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Abstract: A great variety of powder metallurgy techniques can produce biomimetic porous titanium
structures with similar mechanical properties to host bone tissue. In this work, loose sintering and
space holder techniques, two frequently used metallurgical techniques, are compared to evaluate
the influences of porosity (content, size, morphology and wall roughness), mechanical properties
(stiffness and yield strength) and in-vitro cellular responses (adhesion and proliferation of myoblasts
and osteoblasts). These comparisons are made to achieve the best balance between biomechanical
and bifunctional behavior of a partial porous implant for cortical bone replacement. Cell adhesion
(filopodia presence) and spreading were promoted on both porous surfaces and fully dense substrates
(non-porous control surfaces). Porous scaffold samples designed using 50 vol.% NaCl space holder
technique had an improved bioactive response over those obtained with the loose sintering technique
due to higher roughness and scaffold pore diameter. However, the presence of large and heterogeneous
pores compromises the mechanical reliability of the implant. Considering both scenarios, the substrates
obtained with 40 vol.% NH4HCO3 and pore size ranges between 100 and 200 µm provide a balanced
optimization of size and strength to promote in-vitro osseointegration.

Keywords: porous titanium; space holder; loose sintering; mechanical behavior; cell adhesion;
surface roughness

1. Introduction

For many decades, the emphasis of human biomechanics has been on the partial or total
replacement of bone tissue with synthetic implants that the body will, in time, integrate as functional
parts. Clinical success is achieved when the osteoimplant maximizes the osseointegration and
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regeneration of the bone, improving patient health quality. The strategy is for the osteoimplant to
provide structural support while reproducing the original stress/strain functionality of the patient’s
bone under normal usage. Among all other metallic biomaterials used for bone replacement, titanium
(Ti) and its alloys have been recognized as the materials with the best in-vivo and in-vitro performance
due to their high mechanical strength, fracture toughness, good corrosion resistance and excellent
biological properties [1–7], such as biocompatibility and osteoconductivity (the ability to grow
bone tissues over the scaffold surface) [8–10]. However, these materials have shown important
drawbacks that compromise the reliability of implants: stress-shielding phenomena [11–13] and poor
osseointegration [14,15]. The stress-shielding effect is caused by the stiffness mismatch between the
implant and the surrounding bone (105–110 GPa vs. 2–25 GPa) [16,17]. As a consequence, the implant
does not transfer the entire applied load to the bone, which finally promotes bone resorption and implant
loosening [18]. In addition, the inert biological character of titanium surfaces results in a poor cellular
interaction between Ti and host bone tissue—an outcome that can affect the proper reconstruction
of bone, resulting in chronic failure of the implant [19]. For these reasons, the development of a
biofunctional Ti implant with enhanced osseointegration for bone tissue replacement remains a
challenge to be addressed.

The design and manufacturing of implants with lower stiffness are presented as a solution to
stress shielding [20–22] and several preliminary efforts have been carried out to achieve implants
with a suitable balance between mechanical and biofunctional behavior [23–27]. The reduction of the
implant Young’s modulus can be addressed by the design of a porous architecture for titanium-based
systems. Among the fabrication options for porous titanium, loose sintering (LS) and space holder
(SH) techniques have been identified as low-cost routes [28,29]. However, both techniques result in
different porous titanium substrates in terms of mechanical properties and pore design, key factors in
bone-implant integration.

Furthermore, it is well-known that bone ingrowth with porous structures can vary with the
specific pore size of the porous material. Osteoblastic cells are able to attach and produce bone matrix
inside pores that preferentially present at least a 100 µm average pore size [26,29]. The introduction of
porosity and a rough surface into a biomaterial broadens the scope for possible applications in the
biomedical field, because the roughness, higher surface contact and surface free energy have been
considered important factors that affect cell adhesion, migration and differentiation [30]. It has been
reported that the pores obtained by the space-holder technique and loose sintering have an intrinsic
surface roughness, which improves the cell adhesion and inhibits the bacterial attachment [31,32].
Although rough and porous surfaces have positively influenced the fixation and long-term stability of
Ti implants [20,33–36], finding the right balance between Young’s modulus and cell interaction remains
elusive. Therefore, an excellent approach to improve the reliability of titanium implants and increase
clinical success is to design porous titanium implants with an equilibrium of mechanical properties
and favorable bioactivity of titanium porous materials [37,38].

