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Abstract: Finite element (FE) models and the multi objective genetic algorithm (MOGA-II) have
been applied for tool performance optimization while machining aluminum-based metal matrix
composites. The developed and verified FE models are utilized to generate data for the full factorial
design of experiment (DOE) plan. The FE models consist of a heterogenous workpiece, which assumes
uniform distribution of reinforced particles according to size and volume fraction. Cutting forces,
chip morphology, temperature contours, stress distributions in the workpiece and tool by altering
cutting speed, feed rate, and reinforcement particle size can be estimated using developed FE models.
The DOE data are then utilized to develop response surfaces using radial basis functions. To reduce
computational time, these response surfaces are used as solver for optimization runs using MOGA-II.
Tool performance has been optimized with regard to cutting temperatures and stresses while setting
a limit on specific cutting energy. Optimal solutions are found with low cutting speed and moderate
feed rates for each particle size metal matrix composite (MMC).

Keywords: finite element model (FEM); metal matrix composite (MMC); cutting tools

1. Introduction

A composite is made up of a base or matrix material with dispersed elements in the forms of fibers,
whiskers, and particles. Both matrix and dispersed components possess their own microstructure and
properties, and the patterns of distribution decide particular properties such as strength and wear
resistance. Metal matrix composites (MMCs) are utilized in numerous fields such as automotive and
aerospace industries owing to their exceptional attributes such as high rigidity, superior resistance
to corrosion and wear, and satisfactory fatigue life. Typically, the MMCs are fabricated using near
net shape production processes. Machining processes are, however, unavoidable for obtaining the
required characteristics for the composite parts.

MMCs are usually made up of soft metallic material acting as a matrix along with hard ceramic
reinforcement particles as dispersed elements. During a machining process, these hard-reinforcing
particles result in a shorter tool life and unwanted workpiece surface. High cutting forces and excessive
tool wear are common observations while machining MMCs, for example, in a recent study by
Repeto et al. [1]. Good control of MMC machining is thus an arduous task, and an in-depth knowledge
of the characteristics of reinforcement particles on process variables is necessary.
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There have been several attempts made to model machining of MMCs and some of the major
research works are described in this section. Kishawy et al. [2] predicted the cutting forces in orthogonal
machining of MMCs by utilizing specific cutting energy and shear area. Pramanik et al. [3] discussed a
mechanistic model for cutting forces during machining of aluminium-based MMC. Three components
were considered for each cutting and thrust force, that is, force owing to chip formation, force
owing to the ploughing action, and force required for particle fracture. Merchant’s analysis was
employed in combination with slip line field theory and Griffith theory of fracture to calculate the
forces needed for chip formation, ploughing, and fracture of particles, respectively. A good correlation
was reported between the proposed model and the experimental results. Ghandehariun et al. [4]
developed an analytical cutting force model. It considers the impacts of reinforcement particle size and
volume fraction. The model and experimental results were compared against various compositions of
workpieces and process parameters and good correlations were testified.

With advancements in computational technology, the use of numerical models to enhance
manufacturing processes is exponentially increasing and MMC machining is no exception. Researchers
primarily use three techniques to model MMCs’ machining, including micromechanics models,
homogeneous material equivalent (EHM) models, and hybrid models. Development of models based
on micromechanics approach poses several challenges with the current modeling techniques. One of
the main problems is the simulation of the interface between matrix and reinforcing particles, which can
imitate the real debonding phenomenon. When properly implemented, these models can simulate
particle fracture and debonding from the matrix as well as calculate global variables such as cutting
forces, chip morphology, stress distribution, and temperature distribution. In contrast, EHM model
implementation is quite similar to homogeneous material modeling, once a constitutive material model
is available. With reasonable accuracy, these models can predict cutting forces, chip morphology,
and stress and temperature distributions. However, the major drawback of these models is the inability
to simulate reinforced particle dynamics during chip evolution. EHM is used in hybrid models to
predict global variables such as cutting forces and chip morphology, while the micromechanics method
is used as a sub-model to simulate phenomena around the tip of the tool to visualize tool–particles and
tool–chip interactions.

