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Abstract: In this paper, we propose a method of forming a tube into an oblique/curved shape by
synchronous multipass spinning, in which the forming roller reciprocates in the radial direction in
synchrony with the rotation angle of the spindle while the roller moves back and forth along the
workpiece in the axial direction to gradually deform a blank tube into a target shape. The target
oblique/curved shape is expressed as a series of inclined circular cross sections. The contact position of
the roller and the workpiece is calculated from the inclination angle, center coordinates, and diameter of
the cross sections, considering the geometrical shape of the roller. The blank shape and the target shape
are interpolated along normalized tool paths to generate the numerical control command of the roller.
By this method, we experimentally formed aluminum tubes into curved shapes with various radii of
curvature, and the forming accuracy, thickness distribution, and strain distribution are examined.
We verified that the curved shapes with the target radii of curvature can be accurately realized.

Keywords: metal spinning; tube forming; incremental forming; numerical control

1. Introduction

Metal spinning is a metal forming process in which a metal tube or sheet is rotated by a motor and
pushed by a roller tool to form a target shape. Since the tooling cost of metal spinning is lower than that
of press forming, it is effective for small-lot production of many kinds of custom-made products and for
product prototyping. Moreover, this process is also applied to mass-produced parts and products such
as automobile exhaust parts and stainless-steel bottles. It is also advantageous for manufacturing large
metal shells requiring a large die. In addition, there is an advantage that the forming force is small
because only the portion where the roller is in contact with is locally deformed; hence, the apparatus
size, noise, and vibration are small.

To form products with higher added value, research on noncircular spinning, which can produce
noncircular cross-sectional shapes such as an ellipse, eccentricity, and polygon, has advanced in
recent years [1,2]. In conventional metal spinning, only products with a circular cross section can be
formed, since the forming is performed while rotating the workpiece. If metal spinning can easily
form noncircular shapes, which have been manufactured by press forming or sheet metal welding so
far, the application of metal spinning will be further expanded.

Formation of exhaust system parts is a typical application of metal spinning in the automotive
industry. There is a large demand for a manufacturing method by which the end of a tube is formed into
an oblique/curved axis. Irie et al. [3] developed a spinning machine for necking a stainless steel tube
into an oblique/curved shape by shifting and tilting the central axis of a blank tube relative to the spindle
axis of the planetary forming rollers, which revolve around the workpiece while necking it. Xia and
coworkers [4,5] built a finite element model (FEM) simulation of the same process and evaluated the
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forming force, stress, strain, and thickness distribution. They also spun an oblique shape in experiments
and compared the forming force and the thickness distribution with the simulation results.

Another way to form an oblique/curved shape by metal spinning is synchronous spinning,
in which the roller moves in synchrony with the workpiece rotation. Amano and Tamura [6] first
succeeded in synchronous spinning of an elliptic cone from a steel sheet. They used a mechanical cam,
gears, and a lever to drive a roller synchronized with the rotation of a mandrel. Xia et al. [7] proposed a
profile driving method in which a three-dimensional cam pushes a forming roller to follow the surface
of the product shape and formed various types of noncircular cones. The drawback of mechanical
synchronization is lack of flexibility, because it requires a dedicated cam as well as a mandrel for each
shape. Numerical control of the forming roller and spindle can realize synchronous spinning more
easily without such complicated mechanisms. Shimizu [8] used pulse motors to drive the roller and
mandrel to form elliptic and square cones by synchronous spinning. Arai et al. [9] built a CNC spinning
machine with the spindle axis driven by a servo motor for synchronous spinning and conducted
noncircular tube necking of aluminum tubes.

Sugita and Arai [10] proposed synchronous multipass spinning, which deforms the workpiece
gradually in multiple steps from a flat blank to the final shape. This method can form noncircular
shapes with vertical walls such as a square cup because the sine law for the wall thickness in shear
spinning is not valid in multipass spinning. Härtel and Laue [11] formed a tripod shape with two
roller passes while avoiding forming failures by optimization of the forming parameters based on FEM
simulation. Music and Allwood [12] developed a spinning machine for noncircular shapes in which
the internal rollers were controlled to support the workpiece instead of the mandrels. Russo et al. [13]
used the spinning machine of [12] for synchronous multipass spinning of square and elliptic cups
without using mandrels. They investigated how the degree of asymmetry of the cross-section shape
influences the difficulty of forming and the properties of the formed products.

