors represent the displacement of point E in x, y and z directions respectively.

15

Displacement [mm]

0 5 10 15
Time [s]

Figure 4. Displacement of point E in x, y and z directions according to time.
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Table 2. The model parameters.

K G
1.66 x 10°  7.69 x 108

br
50

Hg
2.75 x 108

oy n k
17%x108 1 15x108

b?(
50

HX
2.75 x 108

The displacements of point E in x, y and z directions are noted as the virtual data in this case.

Applying both the stochastic identifications, which are fully discussed in Sections 3.1 and 3.2,
i.e., Transitional Markov Chain monte Carlo method and history matching Gauss-Markov-Kalman
filter and sequential Gauss-Markov-Kalman filter approach, the probability density functions of prior
and posterior of the identified parameters can be seen and compared in Figure 5. It should be pointed
out that in the history matching updating the whole time interval is considered and update is done
only once by comparing the predicted value with the recorded displacement history. On the other
hand in the sequential updating the process of updating is done several times.

Summarizing the results, the true values and the mean and variance of the estimated parameters
for each Bayesian method are compared in Table 3.

Table 3. The identified model parameters.

m std m std m std
Param. Jtrue dTmcMc dTmMcMc 9GMKF IGMKF 9SGMKF JSGMKF
K 1.66 x 107  1.71 x 10° 1.33x 107 1.66 x 10° 228 x 107 1.66 x 10°  1.13 x 107
G 7.69 x 10 7.66 x 108 224 x 10° 7.68 x 10 9.09 x 10° 7.68 x 108  3.47 x 10°
br 50 53.00 1.83 54.78 5.16 52.36 3.71
by 50 49.30 1.32 54.58 5.15 52.04 3.01
oy 17x10% 167 x10% 137x10% 1.67x10% 348x10° 1.69x10% 1.35x 10°
4x 10 25X 107 X 107
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Figure 5. PDF of identified parameters.
5. Discussion and Comparison

By comparing the results from the two main approaches, it can be concluded Transitional Markov
Chain Monte Carlo and Gauss-Markov-Kalman filter method provide accurate result and identify
the known parameters for the viscoplasticity model with isotropic and kinematic hardening behavior
except in the history matching update approach as the Gauss-Markov-Kalman filter method for the
hardening parameters are not as narrow as the rest of parameter’s distributions as shown in Figure 5.
This is because the hardening parameters have no direct and strong influence on the measured
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displacement and so the uncertainties are not reduced good enough than rest of the parameters as
there is no enough information. As another reason it can be mentioned that updating is done only once
when history matching Gauss-Markov-Kalman filter is applied and hence the posterior distributions of
hardening parameters are not as narrow as when sequential Gauss-Markov-Kalman filter is employed.

In addition, as the computations are evaluated from the initial time step after each
update in the sequential Gauss-Markov-Kalman filter, more information is recorded in total.
Therefore, better identification and reduction of uncertainty can be obtained in comparison with
history matching Gauss-Markov-Kalman filter.

There is not much difference between the standard deviation of the uncertain parameters between
Transitional Markov Chain Monte Carlo approach and Gauss-Markov-Kalman filter approach for
sequential updating of viscoplasticity with isotropic and kinematic hardening behavior. It should also
be noted that the Transitional Markov Chain Monte Carlo method computational time is significantly
higher than the other approach. The computational time is more in the Gauss-Markov-Kalman filter
approach as multiple updating is involved in the sequential updating of Gauss-Markov-Kalman
filter approach.

As Transitional Markov Chain Monte Carlo approach applied on viscoplasticity model with
isotropic and kinematic hardening is computationally too much expensive, Gauss-Markov-Kalman
filter method is only considered for the viscoplastic-damage model in Section 5.1.

5.1. Validation Procedure on Viscoplastic-Damage Model with Isotropic and Kinematic Hardening

In this section the capability of only one of the Bayesian approaches discussed in the previous
sections is studied. Gauss-Markov-Kalman filter using the polynomial chaos expansion is applied on a
viscoplastic-damage model with both the isotropic and kinematic hardening behavior.

The parameters which are set as the uncertain parameters are bulk modulus (x),
shear modulus (G), the isotropic hardening coefficient (bg), the kinematic hardening coefficient (by)
and the yield stress () as well as damage parameters ((c1), (c2) and (c3)). Hence the vector of unknown
parameters is g = [k(w), G(w), 0y (w), br(w), by(w), c1(w), c2(w), c3(w)].

