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Abstract: Selective laser melting (SLM) is one of the most popular additive-manufacturing techniques
that are revolutionising the production process by opening up new possibilities for unique
product-shape fabrication, generating objects of complex geometry and reducing energy consumption
as well as waste. However, the more widespread use of this technology is hindered by a major
drawback—the thermal-history-dependent microstructure that is typical of SLM-fabricated objects is
linked to uncertainties regarding the crucial material properties. While trial-and-error approaches
are often employed to limit these risks, the rapidly developing field of numerical modelling
represents a cheap and reliable methodology for predicting the microstructure—and by extension,
the mechanical properties—of SLM-fabricated objects. Numerical approaches hitherto applied
to predicting the evolution of the microstructure in SLM processes and similar boundary-value
problems are reviewed and analysed in this article. The conducted analysis focused on mesoscopic
scale models, which currently offer sufficient resolution to recover the key microstructural properties
at a computational cost that is low enough for the methodology to be applied to industrial problems.
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1. Introduction

The concept of additive manufacturing (AM) has revolutionised the production process by
inverting the conventional ’subtractive’ manufacturing methods. Whereas the latter are based
on removing material from a larger volume in order to generate objects, AM generates objects
’from the ground up’ by adding material. This allows for the production of geometrically complex
structures that are either impossible or too expensive to make with traditional methods like milling or
machining [1]. Additionally, compared to conventional manufacturing processes, AM dramatically
reduces material waste and energy consumption [2] as well as reducing the number of processing
steps and the number of necessary tools [3]. A wide range of applications, including those in
the medical, aerospace, defence and automotive industries [4–6], have already benefited from
AM. However, the more widespread use of AM is still hindered by uncertainties regarding
the ‘trustworthiness’ and durability of the fabricated objects [7,8].

Selective laser melting (SLM), one of the most popular AM techniques, generates objects by adding
material in a layer-wise fashion in the form of powder and then selectively melting and fusing it to
the underlying geometry using a moving laser source. The volume of material close to the laser
heat source, where the melting temperature is exceeded, is referred to as the melt pool, while
the volume around it where the temperature is not high enough to melt the material but is still
high enough to result in grain growth, is referred to as the heat-affected zone. The thermal gradient
and the liquid–solid interface velocity in the heat-affected zone are observed to have a decisive
influence on the solidified microstructure and the transition from columnar to equiaxed grains [1,3].
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The laser path, velocity, power and thickness represent the fabrication parameters that have a strong
influence on the thermal processes within the manufactured material and consequently its developing
microstructure. The strong microstructural inhomogeneity that is typical of SLM-produced parts [9] is
linked to uncertainties regarding crucial material parameters, such as the yield and ultimate stresses,
which ultimately depend on the microstructure [10]. This represents a major drawback and limits
the use of this manufacturing technique [11].

While a multitude of trial-and-error approaches are presently applied for optimising
the SLM-fabrication parameters of individual products in order to achieve the desired
microstructure [12], numerical modelling is quickly establishing itself as the methodology of
the future [10,13]. Predicting the solidified microstructure of SLM-fabricated objects, however, remains
a major challenge in the field of AM [11], mostly due to the size of the computational problem to
be solved. Achieving quantitative predictions of AM microstructures is an inherently multi-scale
problem that requires bridging several length and time scales [14]. The material transformations
during solidification take place locally (O(10-100 µm)) over short time spans (O(10 ms)), while
the manufactured parts are of the scale O(10 cm3) and take O(hours-days) to build [10].