Regarding the synchronous spinning of an oblique/curved shape, Sekiguchi and Arai [14] proposed
a method of controlling the tool position in the radial and axial directions in synchrony with the
spindle rotation and experimentally formed oblique/curved shapes from aluminum sheets. In contrast,
Han et al. [15] geometrically calculated the contact position of the roller with an oblique cone and
moved the roller in the radial direction for synchronous spinning. Sekiguchi and Arai [16] used
force control of the roller to push the material onto the inclined mandrel and formed an inclined
cone by reciprocating the roller in the axial direction. As the processes described in [14–16] involve
forming with only one pass and are equivalent to shear spinning, the wall thickness basically follows
the sine law. The target shape should be limited to prevent fracture, and vertical walls cannot be
formed. Arai and Kanazawa [17] combined this method with multipass spinning, in which the roller
reciprocates between the mandrel and the outer edge of the workpiece to deform the workpiece
progressively, thereby forming circular and square cups with inclined bottoms from aluminum disks.
The position command of the roller is generated by combining the data of a blank disk, the target
shape, and the normalized tool paths. Han et al. [18] spun a circular cup with an oblique open end
from an offset blank by synchronous multipass spinning. Xiao et al. [19] also used a multipass spinning
method to form an angled-flange cylinder from a blank disk.

When the synchronous spinning is performed without a mandrel, the shape of the formed
product is completely determined by the roller motion. Therefore, it is necessary to transform the
geometrical target shape into the numerical control (NC) program of the roller. In particular, the point
of contact between the roller and the target product to form the target shape must be obtained to
calculate the tool trajectory. However, the importance of this calculation stage has not been properly
recognized so far except in some previous works. Arai [20] applied the synchronous multipass spinning
method described in [17] for necking a tube into an oblique/curved shape. In the forming experiment,
oblique/curved shapes that were almost the same as the target shape were obtained. On the other
hand, the surface of the tube tends to be peeled off owing to friction caused by the side slip of the
roller as the roller slides over the workpiece in the axial direction. Since this problem becomes more
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serious as the tilt angle increases, it is difficult to form a shape with a large inclination angle. Arai [21]
utilized a 3D computer aided design (CAD) model in noncircular tube spinning to represent the target
shape and calculated the roller contact position using a searching algorithm considering the roller
shape geometrically. Although this method can also handle oblique/curved shapes and the spinning
of inclined shapes was actually demonstrated in [21], it requires a 3D CAD system to build a target
shape model.

In this paper, a synchronous multipass spinning method for oblique/curved tube necking is
proposed. The target shape is represented by interpolation of a series of inclined circular cross sections
with offsets without using a 3D CAD system. The position where the roller and the product surface come
in contact at only one point to form the target shape is calculated by a searching algorithm considering
the geometrical shape of the roller. The NC command of the roller is obtained by linear interpolation
between the blank shape and the target shape along multiple tool paths, which are normalized in a
two-dimensional virtual plane. Since the roller mainly moves in the radial direction in synchrony
with the spindle rotation, peeling off of the workpiece surface described in [20] can be prevented.
The workpiece is fixed to the spindle and not tilted as in [3–5]. It allows for a larger inclination
angle and a smaller radius of curvature of the target shapes. Curved shapes with various radii of
curvature are formed from aluminum tubes in the experiments by this method. The formed shapes are
measured using a laser range sensor to verify the forming accuracy. The thickness distribution and
strain distribution of the products are also evaluated.

2. Calculation of Roller Position

The roller motion in the synchronous spinning of a noncircular shape is expressed as
three-dimensional data, consisting of the radial position and the axial position of the roller, and the
spindle rotation angle. In the case of multipass spinning, the roller trajectory deforms the blank tube
into the target shape step by step. The roller should move along the surface of the target shape in the
final pass and the roller should move along the blank tube in the initial pass. Thus, the NC commands
of the roller trajectory are calculated as follows.