Similar to the previous case, preliminary study is on a regular cube, modeled with one 8 node
element as shown in Figure 2. Similarly the same Dirichlet boundary condition is considered. Also the
same tractions which is a Neumann boundary condition are applied cyclically in x, y and z directions
on front and back faces and the magnitude of tractions in all directions are shown in Figure 6 where
green, red and blue colors represent the stress values in x, y and z directions respectively.

1500

1000

500

0

Force [N]

=500
/
sigma(0) ||
— sigma(1)
— sigma(2)
0 2 4 6 8 10
Time [s]

-1000

-150

Figure 6. Decomposed applied force at point E according to time.

By considering the parameters listed in Table 4, for the top right corner node on back face, point E,
as shown in Figure 2, the corresponding displacement graph is obtained as shown in Figure 7 where
green, red and blue colors represent the displacement of point E in x, y and z directions respectively.
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Table 4. The model parameters.
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Figure 7. Displacement of point E in x, y and z directions according to time.

Again the displacements of point E in x, y and z directions are noted as the virtual data in this case.
Applying the Gauss-Markov-Kalman filter approach, the probability density functions of prior

and posterior of the identified parameters can be seen and compared in Figure 8.
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Figure 8. PDF of identified parameters.

From the sharpness of the posterior PDF of x, G and 0y, it can be concluded that enough
information from virtual data is received, and updating the parameters considering their uncertainty

is done much easier than the hardening and damage parameters. One reason that can be mentioned
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is that the process is not always in the states that hardening and damage equations are involved.
Therefore less information from the whole simulation can be analyzed to estimate the hardening
parameters and update their parameters’” uncertainties. As the evaluation of hardening and local
damage are seen in Figure 9, only in the time intervals [0.8 2.0], [3.5 5.0] and [6.6 8.2], and [0.8 2.0] and
[6.6 8.2] hardening equations and damage equations are involved respectively. Therefore hardening
and damage parameters are updated, but not as much as the rest of the parameters.

140
— Isotropic
120 | — Kinematic 1 025
100
0.2
I:%) T
2 Loi1s
< <
> 60 >
0.1
40
20 i 0.05
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Time [s] Time [s]

Figure 9. Isotropic and kinematic hardenings- and local damage evaluation according to time [s].

Summarizing the results, the true values and the mean and variance of the estimated parameters
are compared in Table 5.

Table 5. The identified model parameters.

Param. qtrue JGMKF qsGtKl/[KF J3GMKF qthdMKF
K 1.66 x 105 1.66 x 10° 2.03x 10> 1.66 x 10°  937.87
G 7.69 x 10+ 7.70 x 10* 710.34 7.70 x 10*  430.05
oy 266 264.75 1.81 265.1 1.07
br 298.6 304.75 29.02 300.35 7.06
by 100 103.12 11.18 102.98 2.77
a1 7 7.07 0.82 6.84 0.65
) 8 7.82 0.70 8.13 0.57
cs —80 —86.29 10.29 —79.98 3.34

6. Conclusions

The updating is possible by Gauss-Markov-Kalman filter approach for the viscoplastic-damage
model with isotropic and kinematic hardening as the updating is performed according to the history
matching or sequentially updating method. However it should be pointed out that for the parameters
such as hardening and damage parameters, which do not have much strong influence on the measured
displacement than the rest of parameters, the identification can not be done well as compared to the
rest of parameters. Hence a better identification is achieved when the more information is available
from the measurement.

Moreover the uncertainty of the parameters is reduced in the such a way that the posterior
distribution functions of the hardening and damage parameters are not as narrow as the rest parameters
for the history matching and sequential updating methods.

The sequential updating needs more computational time as the updating process is performed
several times than the history updating approach. By considering the fact that the computations are
done from the initial time step after each update which leads to observe more information as well.
On the other hand, the identification and reduction of the parameter uncertainty as inferred from the
update of the parameters is more accurate and acceptable for the sequential updating method than the
history matching update as it is seen from the posterior densities of hardening and damage parameters
by both approaches shown in Figure 8.
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7. Summary

Using the stochastic methods explained in Section 3 to identify the model parameters of the
Chaboche damaged model indicates that it is possible to identify the model parameters using
Transitional Markov Chain Monte Carlo method and Gauss-Markov Kalman filter approach by means
of history updating and also sequentially although the mentioned methods provide different results
and the conclusions are discussed below.

The computational time of the Transitional Markov Chain Monte Carlo method on the mentioned
model is very high and this results in no sense of applying this method in the economical point of
view on the complicated material models. The sequential Gauss-Markov-Kalman filter approach for
both variety of the considered models is not as fast as the history matching approach as updating is
done multiple times. But still the computation time needed is reasonable and acceptable as a stochastic
approach to identify the parameters of a PDE system.