In our group, the influences of the spacer particle content (NaCl) on mechanical properties and pore
geometry have been studied before [24,39] and we have made a comparison with the LS technique [26].
In addition, the cellular responses of macrophages and osteoblast growing on NH4HCO3 porous
scaffolds have been also evaluated, including a chemical surface modification, but limited knowledge
is related to the in-vitro cellular response to LS and SH porous substrates. In that sense, we have not
investigated the comparison of pore size and morphology, or the effects from total and interconnected
porosity that both powder metallurgy (PM) routes have on cell responses.

In this work, porous titanium samples obtained by two different powder metallurgy routes (LS,
and SH) were fabricated. The influences of content, size range, surface roughness and morphology
of the porosity on the mechanical behavior (stiffness and yield strength), and cell adhesion and
proliferation, were investigated in detail.
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2. Materials and Methods

Commercially pure titanium (c.p. Ti) powder produced by a hydrogenation/dehydrogenation
process has been used as the starting powder (SE-JONG Materials Co. Ltd., Incheon, Korea).
The titanium powder was equivalent to c.p. Ti Grade IV (ASTM F67-00). Sodium chloride, NaCl
(Panreac Química S.A.U., Barcelona, Spain, purity > 99.5%), and ammonium bicarbonate, NH4HCO3

(Cymit Química S.L, Barcelona, Spain, with a purity of 99.9%) were employed as spacers. Two routes
were implemented to obtain porous titanium samples: (1) conventional powder metallurgy with no
applied pressure (loose sintering, LS) and (2) space-holder technique (SH) with different content and
size range of spacer particles. The particle size distributions and the main aspects of the manufacturing
routes are summarized in Table 1.

Table 1. Manufacturing parameters of porous titanium cylinders.

Route

Size Distribution, d[10],
d[50], d[90] (µm) Compaction

Pressure
(MPa)

Spacer Removal Procedure
Sintering

Temperature
(◦C)Titanium

Powder
Spacer

Particles

Loose Sintering

9.7, 23.3,
48.4

None 0 None
1000
1100

Space
Holder

NaCl
30 vol.% 183, 384,

701

800

Distilled water, without
stirring, 50 ◦C, during 16 h

1250

50 vol.%

NH4HCO3

30 vol.% 73, 233, 497 Two steps: 60 ◦C and 110 ◦C.
Both in low vacuum

conditions (~10−2 mbar) and
12 h

50 vol.%

40 vol.%

100-200
119, 184,

286
355-500
355, 424,

564

In the LS technique, the Ti powder was poured and vibrated into a cylindrical mold of alumina
for 2 min and then sintered in a CARBOLYTE STF (Derbyshire, UK) 15/75/450 ceramic furnace with a
horizontal tube at two different temperatures (1000 and 1100 ◦C), for 2 h, under high vacuum conditions
(~10−5 mbar). On the other hand, in the SH route, the mixture of c.p. Ti powder and space-holder
particles (NaCl and NH4HCO3) was homogenized using a Turbula® T2C mixed for 40 min [39,40].
Then the mixture was pressed at 800 MPa in an INSTRON 5505 machine (Instron, MA, USA). Afterward,
the elimination of the NaCl spacer was carried out by dissolution on distilled water [39] and removed
by thermal evaporation in the case of NH4HCO3 [40]. Finally, the samples were sintered in these cases
at 1250 ◦C, during 2 h and under high vacuum conditions (~10−5 mbar).

2.1. Microstructural and Macro-Mechanical Behavior

The porosity and mechanical properties of porous Ti samples were characterized using different
techniques (at least three specimens have been tested in all cases): (1) Archimedes’ method (ASTM
C373-88) which allows the evaluation of the density, and the total and interconnected porosity (PT and
Pi, respectively). (2) Image analysis (IA), performed with an optical microscope Nikon Epiphot (Nikon,
Tokyo, Japan) coupled with a Jenoptik Progres C3 camera (Jenoptik, Jena, Germany), and processed
in the software Image-Pro Plus 6.2, Mediacibernetic, Bethesda, MD, USA. IA was evaluated with
10 pictures of 5× and 20× for each processing condition. This technique provides the analysis of (i) the
total porosity percentage (PIA), (ii) equivalent diameter (Deq) and (iii) pore shape factor (Ff). (3) The
uniaxial compression test (Standard ASTM E9-89A and ISO 13314: 2011) allowed the determination of
yield strength (σy) and Young’s modulus (Ec). (4) The ultrasound technique, which was used to study
the dynamic Young’s modulus (Ed) [40,41].
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2.2. In-Vitro Cell Experiments

In order to study the cell viability, adhesion, proliferation and cell morphologies of myoblast and
osteoblasts growing in the different porous substrates, cross-sections were prepared from the titanium
porous cylinders. The different tests and techniques used to evaluate cellular response, are described
in the following scheme—Figure 1.