(1) Calculation of the roller contact position with the product with the target shape.
(2) Interpolation of the blank shape and the target shape along the normalized paths.

2.1. Calculation of Roller–Product Contact Position

Since a nonspherical roller is commonly used for a forming tool in metal spinning, it is difficult
to analytically solve the contact position between a general oblique/curved product surface and the
roller. Therefore, the position where the roller and the target product come in contact at a single point
is obtained by a searching algorithm. The target shape is expressed as a series of inclined circles
with offset, whose radii, inclination angles, and center coordinates are given individually. Then,
the coordinates of a point on the surface of the target shape can be represented by two parameters,
the normalized axial distance along the workpiece, λ (0 ≤ λ < 1), and the circumferential central
angle along the cross section, ω (0 ≤ ω < 2π). Here, the roller axial position and the spindle angle are
assumed to be fixed, which means that the roller only moves in the radial direction. By varying the
parameters λ and ω, we obtain the points on the target shape corresponding to each set of parameters.
For each of these points, the radial position of the roller when this point is also on the surface of the
roller is calculated. Among these positions, the position where the roller is most distant from the
spindle axis is the position where the roller and the target product come into contact at only one point.

2.1.1. Expression of Target Shape and Roller Shape

First, a point on the surface of the target shape is expressed by the x, y, z coordinates in the
Cartesian coordinate system (Figure 1). The spindle axis of the spinning machine coincides with the z
axis, and the radial direction of the roller motion is parallel to the x axis. An oblique/curved shape of a
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tube with circular cross sections whose centers are on the xz plane is the target shape. In a cross section
of the tube with the target shape, the radius of the circle is r, the inclination angle relative to the z axis
is α, and the center coordinates are (xC, 0, zC). Here, r, α, xC, and zC are the functions r(λ), α(λ), xC(λ),
and zC(λ) (0 ≤ λ < 1) of the parameter λ. λ = 0 and λ = 1 represent both ends of the target shape.
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Figure 1. xyz coordinates of point P0 on a circular cross section of the target shape. The y axis is in the
direction into the page.

In practice, the target shape is represented by a series of discrete circular cross sections, and r, α, xC,
and zC can be obtained by interpolation at intermediate positions. When λk and λk+1 are respectively
assigned to the kth and k + 1th cross sections, the radius r, the inclination angle α, and the center
coordinates (xC, 0, zC) in the intermediate cross section are represented as

r = (λk+1−λ)rk+(λ−λk)rk+1
λk+1−λk

α =
(λk+1−λ)αk+(λ−λk)αk+1

λk+1−λk

(xC, 0, zC) =
λk+1−λ
λk+1−λk

(
xCk , 0, zCk

)
+

λ−λk
λk+1−λk

(
xCk+1 , 0, zCk+1

) (1)

The point P0 (xW0, yW0, zW0) on the surface of the tube with the target shape corresponding to the
central angle ω is represented as 

xW0 = xC + r cosα cosω
yW0 = r sinω

zW0 = zC − r sinα cosω
(2)

When the tube with the target shape is rotated around the z axis by an angle θ, the point P0 moves
to P (xW , yW , zW). 

xW

yW

zW

 =


cosθ − sinθ 0
sinθ cosθ 0

0 0 1




xW0

yW0

zW0

 (3)

The shape of the roller is the outer periphery of a donut-shaped torus of diameter D, with a
roundness radius of ρ (Figure 2). The radius of the roundness center R is expressed as R = D

2 − ρ.
The center of the roller is on the xz plane and the roller axis is parallel to the z axis. Let the coordinates
of the roller center Q be (xR, 0, zR). When the point P (xW , yW , zW) on the surface of the tube with the
target shape is in contact with the roller, the radius RW of the roller surface at the contact point is

RW = R +

√
ρ2 − (zW − zR)

2 (4)

At this time, the x coordinate of the roller center Q is expressed as

xR = xW +
√

RW2 − yW2 (5)
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Figure 2. Position of the center of the roller, Q. Point P on the tube with the target shape is also on the
surface of the roller.