A considerable difference in results is observed between the updated random variables of
the uncertain parameters for the considered models which are determined by employing the
Gauss-Markov-Kalman filter approach. This is because of the fact that the hardening and damage
parameters do not have a strong and direct influence as like the bulk modulus, shear modulus and the
yield stress which have a dominant influence on the considered measured displacement output data.

The Gauss-Markov-Kalman filter approach in a history matching update approach is not an
optimized method to identify the parameters of the viscoplasticity which includes hardening model
and viscoplastic-damage model. This is because, the hardening and damage parameters are not
identified well and their uncertainties are not properly reduced as updating is done only once. Further,
it is also to be noted that the number of observed states where the bulk modulus, shear modulus and
yield stress are involved and identifiable, i.e., the number of states where the elasticity and plasticity
part are involved and identifiable are more than the number of states where the hardening and damage
parameters are involved and identifiable i.e., only plasticity part.

Based on the reliability, accuracy and computational time, the most suitable method among the
employed methods is the sequential Gauss-Markov-Kalman filter approach for the viscoplastic model
with isotropic and kinematic hardening and also for the viscoplastic-damage model enriched with
hardening behavior. The parameters such as hardening parameters, damage parameters, bulk modulus,
shear modulus and yield stress are well updated and posterior distributions representing their
uncertainties are much narrow for these parameters. Using sequential Gauss-Markov-Kalman filter
approach the parameters should be updated at proper time intervals to save time and to reduce cost.
Lesser number of updates results in lesser computation time. Hence particular times should be selected
to identify the parameters as discussed in Section 4 where the hardening and damage parameters are
changing continuously. Considering this fact results in a better parameter identification and better
reduction of parameter uncertainties in a very less time.

It should be noted that the damage evolution has been restricted in such a way that
non-local damage should not exceed certain value, i.e., only minor damage is considered for the
Gauss-Markov-Kalman filter approach on a viscoplastic-damage model to identify its parameters.
Obviously the damage parameters are identified better by using the Gauss-Markov-Kalman filter
approach when an immense damage is considered, i.e., the measured displacement data is influenced
more by a bigger damage and results in better identification of damage parameters from the provided
data. Considering the mentioned fact, this study proves that identification of the model and damage
parameters are possible using Bayesian methods before the specimen is really damaged and completely
collapsed. Such a Bayesian approach can be recommended to be applied for mechanical structure
health monitoring [92,93].
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Appendix A. Elasto-Viscoplastic Constitutive Laws

Neglecting inertia and using infinitesimal strain theory, the mechanics of the investigated
structures with elasto-viscoplastic material behavior is described by the

equilibrium — V-0 = pg (A1)
and the strain balance €, + €, =€ (A2)

see Bonet and Wood [94]. The Cauchy stress o is caused by the body force pg specified by density p
and gravity g and the boundary conditions

u=1i (A3)
c-n=1 (A4)

on the Dirichlet respectively Neumann part. Here the impressed displacement # and the impacting
surface tension ¥ are marked with a bar, the used symbol for a boundary condition. In Equation (A4)
the Cauchy stress is mapped to the boundary by the normal vector # pointing outwards with respect
to the structural body. Next to the equilibrium (A1) the strain balance (A2) changes into a differential
equation as well when the kinematics of the structure is taken into account. The kinematics is described
by the Cauchy strain tensor

e:%(Vu+(VmT> (A5)

given by the gradient of the displacement field. In the following, the constitutive equations for the
elastic and viscoplastic strains, €, respectively e, linking the governing Equations (A1) and (A2) are
specified in detail.

For mild steel under cyclic loading beyond the yield limit taking isotropic-kinematic hardening
into account as well as viscoplastic damaging the material behavior is described by a modified
Chaboche model [95] introduced by Kowalsky et al. [74]. Here, damage is described by continuum
damage mechanics with evolution equation for isotropic ductile damage D, defined later, spatially
distributed with the differential equation

D=D-12V*D (A6)

depending on the internal length /. as model parameter. Equation (A6) introduces the non-local
damage variable D, marked with a bar as well and used in the concept of effective strains and stresses,
see Chaboche [96]. By Equation (A6) it is assumed that damage occurs locally but acts non-locally. It is
supposed that only the stress is affected by damage while the strain remains unaffected. The elastic
behavior is described by the potential

Pei(€c) = 5 (tr(eg ))2 T UE € (A7)

N >

of a St. Venant-Kirchhoff material. The second Lamé-coefficients y is alternatively named as shear
modulus G in the following. Together with the first Lamé-coefficient, the elastic behavior of the
material is further described by the bulk modulus ¥ = A 4 % #, used from this point onwards. With the
tensor of elasticity