An earlier attempt was made by Monaghan and Brazil [5] to develop a micromechanics-based
model. They predicted residual stresses and debonding of particles from the matrix during MMC
machining. The failure at the particle–matrix interface was estimated based on stress distribution and
no insight was provided regarding the particle–matrix bonding. In another study, Ramesh et al. [6]
simulated particle debonding and predicted cutting forces and stress distributions during MMC
machining with a diamond tool. Different scenarios were considered for tool–material interactions and
normal and shear stresses were predicted for each case. El-Gallab and Sklad [7] modelled residual
stresses and sub-surface damage during orthogonal cutting of aluminum-based SiC-reinforced MMC.
Feed rate was found to be the dominant factor to control both sub-surface damage and residual stresses.
Both of these performance measures increase upon increasing the feed rate.

Pramanik et al. [8] conducted a comprehensive study for exploring the tool–particle interactions
during MMC orthogonal machining. Stress and strain distributions were calculated for various particle
positions with respect to the cutting tool and showed that they are accountable for particles debonding
from the matrix, sub-surface damage, and wear of the tool.

Zhou et al. [9] proposed a hybrid approach for modeling machining of SiC-reinforced
aluminum-based MMC. They utilized a 2D EHM model to evaluate stress distributions and the
results were transferred to a micromechanics model to simulate reinforcement particles debonding.
An improved hybrid model was illustrated by Dandekar and Shin [10] for machining of MMC. Cohesive
zone elements (CZEs) were applied as the interface between workpiece and reinforcement particles
to model particle debonding. They calculated sub-surface damages from the proposed model and
verified them experimentally. Two models were developed with CZE with and without a parting
line. While the other two developed without CZE and the particle debonding were expected from
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matrix failure around the interface. It was concluded that the model with CZE and parting line
exhibited better results with respect to cutting forces and chip morphology. Surface defects were
modeled by Tao et al. [11] by utilizing the meso-scale finite element model during machining of a
high volume fraction of Al/SiC composites. Two types of models were developed, one with round
reinforcement particles and the other with polygonal reinforcement particles. The results showed
that micro fracture, particle’s rotation and pull-out, and big cleavage are the main mechanisms for the
formation of surface defects.

A detailed study regarding tool–particle interactions using micromechanics-based models was
performed by Ghandehariun et al. [12]. These models were able to simulate particle debonding and
fracture and the models were verified by experimental cutting force data. In another study [13], the same
models were used to assess the influences of varying cutting speed on different performance measures
such as cutting forces, chip morphology, and particles’ debonding and fracture. Zhou et al. [14] used
FE models and validated that through experimental investigations to study the machinability of Al/SiC
MMCs containing a high volume fraction of SiC particles. The accuracy of the predictions of surface
defects has been shown to be largely reliant on the fracture model adopted for the reinforcement
particles. They concluded that broken edges are mainly owing to the creation of the negative shear
plane in the workpiece.

Pramanik and Zhang [15] developed FE models to analyze particle debonding and fracture
during MMC machining by evaluating stresses and strains in the workpiece. The investigations were
carried out along primary, secondary, and tertiary shear zones. They demonstrated that particle
fracturing occurs instantly upon contact with the cutting tool inside the tertiary shear zone. In contrast,
both debonding and fracture happen for the particles at the secondary shear zone as they are interacting
with the tool and other particles.

From the above literature analysis, it can be inferred that the modeling work for MMC machining
needs improvement in several respects and a substantial amount of the work is lagging in temperature
analysis, explicitly with regard to tool performance optimization. The objective of this study is
to optimize tool performance in terms of tool stresses and tool–chip interface temperatures while
constraining specific cutting energy. The optimization would be carried out by developed FE models,
which are able to predict various performance measures like cutting forces, temperature, stresses,
and chip morphology. The models are developed using uniform distribution of reinforcement particles
in the MMC matrix. Hence, the effect of different particle sizes on output variables can be predicted
along with variation in cutting parameters. Therefore, optimized solutions are obtained for each
particle size. The FE models are verified by the published results as reported in [16]. In contrast to the
traditional approach based on design of experiments (DOE) with real experiments, this method utilizes
verified FE models to reduce costly experimental runs. Furthermore, the development of response
surfaces eliminates the need to generate new FE models that are not available in the DOE matrix.