Figure 1. Diagram of in-vitro experimental design. Two murine cell lines, myoblasts (C2C12-GFP)
and osteoblasts (MC3T3E1) were used to analyze the biological response to c.p. Ti fully dense and
porous substrates.

2.2.1. Cell Adhesion and Proliferation of Myoblast Cells

C2C12 cell line (mouse myoblast cell line, CRL-1772 obtained from American Type Culture
Collection, ATCC, Manassas, VA, USA) was used to follow cell adhesion and proliferation processes on
porous titanium samples. This cell line was transfected previously to constitutively express GFP (green
fluorescent protein); thus, samples were evaluated by inverted fluorescent microscope. Cells passaged
were carry out using Dulbecco’s modified eagle’s medium (DMEM) supplemented with 10% of
fetal bovine serum (FBS) plus antibiotics (100 U/mL penicillin and 100 mg/mL streptomycin sulfate)
(Invitrogen). Samples were sterilized in an autoclave and placed in a 24-well plate, seeded with
10,000 cells /cm2. After 24, 48 and 72 h of incubation, samples were inverted to observe the presence
of cells (green fluorescence) attached to the bottom on each well and the porous surfaces using an
inverted fluorescent microscope (Olympus IX51).

2.2.2. In-Vitro Evaluation of Osteoblast Response

MC3T3E1, a murine pre-osteoblast cell line (CRL-2593, from ATCC, Manassas, VA, USA),
was utilized to analyze the porosity’s effect on cell metabolism and viability during cell adhesion and
proliferation process. Routine passaging of the cell line was performed on 25 cm2 flasks with minimum
essential medium (MEM), containing 10% fetal bovine serum plus antibiotics (100 U/mL penicillin and
100 mg/mL streptomycin sulfate) (Invitrogen). Autoclaved porous titanium samples were carefully
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placed into a 24-well plate, and trypsinized osteoblasts cells were seeded at a cellular density of
30,000 cells/cm2 per sample. Afterward, 800 µL of prewarmed culture medium was added, and culture
plates were kept at 37 ◦C in a humidified 5% CO2 atmosphere. Triplicate blank and TCP (tissue culture
plastic) were used as negative and positive controls in the same plate for each time period. Two types
of in-vitro experiments were tested: (i) short time experiments to evaluate cell adhesion, proliferation
and morphology at 24, 48 and 72 h, and (ii) long-term studies to analyze the cell proliferation and
cell morphology of differentiated osteoblasts. These latter experiments were carried out at 1, 4, 7, 14
and 21 days of culturing osteoblasts with osteogenic media (α-MEM medium supplemented with
10 mM ascorbic acid (Merck, Germany) and β-glycerophosphate (StemCell Technologies, Vancouver,
BC, Canada) 50 µg/mL). For the evaluation of cell viability and metabolism of osteoblast, AlamarBlue®

reagent (Invitrogen, Waltham, MA, USA) was selected. Briefly, at the end of each culture period,
samples were collected to a new 24-well plate to avoid counting non-attached or attached cells on the
well plate. New fresh media (800 µL) and 80 µL of AlamarBlue® reagent were added and the plate
was incubated during 1 h 30 min at 37 ◦C in dark conditions. After that, samples were removed and
culture medium was read by fluorescence signal (Biotek FL-600) and absorbance at 570 nm (TECAN,
Infinity 200 Pro) for short and long-term studies, respectively. Cell differentiation studies based on
alkaline phosphatase (ALP) enzyme quantification were analyzed according to the manufacturer’s
protocol (Alkaline Phosphatase Assay kit Colorimetric, Abcam ab83369, Cambridge, UK) of osteoblast
cultured on osteogenic media at 4 and 21 days. Basically, ALP kit measures the conversion of a colorless
p-nitrophenyl phosphate to a colored p-nitrophenol and the lecture of the absorbance at 405 nm is
measured in a 96-well microplate reader. The ALP activity was calculated from a standard curve also
measured in the same plate at the same time. Cytoskeletal organization was studied at 72 h using
Texas red phalloidin (Molecular Probes) and Hoechst (Thermofisher) as a contrast staining for cell
nuclei. In short, cells were rinsed twice with PBS, fixed in 4% paraformaldehyde and permeabilized in
0.1% buffered Triton X-100, and 5 µL/mL from a solution of actin (Texas Red Pahlloidin) in PBS was
used for visualization the F-actin for 20 min. After the incubation period, samples were washed with
PBS, and images were obtained in an Olympus IX51 microscope. DAPI staining was used to quantify
cell nuclei using ImageJ 2.0. software (National Institutes of Health and the Laboratory for Optical and
Computational Instrumentation (LOCI, University of Wisconsin, Madison, WI, USA). Finally, scanning
electron microscopy (SEM) was performed to evaluate the cell morphology at short (1, 2 and 3 days)
and long-term points (7, 14 and 21 days). The samples were fixed in 10% formalin, followed by a
dehydration step with ethanolic solutions and coated by gold-coating using a sputter coater (Pelco
91000, Ted Pella, Redding, CA, USA). All micrographs were obtained using a Jeol JSM-6330F scanning
electron microscope (Jeol, Tokyo, Japan), and the acceleration voltage was 10 kV for SEM images.