9 Per
c="_1"" A8
Begl (A8)
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the rate formulation of the constitutive equation for the elastic part of the effective strains reads:
% o -1 .~ —-1. - -1
€=C"1:10=—=C 0+ —=5C 0. (A9)

Appendix B. Gauss-Markov-Kalman Filter

Appendix B.1. Conditional Expectation

The conditional expectation is defined on the Hilbert space where the random variables are
considered with finite variance as shown in Equation (A10) where the considered sub-c-algebra B
is a subset of the underlying c-algebra 2, i.e.,, 8 C 2. It should be noted that the c-algebra is
basically representing the collection of subsets of (2 on which statements about their probability
can be made. Therefore it has a continuous orthogonal projection Py : S — Sy from the whole
o-algebra to sub-c-algebra B that has the collection of subsets of (2 based on which their probability is
determined [69,97].

Sy := Lo(Q,B,P) := {r: QO — R : rmeasurable w.rt. B, E(|r|*) < 0} C S (A10)

Thus the conditional expectation (CE) of a random variable r € S with respect to a sub-c-algebra
B can be defined by the orthogonal projection as shown in Equation (A11).

E(r|B) := Py (r) € Ses (A11)

The conditional expectation minimizes the squared error as it is an orthogonal expectation as
shown in Equation (A12).

E(|r —E(r|®B)|?) = min{E(|r —7?) : F € Sps} (A12)

Equation (A12) leads to the orthogonality relation V7 € Sgs : E(7(r — E(r|8))) = 0. Also a form
of Pythagoras theorem [98] can be considered as shown in Equation (A13).

E(|r*) = E(Ir — E(r|®)?) + E(E(|B)[) (A13)

Therefore it can be concluded that conditional expectation is a form of a minimum mean square
error estimator. The conditional probability, for instance, the posterior in Bayes’s theorem can be
characterized by the conditional expectation [69,99]. For instance the conditional probability for A C ),
A € 'B is obtained by Equation (A14) where the random variable x 4 becomes unity if w € A and it
vanishes otherwise.

P(A[B) := E(xalB) (A14)

Based on Equation (A14), if the conditional expectation E(x 4|B) is known then everything
about the conditional probability P(A|%) is known and thus the posterior density is defined by
this. If the distribution of a random variable representing the prior density is characterized by the
prior characteristic function then the conditional characteristic function is determined by using the
conditional expectation and this characterizes the conditional distribution. If the prior probability was
the distribution of some random variable , then it is completely characterized by the prior characteristic
function, i.e., in the sense of probability theory, it can be expressed as ¢, (s) := E(exp(irs)) [70].
To determine the conditional characteristic function ¢, (s) := E(exp(irs)|%B), conditional expectation
is used instead of the unconditional expectation and this completely characterizes the conditional
distribution.

For an instance, if a random variable y is the observation and the sub-c-algebra B is generated
from the observation y resulting in B = ¢ (y), the information about the observation can be obtained
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only on B = ¢(y) which are some subsets of () [69]. According to the Doob-Dynkin lemma [100,101],
the Equation (A15) represents the subspace S, as the functions of observation.

So(y) = 1{r € § 1 r(w) = ¢(y(w)), ¢ measurable} C S (A15)

It can be inferred from the Equation (A15) that an observation is a function of the observation and
where the information from the measurement is lying is represented by the subspace S;(,) C S [69].

The conditional expectation E(r|oc(y)) = E(rly) and the conditional probability
P(A|o(y)) = P(Aly) are random variables as y is a random variable. If a fixed value § € ) is observed
for the random variable y, i.e., an observation is established then the posterior expectation is just a
number E(r|7) € R and the posterior probability is P(A|f§) = E(xa|7). Accordingly, Equation (A16)
can be determined for some function ¢, from the Equation (A15) which means for each random
variable r it is a possibly different function.

E(rly) = ¢:(y) and E(r|7) = ¢:(7) (A16)

Considering Bayes’s theorem [69,70,101-104] , it can be concluded that if it is possible to compute
the conditional expectation with respect to an observation y, then the conditional probability with
respect to observation §j can also be computed and this leads to determine the posterior probability
as described in Bayes’s theorem. Thus, the Bayesian estimation can be done by using the concept of
conditional expectation [69-71].

Appendix B.2. Constructing a Posterior Random Variable

Equation (A17), which is the probabilistic model of the observation is obtained by considering the
random variables and the observation equation of the model as discussed in Equation (10) in Section 2
where the mapping Y is observed. This mapping is on the Hilbert space of the random variables with
finite variance.