2. Materials and Methods

2.1. Finite Element Models

Figure 1 depicts the undeformed mesh for the tool and the workpiece. The workpiece and cutting
tool contains a total of 21,836 elements. Mesh was refined at the tool tip to accommodate for high
temperature gradients. Four-node continuum plane strain elements with reduced integration and
temperature degree of freedom (CPE4RT) were selected for the study. The MMC workpiece was
developed assuming circular reinforced particles with uniform distribution, as shown in Figure 1.
A single mesh was used for the entire workpiece, so that no tie-constraints between matrix and
reinforcement particles were necessary. A parting line was created with assigned damage criterion to
facilitate smooth chip formation. ABAQUS/Explicit was utilized for coupled temperature displacement
analysis with the fixed workpiece and moving tool.
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Figure 1. Finite element (FE) model for metal matrix composite (MMC) cutting.

The developed models were verified using cutting forces and temperature data published in [16].
The MMC workpiece was based on aluminum alloy Al-359 as matrix with silicon carbide particles as
reinforcement. The average particles diameters were 10, 15, and 20 µm. The polycrystalline diamond
(PCD) cutting tool used for the analysis has an average grain size of 15 µm. Table 1 shows the physical
and mechanical properties of the matrix, reinforcement particles, and tool material. The cutting
parameters and tool geometry specifications are listed in Table 2.

Table 1. Workpiece and cutting tool materials’ composition and properties. PCD, polycrystalline diamond.

Matrix Al359 Reinforcement Particle (SiC) Cutting Tool (PCD)

Density (kg/m3) 2700 4370 3500
Young‘s modulus (GPa) 72 408 800

Thermal conductivity (W/m/◦C) 180 30 173
Specific heat (J/Kg/◦C) 963 706 508

Table 2. Cutting parameters and tool geometry for finite element (FE) models.

Cutting parameters

Speed 60, 120, and 180 m/min
Feed rate 0.1, 0.2, and 0.3 mm/rev

Depth of cut 2 mm

Cutting tool geometry

Rake angle 0◦

Clearance angle 11◦

Edge preparation No

2.2. Material and Friction Models

Matrix material is considered as temperature-dependent elasto-plastic material until the damage
criterion is met. The Johnson-Cook strain, strain rate, and temperature dependent plasticity model
were employed to determine the mises flow stress. The model is appropriate for machining processes
because the workpiece material is subjected to large strains, high strain rates, and high temperatures.
The mises flow stress is given as follows:

σ = (A + Bεn)

(
1 + C ln

( .
ε
.
ε0

))(
1−

( T − Ttr

Tm − Ttr

)m)
(1)
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where ε is the equivalent plastic strain,
.
ε is the equivalent plastic strain rate,

.
ε0 is the reference strain

rate, T is the working temperature, Ttr is the transition temperature, and Tm is the workpiece’s melting
temperature. The Johnson-Cook equation has five material constants, namely, A for yield stress
constant, B for strain hardening constant, n for strain hardening exponent, C for strain rate hardening
constant, and m for coefficient of temperature dependence. These material constants were estimated
by experiments such as torsion tests, tensile tests, and dynamic split hopkinson bar tests, and can
include data across a wide range of strain, strain rates, and temperatures. The Johnson-Cook constants
used in the FE model are shown in Table 3 [17].

Table 3. The Johnson-Cook (JC) equation constants for Al-359 alloy.