2.1.2. Search of Contact Position

Then the point of contact between the roller and the target product to form the target shape is
searched by the following procedure (Figure 3). The rotation angle θ of the target shape around the z
axis and the position zR of the roller in the axial direction are given. The parameters λ and ω are varied
within the range of 0 ≤ λ < 1 and 0 ≤ ω < 2π, and the corresponding points (xW , yW , zW) on the tube
with the target shape are obtained from Equations (2) and (3). Then, the radial position xR of the roller
is calculated from Equations (4) and (5). The position where xR becomes maximum is the position
where the target shape and the roller come in contact at a single point. The above search calculation for
(λ,ω) is repeated while changing the angle θ of the target shape and the axial position zR of the roller,
and the corresponding radial position xR(zR,θ) of the roller is obtained over the entire surface of the
tube with the target shape.

The contact point between the roller and the target shape only exists in zR − ρ < zw < zR + ρ
considering the thickness of the roller. Moreover, it is not necessary to consider the contact position on
the opposite side where the target shape does not face the roller. These limitations can narrow the
search range of λ and ω. In practice, the incremental step sizes ∆λ and ∆ω are assigned to λ and ω,
respectively. After the maximum value of xR is obtained in the discretized space of (λ,ω) with coarse
step sizes, a finer search using smaller step sizes is conducted around the neighborhood of (λ,ω) for
the former maximum xR. This algorithm can reduce the total computation time.
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2.2. Interpolation of Roller Position

Finally, the roller position during multipass spinning is calculated by interpolation. The roller
moves back and forth in the axial direction in synchrony with the spindle rotation to approach the
oblique/curved target shape. The computation method in [21] to calculate the NC command from the
positions where the roller comes in contact with the product and the blank tube is reviewed here.

The multiple tool paths composed of curved and straight path elements are defined on a virtual
two-dimensional plane (Figure 4) to cope with the asymmetry of a noncircular target shape. The virtual
plane is normalized from 0 to 1 in the axial direction sz and radial direction sx. The components sx and
sz are used as interpolation coefficients between the target shape and the blank shape. sz = 0 means
the tip end of the product and sz = 1 means the base end. When sx = 0, the roller is on the product
surface while the roller is on the blank surface when sx = 1.
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Figure 4. Example of normalized tool paths. The roller starts from the blank surface of the base end
and proceeds to the tip end increasing the radial feed. Then, the roller returns to the base end and the
radial feed is increased. This is repeated until sx = 0 and the roller moves along the target shape to the
tip end.

The axial and radial positions where the roller touches the product with the target shape are
defined as zt(sz) and xp(sz,θ), respectively, where θ is the spindle angle. zt(sz) is obtained from sz as

zt = z0 + (z1 − z0)sz (6)

where z0 is the axial position of the tip end and z1 is that of the base end. The radial position for the
blank tube at sz is also defined as xb(sz,θ). xb(sz,θ) is constant if the blank is a straight circular tube.

The radial positions, xp(sz,θ) and xb(sz,θ), are interpolated using sx as an interpolation coefficient
to obtain the intermediate radial position xt as follows.

xt = sxxb(sz,θ) + (1− sx)xp(sz,θ) (7)

Thus, the roller position (xt,zt) is sequentially calculated along the normalized paths to obtain the
entire trajectory from the start to the end of the spinning process. The series of roller positions and
spindle angles (xt,zt,θ) are executed by NC commands for linear interpolation.

3. Forming Experiments

Using the NC programs generated by the method in Section 2, aluminum tubes were experimentally
spun into curved shapes with various radii of curvature. The formed products were scanned by a laser
range sensor to verify the dimensional accuracy. The thickness and strain distribution of the products
were also examined.