Depending on the length scale of interest, one of three different approaches is generally considered
when modelling microstructural features in industrial problems. Macroscopic scale methods (Figure 1b)
are based on volume averaging over a representative domain. They can be applied to the scale of
the product, but on the other hand do not provide a direct microstructure representation. Instead,
the microstructure is approximated by variables representing its length scales such as the average
grain size, the dendrite tip radius, the dendrite arm spacing, etc. [1,15]. Microscopic scale methods
(Figure 1d) aim to model the morphology of the solidifying microstructure by tracking the solid–liquid
interface [16–18]. They offer a full description of the entire dendritic microstructure, but can only
be applied to the scale of a few grains, due to the extremely high computational costs. Mesoscopic
scale methods (Figure 1c) offer a compromise between the numerical cost and the resolution of
the microstructure’s representation. Rather, that tracking the internal morphology of the grains,
i.e., the network of dendrite trunks and arms, only the growing grain envelope is modelled.
This considerably reduces the numerical cost and allows the method to be applied to macroscopic
scales. Due to the fact that the modelling does not take place on sufficiently fine scales to track
the growth kinetics, approximate laws are utilised to describe the velocities of the primary dendrite
arms [19].

Figure 1. Schematic representation of (a) manufactured object microstructure; (b) macroscopic
scale methods where microstructure is represented by variables such as grain anisotropy, etc.
at a relatively low computational cost; (c) mesoscopic scale methods, representing a compromise
solution at a moderate numerical cost and delivering microstructure at a lower resolution by tracking
solely the grain envelopes; and (d) microscopic scale methods, where the complete dendritic grain
microstructure is modelled at a high numerical cost.

This paper is thus structured as follows: numerical approaches to modelling heat transfer
during SLM processes are analysed in Section 2, simulations of microstructure evolution during
SLM processes are reviewed in Section 3, combined heat-transfer and microstructure-solidification
models are described in Section 4 and some final remarks and perspectives are discussed in Section 5.
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2. Modelling the Heat Transfer

The solidified microstructure of SLM-fabricated objects ultimately depends on the local thermal
history [15]. Simulation of the heat transfer within the fabricated object, which is being heated by
a moving laser heat source (Figure 2) is thus an implicit part of any numerical model, aiming at
predicting the microstructure evolution during SLM fabrication [20]. Although alternative approaches
have been employed [11,21,22] the finite-element method (FEM) remains the most widely used
methodology for solving the transient heat-transfer problem during SLM fabrication due to its
flexibility in handling complex geometries, material properties and boundary conditions [23], and will
henceforth be the focus of this section. While certain FEM analyses were performed in 2D [24–26],
Kolossov et al. [27] have shown that a full 3D approach is needed and underlined that any reduction
in the dimension of the model will lead to non-realistic predictions of the temperature field.

Heat-transport phenomena occur in the form of heat conduction within the material, on
the one hand, and radiation and convection on the other. In general, at a continuum scale,
the spatial temperature (T) distribution during laser-beam melting can be defined using the heat-flow
equation [28]:

ρ(T)cp(T)
∂T
∂t

= ∇[λ(T)∇T] + Q(x, y, z, t), (1)

where ρ(T), cp(T) and λ(T) are the temperature-dependent density, specific heat capacity and thermal
conductivity, respectively, while Q(x, y, z, t) is the heat generation per unit volume.

Figure 2. Temperature contours during selective laser melting (SLM) process on Ti6Al4V powder
bed [29].

2.1. Material Properties

The change of material density from a relatively low powder value ρp to a much higher bulk value
ρb is normally modelled with a smooth transition from between the liquidus (TL) and solidus (TS)
temperatures [30–32]. The temperature dependence of the thermal conductivity has been modelled
with varying levels of complexity. From a simple stepwise function to account for the material
transformation from powder to bulk [31] to simple temperature dependency [27,30,33,34] and highly
complex modelling of the powder conductivity by accounting for heat transfer through particle
contacts, gas surroundings and inter-particle radiation [22,26,35]. The specific heat capacity is most
often modelled as a temperature-dependent function [27,31,36]. In either case, due to the material’s
transformation from powder to bulk during melting, its temperature-dependent material properties
cannot be described with a bijective function. In order to overcome this problem, Foroozmehr et al.
have changed the material properties of all the finite elements (FEs) that have exceeded the melting
temperature from powder to solid in every time step [31].