JC Parameters A (MPa) B (MPa) C n m Tmelt

255 361 0.01 0.18 5.5 593

A parting line composed of sacrificial elements was used to model the chip separation from
the workpiece. These elements were assigned with Johnson–Cook progressive damage criterion,
which considers strain, strain rate, temperature, and pressure stress. For each item, the damage factor
was estimated and is given as follows:

D =
∑ ∆ε

ε f
(2)

where ∆ε is the change in equivalent plastic strain during the integration step and ε f is the fracture
strain, which depends on strain rate, temperature, pressure, and von mises stress. Damage factor D
measures damage in the element; when D = 1.0, fracture will occur, and the element is removed from
the simulation. The fracture strain ε f is given by the following:

ε f = (D1 + D2 exp(D3σ
∗)

(
1 + D4 ln

( .
ε
.
ε0

))(
1−D5

(
T − Troom

Tmelt − Troom

)m)
(3)

where σ∗ is the ratio of pressure stress to von mises stress. D1 to D5 are material constants and
determined by tensile and torsion tests. The Johnson–Cook damage parameters for matrix materials
are listed in Table 4.

Table 4. The Johnson-Cook damage law’s constants for Al-359 alloy.

JC Parameters D1 D2 D3 D4 D5

0.071 1.248 −1.142 0.147 0.1

The debonding between matrix and reinforcement is usually modelled by two methods. The first
one is to use cohesive zone elements that are degraded with separation. The interface bonding strength
of around 50 J/m2 is taken by some researchers [10,12]. The other method is to use matrix element failure
around the reinforcement particles and the debonding energy corresponds to the failure stress–strain
values as given by the Johnson-Cook damage law in Equation (3).

The coulomb’s friction law is considered to model the contact between tool and workpiece.
According to coulomb’s law, when the shear flow stress of the workpiece material is greater than
the critical value of frictional stress, there is no sticking and the relative motion or slip will occur,
and vice-versa. Therefore, the frictional stress is given by the following:

s = min(µp, τ) (4)

where s, p, and τ are the frictional, normal, and shear flow stress at the tool rake face, respectively.
The coefficient of friction is taken as 0.15 from the work of Zhu and Kishawy [18].
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As the computational cost of the explicit analysis depends on the size of the smallest element,
the severe deformation in matrix material owing to hard reinforcement particles results in very slow
processing. Adding mass artificially to the selected elements can reduce this problem to some extent
and helps in speeding up the processing time. This option is selected for MMC cutting simulation and
is termed as mass scaling in ABAQUS/Explicit® [19].

3. Results and Discussions

The resulting chip formation with 60 m/min cutting speed and 0.1 mm/rev feed rate is shown in
Figure 2. High strained regions can be visualized on the chip surface as the aluminum alloy is heavily
deformed between hard SiC particles forming recurring shear bands. The higher temperatures at the
tool–chip interface along with sticking friction also result in large strains [16,20].
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Figure 2. Deformed workpiece showing equivalent plastic strain contour.

The cutting and thrust forces acquired by means of simulations are compared against experimental
values in Figures 3 and 4. It can be visualized that the impact of cutting speed at low feed levels is
negligible and the same is revealed by FE models. However, both cutting and thrust forces decrease
with an increase in cutting speed at higher feed levels. In contrast, the effect of feed rate is quite clear
and shows a significant increase with an increase in feed rate. A similar trend is shown by FE models
with errors between 9% and 13% for cutting forces and 12% and 16% for thrust forces. The differences
are owing to various assumptions considered during the development of FE models like using a
sharp tool edge; absence of tool wear; and utilization of a simplified friction model, for example,
use of a constant coefficient of friction. In addition, according to some researchers, the predictions of
Johnson-Cook model parameters based on Split-Hopkinson bar tests are based on strain rate functions
that are different from the ones found for metal cutting.