3.1. Experimental Setup

The spinning experiments were conducted using a five-axis CNC spinning machine with two
rollers (Figure 5). Each roller was driven by two AC servo motors of 1.3 kW and ball screws of
10 mm lead. The spindle was driven by an AC servo motor of 1.3 kW with a planetary reduction
gear. The rollers were made from tool alloy steel (SKD 11) with 88 mm diameter and 4 mm roundness
radius. The blank tube of pure aluminum (A 1050 TD-H) had 50 mm diameter and 1.55 mm thickness.
The surface of the workpiece and the roller were lubricated using compressor oil (ISO VG 68).
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3.2. Target Shape

Four types of curved shape with different radii of curvature, samples A, B, C, and D, were formed.
The diameter of the necked portion was 30 mm. The radii of curvature of the outer side were (A) 40 mm,
(B) 50 mm, (C) 60 mm, and (D) 70 mm, therefore, the radii of curvature of the inner side were (A) 10 mm,
(B) 20 mm, (C) 30 mm, and (D) 40 mm, respectively. A cross section in the middle of the curved portion
was perpendicular to the spindle axis (α = 0) and its center had an offset xC of 7 mm from the axis.
As described in Section 2.1.1, the curved portion was composed of discrete circular cross sections.
The step of inclination angle was 1◦ and the position of each center was calculated according to the
radius of curvature. The maximum inclination angle, |αMAX|, was (A) 64◦, (B) 55◦, (C) 45◦, and (D) 41◦.

The calculation algorithm of the contact position of the roller in Section 2.1 was programmed in C
language. The contact positions were calculated at 120 points per rotation of the workpiece and every
1 mm in the axial position of the roller. In the case of sample D, 8760 contact positions were calculated
in total. The calculations took 12 s using a Windows personal computer (Intel Core i7 CPU, 3.6 GHz).

3.3. Multiple Tool Paths

In the experiments reported in [21], normalized multiple tool paths that were nearly parallel to
the axial direction similar to those in Figure 4 were used. Regarding spinning eccentric and oblique
shapes, [21] showed that the asymmetry of the radial feed resulted in uneven axial elongation, which
depends on the circumferential location. In the case of a small number of paths, the bias of elongation
bended the workpiece during the spinning process and it deteriorated the dimensional accuracy.

To solve this problem, a different pattern of normalized paths as shown in Figure 6 was used.
Each path element connected between the base side of the target shape and the tip side of the blank.
The dimensional error in [21] occurred because the intermediate workpiece was bent beyond the
surface of the target shape. The new normalized paths can provide the intermediate workpiece a larger
margin to the target shape as the roller approaches the tip end.Metals 2019, 9, x FOR PEER REVIEW 9 of 15 
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Figure 6. Normalized tool paths used in the experiments. The roller moves along the curved path
elements between the base side of the target shape and the tip side of the blank surface. The radial feed
to the target shape increases from the base side to the tip side.
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The number of roller passes was 12 roundtrips. The axial roller feed was 2 mm/rev. The final pass
along the whole target shape had a 1 mm/rev roller feed. The spindle speed was 30 rpm.

3.4. Mearsurement of Products

Three samples were formed for each type of sample (A, B, C, and D). Two samples were used
for shape measurement by the laser sensor. White paint was sprayed on the surface of the spun
samples to obtain diffused reflection. A laser range sensor of 0.5 µm resolution was used to measure
the shape of each product. To obtain the profiles of the outer curve and inner curve, the surface of the
sample was measured every 1 mm in the axial direction. The average values of the two samples were
plotted. The circular cross section in the middle of the curved portion, which was perpendicular to
the spindle axis, was also measured circumferentially using the laser sensor every 9◦ of workpiece
rotation. From these 40 measurement positions, the offset of the center of the necked portion from the
axis was calculated. Also, the distance between the center and each measurement point was calculated,
and the average radius and the out of roundness, i.e., the difference between the maximum radius and
the minimum radius, were calculated.