Metals 2020, 10, 800 4 of 15

2.2. Boundary Conditions

The thermal boundary conditions of SLM fabrication are defined by the two mechanisms of
heat exchange with the surroundings: convection and radiation. Thermal convection qc is usually
modelled as:

qc = hc(T − T∞), (2)

where T∞ is the ambient temperature and hc is the convective heat-transfer coefficient. Although several
authors claim heat convection can be neglected without loss of accuracy [30,37], most authors
implemented convective heat losses in their models. Apart from very few exceptions [35], hc is assumed
constant [22,24,27,29,31,32,34,38]. The thermal radiation qr is usually ignored [11,24,27,31,32,34,37,38],
although it has already been implemented in a FEM model [22,29,35] by applying the equation:

qr = σεs(T4 − T4
∞), (3)

where σ is the Stefan–Boltzmann constant and εs the emissivity. Dai and Shaw have also accounted
for the reduced emissivity of the powder bed in comparison with the bulk material by accounting for
the surface fraction, occupied by radiation-emitting holes [35].

2.3. Modelling the Heat Source

A variety of different approaches have been applied to model the laser heat source in the SLM processes,
which usually features a cross-section with a Gaussian power distribution around the beam centre.
While simpler approaches are based on fixing the desired temperature of a subsection of surface nodes
to simulate the laser-beam heating [35], most numerical models simulate the laser beam as a heat
source. When a Gaussian laser beam is exposed to the powder bed, it experiences multiple reflections
through the powder layers and is not only absorbed at the surface, but rather through a certain
depth of the powder bed [39]. Ansari et al. [29] thus modelled the laser as a volumetric heat source
and used the Beer–Lambert attenuation law to define the depth penetration of a Gaussian surface
heat flux. Several authors [11,38] used a double-ellipsoid volumetric heat source [40], where the heat
is generated in a volume defined by two ellipsoids and decays exponentially with the distance
from the centre. Foroozmehr at al. [31], on the other hand, argued that the multiple reflections
through the powder layers cause a drastic deviation from the Gaussian distribution under the powder
surface and that a uniform volumetric heat source down to an effective depth of penetration can be
assumed. Kolossov et al. [27] further simplified this dependence by claiming that the penetration
depth only needs to be taken into account if the finite element (FE) elementary size is smaller than
five grain parameters—in the opposite case it can be neglected and the laser beam modelled as
a surface heat source. Indeed, most other authors simulated the laser beam as a Gaussian surface heat
flux [12,32,34,36,37] as exemplified in Figure 3b.

2.4. Finite Element Mesh

Accurate simulations of the transient temperature field during SLM processes are
computationally costly, mostly due to the fact that a relatively fine FE mesh is needed in the vicinity of
the laser source in order to capture the high temperature gradients. A homogeneous mesh is therefore
relatively rarely used [35] as the high mesh density is not needed through the entire computational
domain, but significantly increases the computational time. Instead, the majority of simulations
employ a relatively coarse mesh in the substrate and a refined conforming mesh in the laser scan
region [29,31,32,36] as shown in the example in Figure 3a. Adaptive remeshing has been utilised in
a relatively limited number of applications, such as the examples in SLM solidification simulation [41]
and laser forming [42]. Alternatively, Kolossov et al. [27] bypassed the difficulties related to building
conformal meshes and came up with a quasi-regular mesh construction that features a non-conforming
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interface between the finely meshed scan region and the coarsely meshed substrate. A number of
authors also employed Lagrangian–Eulerian approach [43] and computational fluid dynamics [44,45]
to simulate melt pool dynamics, which is however out of scope of this paper.

Figure 3. Details of the FEM simulation of temperature field evolution during SLM fabrication,
performed by Hussein et al. [32]: (a) conformal mesh refinement in the laser scan region; (b) Gaussian
laser-energy density distribution.

Most authors employed finite elements with linear approximation functions [31,35,36,46], but their
estimations of the necessary FE size in the heat-affected zone vary over several orders of magnitude.
While certain authors utilised extremely small FEs ( 50 µm) [31,32], Kolossov et al. obtained a good
simulation agreement with infra-red-camera temperature measurements utilising FEs with a 0.01-mm
side length and Dai et al. [46] claimed good temperature agreement with pyrometer measurements
utilising FEs as large as 0.2 mm.