Figure 5 shows stress contours with different cutting parameters and MMC configurations. It is
apparent that the stress contours for MMC are quite different in comparison with the homogeneous
alloys. For homogeneous alloys, high stresses are usually restricted to the primary shear zone. However,
for MMC, high stresses are extended to the secondary shear zone, that is, at the tool–chip interface.
The profile of the high stressed area at the secondary shear zone depends on the chip loading at the
tool rake face, which in turn depends on many factors like friction, temperature, and normal and shear
stresses. In addition, the overall stress contour for particle-based composites also depends on particle
size and position in the metal matrix. Large particles and high-volume fractions give rise to the tool
stresses. Large particles have more kinetic energy and their probability of debonding and fracture
increases. This results in high tool stresses, which lead to chipping and groove formation. Similarly,
a high volume fraction escalates the number of impacts of reinforcement particles on the tool face,



Metals 2020, 10, 835 7 of 16

leading to high tool stresses. One of the features of MMC stress contours is that the reinforcement
particles at the chip–workpiece interface are aligned with the shear plane, as depicted in Figure 5.
These observations were also discussed by other researchers while doing numerical studies and
MMC cutting experiments [21,22]. Similarly, the stress contours inside the cutting tool are very much
different than machining with homogenous alloys. Alternate high stress regions can be visualized at
the chip–tool interface owing to more chip load because of hard SiC particles. As depicted in Figure 5b,
workpiece and cutting tool stresses escalate as cutting speed increases from 60 m/min to 180 m/min.
The kinetic energy of the hard reinforcement particles escalates with the rise in cutting speed, which in
turn increases the impact and abrasive actions of the hard SiC particles [23]. Figure 5c shows the mises
stress when the feed rate changes from 0.1 to 0.3 m/min. The regions of high stresses are more frequent
at the tool–chip interface owing to the greater number of reinforcement particles. These recurring
impacts of hard SiC particles with the tool surfaces result in high stresses. In addition, these impacts
are found to be responsible for the formation of grooves and tool-chipping [24–26]. The outcome of
change in reinforcement particle size from 15 to 20 µm is shown in Figure 5d. Mises stresses are high
owing to large reinforcement particles. Large particles have greater momentum, which can lead to
more groove formation and chipping of the tool [27].Metals 2020, 10, x 7 of 16 
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Figure 6 shows the average temperature obtained through experiments and FE models at the
tool–chip contact zone. The influence of the change in cutting speed and feed rate with FE models is
nearly similar compared with the experimental results. The effect of cutting speed on temperature is
more as compared with the feed rate, as shown in Figure 6. At a low feed rate (i.e., low undeformed
chip thickness), the effect of cutting speed is more pronounced as compared with at higher feed rates.
At a low feed rate, the impact of cutting speed on the average tool–chip temperature is higher owing
to the size effect, that is, most of the available energy is consumed in plowing rather than cutting.
With higher feed rates (large undeformed chip thickness), more energy is consumed in cutting, that is,
low specific cutting energy is required.

Figure 7 shows the temperature profiles for workpiece and cutting tools at different cutting
parameters and particle sizes. For all cases, the high temperature area is around the tool tip, comprising
fractions of primary and secondary shear zones. Temperatures rise with increased cutting speed,
as shown in Figure 7b. It can be seen that, with an increase in cutting speed, the high temperature zone
gets smaller on account of less time available for heat dissipation. Figure 7c shows the temperature
contours when feed rate changes to 0.3 mm/rev. As shown, the increase in feed rate amplifies the
tool–chip contact length, which in turn enlarges the high temperature area. However, the effect of
increasing the cutting speed on maximum temperature is greater as compared with the feed rate effect.
Figure 7d shows the effects on temperature profile when particle size is increased from 15 to 20 µm.
Though maximum temperature is found to increase, the high temperature area gets smaller owing to
the decrease in particle density, as depicted in Figure 7d.
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(c) V = 60 m/min, f = 0.3 mm/rev, p = 15 µm; (d) V = 60 m/min, f = 0.1 mm/rev, p = 20 µm.

The developed FE models are utilized to form a full-factorial DOE using three levels of cutting
speed (V), feed rate (f), and particle size (p), as shown in Table 5. The average tool–chip interface
temperature (T), maximum normal stress on the cutting tool (S), and specific cutting energy (U) are
used as output variables to optimize MMC cutting. Using the results of DOE, response surfaces based
on radial basis functions are generated in order to obtained optimization runs that are not available in
the original DOE matrix.



Metals 2020, 10, 835 10 of 16

Table 5. Full-factorial design of experiments (DOE) and the results obtained using FE models.