J=y+e=Y(q)+e (A17)

Appendix B.3. Updating Random Variables

Let’s assume a random variable g, € 2, the next state g, ; € 2 and the measurement y,, ;1 € %
as time t,, goes to t,;1 can be predicted. The conditional expectation of the measurement prediction
Yn+1 calculated based on Equation (A17) is shown in Equation (A18) and the posterior expectation
operator is computed by considering the actual observation #j,,; as shown in Equation (A19).

E(Y(gn+1)10(Yns1)) = ¢v(Yn+1) (A18)
E(Y(qn11)|0n+1) = ¢v (Fns1) (A19)

As the conditional expectation of the posterior is known, all the information of the posterior
probability is available [69-71].

It is to be noted that the Equation (A17) requires every time new random variable g, > to be
computed from t,4; to t,17 and this new random variable has the posterior distribution given by
the mappings ¢v(7,+1) as shown in Equation (A19). Although there are many random variables
which have this posterior density, only one particular distribution should be chosen via the method as
discussed in this section.

To simplify the notations, the forecast random variable is considered as g5 = §,,, and the
forecast measurement is considered as y¢ = y,41. The measurement is represented as § = §41.
Therefore the update of the forecast random variable g, also called as the assimilated random
variable q, = g,41 results in Equation (A20) where B represent a Bayesian update and = represents
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an innovation map which plays the role of a transformation so-called filter i.e., update by filtering
the measurement # [70,71].

9. = B(q5,y5,9) = 95 + E(q5, Y5, 1) (A20)
Appendix B.4. Correcting the Mean

To correct the mean value of the new random variable §, = E(q,|7), it should be considered that
E(qalo(vs)) = ¢q;(yr) := ¢q(yy) is an orthogonal projection Pa(yf)(qf) from 2 = Q® S onto L, =
Q ® Sw, where Seo 1= Sp(,) = L2(Q,0(yf),P) by considering the Equations (A11) and (A19) [69].
Therefore the orthogonal decomposition can be shown as in Equation (A21).

2=008=25 %25 =(Q28x)®(Q®Ss) (A21)

af = Poyp)(ar) + (Lo = Poy ))(a5) = ¢q(yr) + (a5 — 4 (vy)) (A22)

Equation (A23) can be determined as the conditional expectation of the second term in
Equation (A22) is zero as this term is representing the projection part of the decomposition,
ie, E(qr — ¢q(yr)lo(ys)) = Pg(yf)(lg - Pg(yf))(qf) = 0 [69-71]. It can be also explained in this
way that when the measurement is obtained, the Equation (A22) is changed by fixing the component
¢q(yf) € Zoo and leaving the orthogonal rest unchanged.

9ag = ¢q(9) + (a5 — Pq(yr)) = a5 + ($q(9) — q(ys)) (A23)

The posterior mean as seen in Equation (A24) can be obtained from Equation (A23).

oy = E(q0119) = 04(9) = E(4a]9) (A24)

Appendix B.5. Building the Filter

The algorithm to update the random variable with a map ¢ : YV — Q to approximate ¢, is
obtained by inserting the Equation (A17) into Equation (A23) to obtain the Equation (A25).

91 = qn + (8(Fns1) —8(Y(9) +€)) = qn — 8(Y(q) + €) + g(Fn+1) (A25)

It is inferred from the Equation (A25) that the model Equation (A17) is corrected by an innovation
term and the Equation (A25) can be named as the filter equation for identifying the extended uncertain
parameters of Equation (A17) which is an unbiased filter with the minimum mean square error estimate
represented by ¢(7).

The map ¢y is defined by Equation (A26). It is obtained by introducing @ ranging over all
measurable maps @ : Y — Q and by using the Equation (A12) representing the combination of
minimization property and the Equation (A13) representing the Doob-Dynkin lemma [100,101].

1¥(q) = ¢o ()% = min [[¥(q) - @(y)|% = Jmin [[¥(q) - 2% (A26)

As Z,(,) = Zo is L-closed, it can be concluded that Vz € 2 : E(z® (¥(q) — ¢w(y))) [105].
Hence the random variable (¥(q) — @(y)) is orthogonal in the L-invariant sense to all random
variables z € 2. In other words, the correlation operator of (¥(q) — @(y)) is zero [69-71].
It should also be noted that the measurement operator evaluating i need not necessarily be linear in g
and hence the optimal map ¢;,(y) also need not necessarily be linear in y. However the conditional
expectation E(qly) = P, (,)(q) is basically an orthogonal projection.
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