The wall thickness and the strain distribution along the outer and inner sides of the curvature
were measured using another sample. For the measurement of the axial and circumferential strains,
grid lines were scribed on the inner surface of the blank tube before forming. The CNC spinning
machine was used to control the position of the L-shaped scriber and the rotation of the blank tube to
scribe the marks precisely on the inside of the tube. The line marks parallel to the spindle axis were
scribed every 7.5◦ of rotation of the blank tube. The circumferential marks perpendicular to the axis
were scribed every 2.5 mm in the axial direction for samples A and B and every 5 mm for samples C and
D. The change in the distance between the marks after the spinning process was measured to calculate
the axial and circumferential strains. The samples were cut in the axial direction away from the center
of the curve. Then pencil graphite was rubbed into the surface grooves. Transparent adhesive tape
was placed on the grid surface, removed, and transferred to paper to obtain a high-resolution image
of the grid marks for scanning. The positions of the grid points were identified by the image viewer
software to calculate the distance between the marks. The wall thickness of the same cut sample was
also measured using a digital micrometer with a dual ball anvil along the outer and inner curves every
5 mm in the axial direction.

4. Results and Discussion

4.1. Dimensional Accuracy

Figure 7 shows a photograph of the formed products of samples A, B, C, and D with different radii
of curvature. See Video S1 of the supplementary files. The peeling off of the workpiece surface reported
in [20] did not occur. Figure 8a,b show the profiles of the outer and inner sides of the curved portion
measured using the laser range sensor. The profiles mostly coincide with those of the target shape
(thin solid lines) except that the inner sides near the tip end of samples C and D tend to deviate from
the target shape. The root mean square of the deviation from the target shape is plotted in Figure 9.
The deviations are 0.08–0.12 mm on the outer side and 0.17–0.32 mm on the inner side.
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Figure 7. Formed products of samples A, B, C, and D.
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Figure 8. Profiles of the curved portion of samples A, B, C, and D. (a) Outer and (b) inner sides of the
curve. The thin solid lines correspond to target shapes. The horizontal axis represents the axial distance
from the middle cross section perpendicular to the spindle axis, in which the base side is negative and
the tip side is positive. The origin (0,0) is at the center of each target curvature.
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Figure 9. Root mean square of the deviation from the target shape.

The circular cross sections in the middle of the curved portion, which are perpendicular to the
spindle axis, were also measured circumferentially using the laser sensor. Table 1 shows the average
radius, the offset from the axis, and the out-of-roundness of each sample. The cross sections have the
radius and the offset close to the target values, 15 and 7 mm.
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Table 1. Average radius, offset from the axis, and out-of-roundness of the cross sections perpendicular
to the spindle axis.

Sample Type Average Radius (mm) Offset from Axis (mm) Out of Roundness (mm)

A 15.046 6.893 0.096
B 15.063 6.945 0.082
C 15.047 6.859 0.129
D 15.045 6.917 0.068

4.2. Strain Distribution

Figure 10a,b show the distribution of thickness strain along the outer and inner sides of the
curved portion of samples A, B, C, and D. The thickness strain was calculated from the measured
thickness of the formed products and the blank tube. The thickness strain of the outer side shows a
similar tendency for all samples. The wall thickness increases around the middle part and decreases
towards the base end. The thickness also decreases towards the tip end to a lesser extent. On the other
hand, the thickness of the inner side decreases around the middle of the curved portion. The peak of
thinning deviates from the zero position towards the base end. As the radius of the curvature increases,
the thinning becomes smaller and the thickness surpasses the blank thickness on the opposite side.
The thinning peak moves towards the base end as the curvature radius increases. The actual wall
thicknesses were as follows: sample A, 0.90–2.08 mm; sample B, 1.21–2.11 mm; sample C, 1.49–2.09 mm;
sample D, 1.65–2.57 mm.
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Figure 10. Distribution of thickness strain in the axial direction. (a) Outer and (b) inner sides of the
curve. The horizontal axis represents the distance in the axial direction. The origin of the horizontal
axis is at the middle cross section perpendicular to the spindle axis.