2.2.3. Statistical Analysis

All in-vitro experiments were performed in triplicate, with n = 3 for each studied condition.
Results were expressed as means and standard deviations to perform a two-way ANOVA followed by
a Tukey’s post-test using OriginPro 2019 software (OriginLab, Northampton, MA, USA). Significance
was considered at p values of p < 0.05 (*) and p < 0.01 (**).

3. Results

Significant progress has been made toward the development of porous c.p. titanium scaffolds for
orthopedic and dental applications. Two different porous titanium routes (LS and SH) and two spacer
holder particles (NaCl and NH4HCO3) were tested to evaluate their influences on the development
of porous scaffolds with suitable porosity and mechanical properties. These sintering routes were
performed following the Materials and Methods’ description and the ASTM and ISO guidelines.
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3.1. Porosity and Mechanical Behavior

Table 2 shows Archimedes’ method, image analysis, the compression test and ultrasonic technique
results from the samples fabricated using both routes (LS and SH) and different manufacturing
conditions (see Table 1). The porosity evaluation was studied in detail. A representation of the values
from both methods is shown in Figure 2.

Figure 2. Comparative analysis of the porosity values (PT, Pi and PIA) found in LS and SH porous Ti
substrates. The highest porosity values were found in the 50 vol.% NaCl porous substrates.

The resultant porosity (PIA) by IA was similar to the values obtained by Archimedes’ method.
Total porosity achieved by the LS route was lower when the temperature was increased (PT = 44.1%
at 1000 ◦C, and PT = 34.3% at 1100 ◦C). On the other hand, for the SH route, the porosity values
found in NaCl were higher, despite the fact it was the same content of spacer as in NH4HCO3 (i.e.,
for 30 vol.% of NaCl, the PT was 28.5% versus the same percentage, 30 vol.%, of NH4HCO3 that had a
PT of 27.8%). This effect was also observed in 50 vol.% of both porous substrates which is explained by
the space-holder particle size (see Table 1).

Concerning the topographical parameters of the designed porosity, the results demonstrate that:
(1) The equivalent diameter (Deq) was increased when the temperature and/or spacer content increased.
This result is associated with the pore coalescence. Additionally, the values of equivalent diameter are
consistent with the average sizes of the spacers used. (2) The pore sizes found in SH samples do not
allow bone growth towards the interior of the implant, >100 µm being the size reference. (3) The pore
size factor (Ff) parameter is a measure of the roundness of the pores (greater when are closer to 1.0).
In general, these are greater when the SH method is used. The roundness increases with the sintering
temperature (decreases the surface tension), while an increase of the spacer content generates more
irregular pores.

Regarding the mechanical behavior, the values from the elastic limit and Young’s modulus are
consistent with the contents and pore sizes fabricated. In this context, larger pores and in greater
proportion decrease yield strength and stiffness, respectively. The loss of mechanical resistance
may also be related to the poor quality of the sintering necks (both for low compaction pressures
and temperatures) and the increase of the stress concentrator in more irregular pores. Moreover,
the reliability of mechanical behavior depends on the population width of the spacer size; it is noted
that this generally increases for narrower populations. In general, in samples obtained with 40 vol.%
NH4HCO3 and range size of 100–200 µm, obtained by SH (235 MPa and 45.3 GPa), provide a better
scenario for the replacement of cortical bone (σy = 150–180 MPa and E = 20–25 GPa).
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Table 2. Values obtained from Archimedes’ method, image analysis (IA) and estimated mechanical behavior.