2.5. Validation

Two general types of experimental validation can be distinguished among the numerical
simulations of the temperature field’s evolution during SLM fabrication. The direct approach
involves comparing the calculated spatial temperature distribution with the measured temperature
distribution, which is usually captured with an infrared camera [24,27,29,46]. In a similar fashion,
the in-situ monitoring of melt pool images, principally used for quality control, can also be used
for validation by providing information on melt pool geometry [47,48] as well as temperature
distribution [49]. Alternatively, an indirect approach is possible, where the solidified tracks of
selective laser melting are extracted, measured and compared with the simulated size of the melt
pool [30,31,38,50]. Dai et al. [46] also examined the microstructure of the solidified material and used
it to estimate the spatial temperature field, which they then compared with the FEM simulation results.

3. Modelling the Microstructure Evolution

The literature on grain-growth modelling for laser AM remains sparse [11] and in order to produce
a relevant literature review on the subject, applications of microstructure-evolution modelling applied
to other processes, such as casting and laser welding, will also be reviewed in this section.

Historically, some of the first meaningful mesoscale simulations of microstructure upon
solidification were produced using a probabilistic method. Brown and Spittle [51] were able to
produce computed two-dimensional microstructures that closely resembled those in real micrographic
cross-sections by applying the Monte Carlo method, previously developed by Anderson et al. [52].
Recently, this methodology has also been applied to electron-beam welding and the authors managed
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to closely reproduce the emerging microstructure [53] (Figure 4a). The method is based on assigning
a solid/liquid state to each grain and considering the energy of sites, belonging to different grains.
These states are then allowed to alter in order to achieve interfacial energy minimisation. The approach
suffers from an inherent drawback, i.e., that they do not explicitly integrate the growth kinetics of
the solid–liquid interface, which is the relationship between the undercooling and the dendrite tip’s
growth rate [19]. As noted by the authors themselves, this lack of a physical basis prevents any
quantitative analysis of the effects of various physical phenomena. Additionally, the simulation time
step’s relation to real time is not fully clear, as the material transformation is applied to a fraction of
the network cells in each time step [54].

Figure 4. (a) Solidified microstructure after electron-beam welding, modelled with Kinetic Monte Carlo
method by Rodgers et al. [53]; (b) solidified microstructure after gas tungsten arc welding, modelled
with cellular automata by Chen et al. [55];

As an answer to the shortcomings of probabilistic modelling, the cellular-automata (CA) approach
was developed [56], incorporating a fundamental understanding from smaller-scale deterministic
models and the computational efficiency of the probabilistic mesoscale models. While grain nucleation
is modelled stochastically, the growth kinetics of dendritic tips is calculated with a deterministic
approach. Due to the fact that the approach is physically sound and has proven itself flexible enough to
incorporate the complexity of the solidification phenomena [57], it has established itself as a benchmark
methodology in microstructure solidification in recent years. As such, CA approaches will be in
the focus of this section.

The CA algorithm as applied to solidification problems can be summarised in the following
steps [58]: (i) domain is discretised into cells of equal size, usually squares or hexagons—depending
on the number of dimensions—arranged in a regular lattice; (ii) the neighbourhood is defined for
each cell (e.g., first neighbours or first-and-second neighbours); (iii) a set of different variables
(e.g., temperature, crystallographic orientation) and states (e.g., solid/liquid) is defined for each cell;
(iv) rules of transition (e.g., from liquid to solid) define how the state of an individual cell will
evolve in a given time step as a function of the variables and the states of the neighbouring
cells. Finally, a time-stepping sequence is run across the discretised domain in order to simulate
the solidification process.