Figure 11a,b are plots of the axial strain and the circumferential strain along the outer side of
the curved portion. The surface of the outer side shrinks circumferentially and stretches axially.
The absolute value of these strains increases towards the tip end. Figure 12a,b show the axial and
circumferential strains along the inner side. Although the inner side also shrinks circumferentially and
stretches axially, the peak of strain is around the middle cross section. The axial strain at the middle
cross section increases as the radius of the curve decreases. This tendency agrees with that of the
change in thickness in Figure 10b.
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Figure 11. Distributions of (a) axial strain and (b) circumferential strain in the axial direction of the
outer curve. The horizontal axis represents the distance along the curved surface in the axial direction.
The origin is at the middle cross section perpendicular to the spindle axis.
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Figure 12. Distributions of (a) axial strain and (b) circumferential strain in the axial direction of the
inner curve. The horizontal axis represents the distance along the curved surface in the axial direction.
The origin is at the middle cross section perpendicular to the spindle axis.

4.3. Effect of Normalized Paths

To verify the effect of the new normalized paths in Figure 6, they were compared with simple
normalized paths parallel to the spindle axis. Sample B’, which had the same target shape as sample
B, was spun using the parallel paths and the dimensional accuracy was measured. Figure 13 shows
the actual roller paths for the inner side of the curve after the interpolation described in Section 2.2.
Figure 13a shows the actual paths using the parallel normalized paths and Figure 13b shows the actual
paths using the new normalized paths. The same axial roller feed and spindle speed were used for
both paths.
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Figure 13. Actual roller paths for samples (a) B’ and (b) B. xt and zt are the positions of the roller in the
radial and axial directions. The origin of the horizontal axes is at the base end of the product.
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The shapes of the inner curve measured using the laser sensor are plotted in Figure 14. The profile
of sample B’ deviates from the target shape near the tip end of the curve. In addition, the roller deviated
from the workpiece surface of the inner curve near the tip end while sample B’ was spun. The radial
feed of the inner side of the curve was larger than that of the outer side. Then, the inner side elongated
more than the outer side, and the tip end of the workpiece was bent towards the outer side beyond the
target shape. In contrast, the final roller paths of Figure 13b show less radial feed at the base side and a
larger margin to the target shape at the tip side than Figure 13a. Hence, the dimensional error near the
tip end was smaller in sample B.

Metals 2019, 9, x FOR PEER REVIEW 13 of 15 

 

deviated from the workpiece surface of the inner curve near the tip end while sample B’ was spun. 
The radial feed of the inner side of the curve was larger than that of the outer side. Then, the inner 
side elongated more than the outer side, and the tip end of the workpiece was bent towards the outer 
side beyond the target shape. In contrast, the final roller paths of Figure 13b show less radial feed at 
the base side and a larger margin to the target shape at the tip side than Figure 13a. Hence, the 
dimensional error near the tip end was smaller in sample B. 

 
Figure 14. Profiles of the inner curves of samples B (red) and B’ (blue). The thin solid line corresponds 
to the target shape. The horizontal axis represents the axial distance from the middle cross section 
perpendicular to the spindle axis. The origin (0,0) is at the center of the target curvature. 

5. Conclusions 

The proposed searching algorithm can find the contact position between the roller and the 
oblique/curved shapes expressed as a series of inclined circular cross sections with offset. The 
experiments focused on relatively simple curved shapes with cross sections of a constant radius and 
with a constant curvature. However, more complicated curved shapes of changing radius and 
curvature can be handled by the same algorithm. It is also easy to calculate the roller contact position 
with the oblique target shapes of the straight-line profile. 

In this study, the position of a point on the surface of the target shape is calculated from the two 
parameters ߣ and ߱ using Equations (2) and (3). Here, it is assumed that the center of the circular 
cross section is on the ݖݔ plane, and the cross sections are rotated around the ݕ axis. These equations 
can be naturally extended to handle more general cases where the center of the cross section has offset 
in the ݔ and ݕ directions, and the cross section is inclined around the ݔ and ݕ axes. Furthermore, 
the framework of this method is theoretically applicable to an arbitrary tubular surface that can be 
parametrically expressed as functions of two parameters, e.g., ellipsoids, even if the cross-sectional 
shape is noncircular. 