Id V(m/min) f (mm/rev) p (µm) T (◦C) U (J/mm3) S (MPa)

1 60 0.1 10 210 890 704

2 60 0.2 10 229 773 1879

3 60 0.3 10 254 793 4276

4 120 0.1 10 258 885 739

5 120 0.2 10 270 738 2148

6 120 0.3 10 276 758 4006

7 180 0.1 10 278 880 782

8 180 0.2 10 292 723 1973

9 180 0.3 10 300 683 4495

10 60 0.1 15 216 915 1270

11 60 0.2 15 239 795 3685

12 60 0.3 15 263 813 6610

13 120 0.1 15 268 910 1420

14 120 0.2 15 282 760 3978

15 120 0.3 15 288 778 6908

16 180 0.1 15 290 900 1655

17 180 0.2 15 303 745 4387

18 180 0.3 15 311 702 7255

19 60 0.1 20 221 935 3372

20 60 0.2 20 246 808 6231

21 60 0.3 20 269 828 9386

22 120 0.1 20 276 930 4184

23 120 0.2 20 288 773 7913

24 120 0.3 20 295 793 10982

25 180 0.1 20 297 920 4860

26 180 0.2 20 310 758 9334

27 180 0.3 20 319 717 12,203

The aim of the optimization study is to reduce the tool–chip interface temperature and maximum
normal stress on the tool, keeping a limit to specific cutting energy required. The objectives and
constraint are listed in Table 6. An upper limit of 800 J/mm3 is taken as the constraint for specific cutting
energy. Ideally, low values of specific cutting energy are desirable, but this is associated with higher
feed rates. Higher feed rates result in high cutting forces and will also deteriorate the cutting tool.

Table 6. Objective functions and constraint.

Objective functions
1) Minimize S
2) Minimize T

Constraint 1) U ≤ 800 J/mm3
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The choice of constraint value for specific cutting energy is a kind of compromise between cutting
efficiency and faster production rates. The optimization search is carried out using a multi-objective
genetic algorithm (MOGA-II). It uses an efficient search method to improve the genetic algorithm
performance. It avoids converging at local optimal frontiers and preserves some good solutions.

The effects of input parameters on tool stresses, interface temperatures, and specific cutting
energy obtained through smoothing spline analysis of variance (ANOVA) are shown in Figure 8.
It shows that particle size has the greatest effect on tool stresses following feed rate. The influence
of cutting speed and other interactions is negligible for tool stresses. The average tool–chip interface
temperature is mostly governed by cutting speed followed by feed rate and reinforcement particle size.
The interactions of cutting speed and feed rate also have a noticeable effect (around 5%), as depicted in
Figure 8. Feed rate is the most influential parameter for specific cutting energy and the dependency is
around 80%. In contrast, the total contribution of cutting speed, interaction of cutting speed and feed
rate, and particle size on specific cutting energy is less than 18%, as shown in Figure 8.
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The combined effects of reinforcement particle size and feed rate on tool stresses generated by
response surface based on radial basis function are shown in Figure 9. The effects of particle size and
feed rate are straight forward and show a rise in tool stresses in a linear fashion. Maximum tool stresses
are obtained with large particle sizes and high feed rates. It is obvious that tool stresses are low for
particle sizes up to 15 µm and feed rates below 0.2 mm/rev.
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Figure 9. Combined effects of reinforcement particle size and feed rate on tool stresses.
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Figure 10 shows the pooled effect of cutting speed and feed rate on average tool–chip interface
temperature. It is clear that the temperature rises with both cutting speed and feed rate, but the effect
of cutting speed is more distinct and more rapid than the feed rate. Maximum temperatures are found
at higher cutting speeds and feed rates. As illustrated in Figure 10, the effect of feed rate is found to
decrease at higher cutting speeds.
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Figure 4. Thrust forces from experimental works [16] and simulations. 2 
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Figure 10. Combined effects of cutting speed and feed rate on average tool–chip interface temperatures.