3.1. Grain Nucleation

According to the pioneering work of Oldfield [59], the grain-density increase dn of the solidifying
metal can be related to the effective undercooling ∆T by a continuous nucleation distribution dn/d(∆T).
While Oldfield used a simple polynomial law with two parameters in order to describe the nucleation
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distribution of cast iron, most subsequent works adopted the Oldfield approach but presumed
a Gaussian nucleation distribution [11,37,50,56,57,60–64]:

dn
d(∆T)

=
Nmax

∆Tσ

√
2π

exp

[
−1

2

(
∆T − ∆TN

∆Tσ

)2
]

, (4)

where ∆Tσ is the standard deviation of the distribution, ∆TN is the mean nucleation undercooling
and Nmax is the maximum nucleation density. The three standard distribution parameters are
derived from experiments based on a differential thermal analysis. Rappaz [65] reported that using
a single distribution for all the nucleation sites fails to reproduce the grain size dependency observed
experimentally. He later introduced separate Gaussian distributions for nuclei formed at the mould
wall and the bulk of the liquid [56], as shown in Figure 5, which established itself as the benchmark
approach for heterogeneous grain nucleation modelling. Several authors, however, deliberately
ignored nucleation inside the melt pool during gas welding [55] and SLM [11] in order to promote
columnar grain growth.

Figure 5. Separate Gaussian distributions for nucleation density in the bulk of the liquid and on
the meltpool borders, a schematic representation of nuclei distribution in the meltpool and a zoom into
an individual growing grain.

In each time step of the CA solidification simulation, the total number of nuclei is calculated
separately for the molten pool wall and the bulk liquid, and randomly distributed among the CA cells
(Figure 5). Each grain nucleus is assigned a random preferential growth direction.

3.2. Grain Growth

Within the scope of the mesoscale modelling of microstructure evolution, the latter is described by
grain envelopes, rather than a full description of the network of dendrite trunks and arms (Figure 5).
Since the internal grain morphology is not of interest, the solid–liquid interface does not need to be
tracked directly. Instead, the growing grain envelope can be obtained by calculating the dendrite
arm lengths along the <100> crystallographic grain orientations as long as the solidifying structure
of the material is known—generally it is a simple geometric shape—square in 2D and octahedron
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in 3D [66]. This considerably reduces the numerical cost and allows the method to be applied to
macroscopic scales.

In order to sustain their growth, free dendritic crystals require an undercooled melt, which acts as
a sink for the latent heat that is being rejected into the melt. In the case that the distribution coefficient
k0 is less than unity, solute is also being rejected into the melt. Both thermal and solute transport,
which govern the dendritic growth, are functions of the total undercooling ∆T, which in turn consists
of three main contributions [67]:

∆T = ∆TT + ∆TC + ∆TR. (5)

Thermal undercooling ∆TT accounts for the difference between the interface temperature at
the dendrite tip and the melt temperature far from the tip; solutal undercooling ∆TC accounts for
the change of liquidus temperature in the phase diagram due to the change of the solute concentration
around the dendrite tip; and the curvature undercooling ∆TR accounts for the shift of liquidus line in
the phase diagram due to the finite radius of the dendrite tip.

Ivantsov [68] introduced a solution for the diffusion field around a branchless paraboloidal
dendrite growing in an infinite melt. The transport solution also referred to as the Ivantsov function
Iv(Pe) is valid for both the thermal and solutial fields:

ΩT = PeTexp(PeT)
∫ ∞

PeT

exp(−x)
x

dx ≡ Iv(PeT); PeT =
VR
2a

, (6)

ΩC = PeCexp(PeC)
∫ ∞

PeC

exp(−x)
x

dx ≡ Iv(PeC); PeC =
VR
2D

, (7)

where ΩT and ΩC are the dimensionless undercooling and dimensionless supersaturation, respectively,
PeT and PeC are the Péclet numbers for the thermal and solutial field, respectively, a and D are
the thermal and solutial diffusivity, respectively, R is the dendrite tip’s radius and V is the dendrite
tip’s velocity. Ivantsov’s solution can be used to express the total undercooling of the melt as a function
of R and V [67]:

∆T =
∆H
cp

Iv(PeT) + mC0

(
1− 1

1− (1− k0)Iv(PeC)