The experimental results demonstrated that the proposed method can form the curved shapes 
according to the target shape parameters. A small radius of curvature (10 mm) and a large inclination 
angle (64°) were achieved in sample A. It is difficult for the spinning machine reported in [3–5] to 
form such a shape because of the mechanical interference between the rollers and the workpiece. 
Reference [20] showed peeling off of the workpiece surface owing to the side slip of the roller in the 
normal direction. In contrast, the motion of the roller relative to the workpiece in the proposed 
method is in the rolling direction of the roller and does not have the side slip. The proposed method 
prevents the peeling off and hence allows a large inclination angle. Comparison of these two methods 
can be seen in Videos S2 and S3 of the supplementary files. 

Reference [21] suggests that the asymmetry of the radial roller feed resulted in the partial 
elongation of the workpiece in the axial direction and bending of the workpiece. The improvement 
of the normalized tool paths as shown in Figure 6 gave the tip side of the intermediate workpiece a 
larger margin with respect to the target shape. Even when the workpiece is bent, its surface does not 
go beyond the target profile. The experimental results presented in Figure 14 show the suppression 

Figure 14. Profiles of the inner curves of samples B (red) and B’ (blue). The thin solid line corresponds
to the target shape. The horizontal axis represents the axial distance from the middle cross section
perpendicular to the spindle axis. The origin (0,0) is at the center of the target curvature.

5. Conclusions

The proposed searching algorithm can find the contact position between the roller and
the oblique/curved shapes expressed as a series of inclined circular cross sections with offset.
The experiments focused on relatively simple curved shapes with cross sections of a constant radius
and with a constant curvature. However, more complicated curved shapes of changing radius and
curvature can be handled by the same algorithm. It is also easy to calculate the roller contact position
with the oblique target shapes of the straight-line profile.

In this study, the position of a point on the surface of the target shape is calculated from the two
parameters λ and ω using Equations (2) and (3). Here, it is assumed that the center of the circular cross
section is on the xz plane, and the cross sections are rotated around the y axis. These equations can
be naturally extended to handle more general cases where the center of the cross section has offset
in the x and y directions, and the cross section is inclined around the x and y axes. Furthermore,
the framework of this method is theoretically applicable to an arbitrary tubular surface that can be
parametrically expressed as functions of two parameters, e.g., ellipsoids, even if the cross-sectional
shape is noncircular.

The experimental results demonstrated that the proposed method can form the curved shapes
according to the target shape parameters. A small radius of curvature (10 mm) and a large inclination
angle (64◦) were achieved in sample A. It is difficult for the spinning machine reported in [3–5] to
form such a shape because of the mechanical interference between the rollers and the workpiece.
Reference [20] showed peeling off of the workpiece surface owing to the side slip of the roller in the
normal direction. In contrast, the motion of the roller relative to the workpiece in the proposed method
is in the rolling direction of the roller and does not have the side slip. The proposed method prevents
the peeling off and hence allows a large inclination angle. Comparison of these two methods can be
seen in Videos S2 and S3 of the supplementary files.

Reference [21] suggests that the asymmetry of the radial roller feed resulted in the partial
elongation of the workpiece in the axial direction and bending of the workpiece. The improvement
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of the normalized tool paths as shown in Figure 6 gave the tip side of the intermediate workpiece a
larger margin with respect to the target shape. Even when the workpiece is bent, its surface does not
go beyond the target profile. The experimental results presented in Figure 14 show the suppression of
the dimensional error in the proposed method compared with the previous method. Nevertheless,
the error near the tip end is still observed for the new normalized paths of sample B. The deviation
from the target profile is also found in samples C and D in Figure 8b. The deviation of the inner curve
is larger than that of the outer curve in Figure 9. These dimensional errors may also be attributed to
the bending due to the asymmetric radial feed. Further investigation on methods to deal with this
problem more generally would be necessary in future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/10/6/733/s1,
Video S1: forming process of sample type B by the proposed method. Video S2: peeling off of workpiece surface by
the method of Reference [20]. Video S3: spinning of the same shape without peeling off by the proposed method.
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