Figure 11 shows the pooled effects of cutting speed and feed rate on specific cutting energy. A low
specific cutting energy zone can be marked at higher feed rates, in particular with a higher cutting
speed. In comparison, higher specific cutting energies are required at lower feed rates, irrespective of
the cutting speed. As explained earlier, this is a well-known behavior called size-effect, showing a
strong dependency of specific cutting energy on feed rate. It can be inferred that, at low to moderate
feed rates, the effect of cutting speed on specific cutting energy is almost negligible. A slight variation
in specific cutting energy with cutting speed can be observed at higher feed rates. This might be owing
to pronounced thermal softening effects at higher feed rates.
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The total number of evaluations using MOGA-II is equal to the number of generations requested
multiplied by the number of experimental runs (design points) in the DOE matrix. Figure 12 shows a
3D bubble chart containing all the design points obtained after optimization runs. Real design points
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correspond to the experimental runs in the DOE matrix, whereas virtual ones are obtained using the
developed response surfaces. The design points that violate the constraints in the optimization problem
are considered as unfeasible. In Figure 12, the design points are plotted against two performance
variables, that is maximum normal stress on the tool (S) and average tool–chip interface temperature
(T). The diameter of the bubbles represents reinforcement particle size. As the objective is to minimize
both stress and temperature, the design points at the lower left corner of the chart should be considered
as optimal solutions. The relationship between tool stresses and particle sizes is very much clear from
Figure 12, as the low stress area is mostly occupied by small particles. The design points marked as A,
B, and C can be considered as optimal solutions for each particle size category. These design points are
non-dominated as a further reduction in stress or temperature results in violating the constraint, that is,
they are associated with high specific cutting energies. For example, consider point A, which is taken as
optimal for particle size of 10 µm. As shown in Figure 12, no feasible point exists below and to the left
of A, that is, all points having low stresses and temperatures as compared with A, have high specific
cutting energies, that is, they are unfeasible. Similar are the cases for other particle size categories. B is
the optimal point for a particle size of 15 µm and C refers to optimal point for a particle size of 20 µm.
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Figure 13 shows a 4D bubble chart illustrating the relationships between stress, temperature,
cutting speed, and feed rate. The color of the bubble represents the cutting speed, while the size of
bubbles shows the feed rate. It can be seen that smaller bubbles are at the extreme left, whereas large
size bubbles are at the right side of the diagram. This shows a general trend that tool stresses increase
with feed rate. Similarly, most of the blue bubbles (with low cutting speeds) are found at the bottom
of the diagram, whereas red bubbles (with high cutting speeds) can be seen on the top. This simply
shows an increase in average tool–chip interface temperatures with the cutting speeds. It is obvious
that all optimal points are blue colored having medium size, that is, optimal solutions are obtained at
low cutting speeds and moderate feed rates.
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4. Conclusions

In this study, an optimisation method for MMC machining was developed based on FE models
and response surfaces. Tool performance was optimized in terms of stresses and temperatures,
while putting a limit on specific energy consumption. FE models were developed based on uniform
distribution of reinforcement particles in the metal matrix. Chip separation criterion was chosen based
on element deletion method using the Johnson–Cook damage model. The model results in terms
of cutting and thrust forces and average tool–chip interface temperatures are found to be in good
agreement with the experimental results. The models are capable of simulating the effects of varying
particle size in addition to the cutting parameters. The model behaviour is discussed and found to be
in line with the previous research findings. The following remarks can be concluded from the study.

• The deformed chip in the FE model for MMC machining contains localized regions of high
strains owing to hard reinforcement particles. The chip profile is very much aligned with the
experimental results.

• High tool stresses are observed with higher feed rates and large reinforcement particles.
• Average tool–chip interface temperature increases with both cutting speed and feed rate. However,

the effect of cutting speed is more rapid and pronounced as compared with the feed rate.
• Higher specific cutting energy is required at lower feed rates irrespective of the cutting speed.

Moreover, at moderate feed rates, the effect of cutting speed is negligible.
• An increase in particle size also leads to an increase in specific cutting energy.
• The optimal design points have low cutting speeds and moderate feed rates.
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