)
+

2Γ
R

, (8)

where ∆H is the latent heat, cp is the specific heat, m is the liquidus slope, C0 is the initial concentration
of the alloy, k0 is the equilibrium distribution coefficient and Γ is the Gibbs–Thomson coefficient.
However, in order to solve the transport problem and obtain unique values of R and V, an additional
independent equation is needed [69]. Kurz et al. [19] provided this extra equation by approximating
the dendrite tip’s radius with the critical wavelength of the solid–liquid interface at the limit of stability
and obtaining the relation:

R = 2π

√
Γ

mGCξC − G
, (9)

where GC is the solute gradient in the liquid at the tip and G is the thermal gradient. ξC is a function
of the Péclet number, which approaches unity at low growth rates [56] and the thermal gradient G
can be neglected in the dendritic regime [19]. According to Lipton [67], Equation (9) can further be
expanded into:

R =
4π2Γ

PeT∆H
cp
− PeCmC0(1−k0)

1−(1−k0)Iv(PeC)

, (10)

resulting in a system of equations, consisting of Equations (8) and (10) and unknowns V
and R—providing that the thermal field is known. This so-called Kurz–Giovanola–Trivedi (KGT)
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model [19] has been adopted in varying degrees of simplification by the vast majority of authors
modelling crystal growth on the mesoscale in casting [54,56,60,70], laser melting [61] and additive
manufacturing [11,12,37,62,64,71]. The differences between the approaches adopted by these authors
stem mostly from the simplifications introduced to Equation (5). Zhang et al. [62,71] as well as
Ao et al. [64] took into account the solutial, thermal and curvature effects, while Dezfoli et al. [61]
neglected all the contributions with the exception thermal undercooling and Gandin [33] approximated
the undercooling by accounting only for solutal and curvature undercooling. Several other authors
argued that for most metallic alloys under normal solidification conditions, solute undercooling
predominates and the other contributions can be neglected [11,54,56,63].

Among other approaches, Chet et al. [55] utilized a simple quadratic dependence of the dendrite
tip’s velocity on undercooling, but admitted that better values could be obtained by fitting
the KGT solution.

3.3. Mesh Dependency

Typically, in CA simulations of the crystal growth, the computational mesh can give rise
to artificial anisotropy [57]. If no measures are taken in order to counter this effect, the initial
orientation of a growing grain is lost after a certain number of time steps and its crystallographic
orientation aligns with the CA lattice [56], as can be observed in Figure 6. In order to address
this issue, Rappaz and Gandin [56] first developed the ‘dendrite-tip correction’ technique, which could,
however, only be applied in uniform temperature fields. They soon overcame this limitation
with the ‘two-dimensional rectangular algorithm’ [54]. A three-dimensional variation of this
approach, the ‘decentred square algorithm’ was later introduced by the same authors [72], but proved
computationally very expensive in three dimensions. It has, however, recently been applied by
other authors [12,71] in 2D simulations of microstructure solidification during AM. Zhan et al. [57]
later developed the ‘limited angle method’ that proved simple to implement in two dimensions,
but carried a heavy computational load due to its multi-layer mesh. Recently, Zinovieva et al. [63]
introduced a modified version of the original ‘dendrite-tip correction’ technique by Rappaz
and Gandin [56]. The authors claimed an improved mesh-anisotropy reduction and later implemented
it in a two-dimensional simulation of microstructure evolution during SLM [11].

Figure 6. Schematics for the growth of a nucleus, whose crystallographic direction has a divergence
angle with respect to the cellular-automata (CA) lattice, as presented by Zhan et al. [57]: (a) the
crystallographic orientation of the nucleus; (b) expected growth process; (c) actual growth process.

3.4. Simulation parameters

When defining the size of the CA cells, a balance is usually sought between the resolution of
the simulated microstructure and the computational cost, both of which increase as the CA cell size
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diminishes. The CPU time of CA simulations increases roughly linearly with the number of cells [56],
which is relatively slowly compared to numerical methods such as FEM. In order to obtain an accurate
description of the crystal envelopes, the size of the CA cells should be set to the order of the secondary
dendrite arm’s spacing [54,62]. The cell size of the order of 1 µm is has been used for CA simulations of
SLM [11] and laser-based metal deposition [71] of 316 steel, as well as SLM [37] and laser melting [61]
of Ti-6Al-4V alloy. There are, however, incidences of 10-µm [62] and even 100-µm [55] CA grids used
in similar applications.

An analogue trade-off results from the choice of the time step δt in CA simulations,
where a diminishing δt increases the accuracy of the simulation as well as the computational cost.
Commonly, δt is defined with respect to the CA cell size lCA and the velocity of the fastest growing
dendrite tip Vmax. An appropriate δt is chosen to prevent the dendrite tips from growing more than
a fraction f of the cell size [11,12,37,60]. An additional limitation of the time step with respect to
the diffusivity D is sometimes added [63,64]:

δt = f min

(
l2
CA
D

,
lCA

Vmax

)
. (11)

4. Coupled Models

Coupling between the FEM and the CA, also referred to as the CAFE approach, is a useful tool
to solve industrial boundary-value problems. The methodology has been successfully applied to
casting [54,60,70], welding [55,73], laser-based deposition [62] and laser melting [61]. A flowchart of
a simple CAFE coupled model as proposed by Zhang et al. [62] to simulate microstructure solidification
in direct metal deposition is shown in Figure 7. The temperature history, obtained by FEM, is fed into
the CA model in order to simulate the crystal growth during the passing of the laser. Fully coupled
CAFE models, on the other hand, imply the macroscopic model (FEM) and the microscopic model
(CA) running in parallel and feature an exchange of information between the two models for every
time step of the macroscopic simulation. The release of latent heat during CA cell solidification is thus
exported from the CA model into the following time step of the FEM model in the works of Gandin
and Rappaz [54] and Carozzani et al. [60] and the solute mass exchange from the CA model is projected
back to the FEM model to be used for the average conservation of the solute mass in the following
macroscopic time step in the work of Gandin [33].

It should be noted at this point that although CAFE models are the most common approach
to mesoscopic microstructure solidification modelling in boundary-value problems, alternative
approaches such as the Finite Difference–Cellular Automata coupled approach by Zinoviev et al. [11]
or the Cellular Automata–Lattice Boltzmann coupled model by Rai et al. [12] also exist.

The coupled use of the FEM and the CA does not impose the use of the same mesh for the two
simulations. Instead, a coarser mesh is normally used for the FEM simulation of heat transfer
and the temperature field obtained in the Gaussian nodes is then linearly interpolated to obtain
the temperatures in the individual CA cells [33,54,60–62]. Similarly, the information computed
on the CA grid can be projected back to the FEM grid [33,73]. The time step of the microscopic
and the macroscopic simulation can likewise differ. Indeed, a smaller time step and several cycles of
CA simulation are often performed for each time step of the FEM simulation [60,62,71].
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Figure 7. Flowchart of CAFE coupling as proposed by Zhang et al. [62].

5. Conclusions and Outlook

The field of additive manufacturing is providing unprecedented opportunities for manufacturing
materials with a-la-carte microstructures and mechanical properties, and the race is on to control
the solidifying microstructure during the manufacturing process. The research on the solidification
process from smaller scales has already yielded simplified models of crystal growth than can be
incorporated into larger-scale models. Furthermore, application of mesoscale models to processes
such as casting, welding and laser melting helped clarify the role of different process parameters
on the resulting microstructure. Additive manufacturing remains a problematic field in terms of
microstructure prediction, mostly due to the long processing times and the changing geometry of
the manufactured part. Several simplified two-dimensional models have already been developed
and yielded promising results, but a coupled three-dimensional mesoscopic model of heat transfer
and microstructure evolution, such as the ones developed for other industrial processes, has not yet
been implemented. The successful application of these models to the field of additive manufacturing
is also expected to become more likely with the ever-increasing computing power and the application
of parallel computing, which is already under way.
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