Physical and Mechanical Properties

Loose Sintering
Space Holder

NaCl NH4HCO3

1000 ◦C 1100 ◦C 30 (vol.%) 50 (vol.%) 30 (vol.%)
40 (vol. %)

50 (vol.%)
100–200 µm 355–500 µm

Archimedes’ method
PT (%) 44.1 ± 1.7 34.3 ± 0.5 28.5 ± 1.0 47.2 ± 0.9 27.8 ± 0.9 40.2 ± 0.6 40.8 ± 0.5 44.7 ± 0.8
Pi (%) 42.1 ± 5.1 31.0 ± 4.8 20.5 ± 0.8 44.1 ± 0.9 22.4 ± 0.9 27.9 ± 0.8 32.9 ± 0.7 38.5 ± 0.8

Density (g/cm3) 2.5 ± 0.2 2.8 ± 0.2 3.2 ± 0.2 2.2 ± 0.2 3.6 ± 0.2 2.69 ± 0.02 2.67 ± 0.02 2.50 ± 0.2

Image analysis
PIA (%) 43.0 ± 1.2 36.9 ± 4.0 28.4 ± 4.6 47.9 ± 3.1 29.1 ± 3.8 41.6 ± 3.3 43.8 ± 2.4 44.0 ± 4.0

Deq (µm) 16 ± 17 19 ± 16 370 ± 244 392 ± 260 230 ± 202 226 ± 178 295 ± 287 245 ± 223
Ff 0.76 ± 0.11 0.85 ± 0.09 0.81 ± 0.13 0.70 ± 0.14 0.83 ± 0.11 0.71 ± 0.12 0.67 ± 0.06 0.79 ± 0.08

Uniaxial
Compression

Ec (GPa) 13.4 ± 6 21.0 ± 4 6.6 ± 5 5.2 ± 5.0 15.9 ± 4.1 - 8.5 ± 7.0
σy (MPa) 128 ± 6 206 ± 5 323 ± 10 117 ± 12 298 ± 8 235 ± 6 190 ± 5 149 ± 9

Ultrasound Ed (GPa) 42.2 ± 1.0 52.1 ± 1.2 58.9 ± 0.9 39.5 ± 1.3 59.8 ± 1.2 45.9 ± 0.7 45.3± 0.8 41.7 ± 1.0
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3.2. Cell Adhesion and Proliferation

Porous titanium samples fabricated by LS and SH result in a variety of reduced Young´s moduli
as a function of porosity size and distribution (interconnected, total and pore density). It is well-known
that surface parameters affect the cell interactions at the bio-interface. Therefore, the study of cellular
response correlated to the mechanical properties of porous titanium should be assessed.

First, porous c.p. Ti substrates were seeded with C2C12-GFP cells in order to evaluate cell adhesion,
distribution and proliferation during 24–72 h of cell incubation; see Figure 3. Images of fluorescence
microscopy were taken every day to compare the main differences in cell growth in fully dense, LS and
SH (30 vol.% and 50 vol.% NaCl) substrates. It can be observed that C2C12-GFP cells were attached
in all titanium substrates at 24 h. The cell density increased over time, highlighting the suitable
biocompatibility of both sintering porous routes. These micrographs demonstrated differences in
cell distribution that were even noticeable at 24 h of study. A fully dense surface presented a dense
cellular monolayer located in the center of the sample. Cells growing on LS and SH substrates were
highly disperse, covering almost the entire surface area. This cell behavior was highlighted at 72 h
of cell proliferation in which an increased cell density was reached on LS and SH_50%NaCl surfaces
compared to SH_30%NaCl and fully dense.

Figure 3. Inverted fluorescence micrographs of C2C12-GFP cells seeded onto fully dense and porous
titanium samples fabricated by LS and SH using NaCl spacer particles at 24, 48 and 72 h. An increase
in cell attachment is observed in LS and SH_50%NaCl over the entire surface which contrasts to the
cells just located at the center of fully dense samples, confirming lower cell migration at 72 h.
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Figure 4 showed, at higher magnification, images of C2C12-GFP cells growing at 24, 48 and 72 h
of cell incubation. These images corroborate the cell behavior described above and point out the
differences between pores and flat surfaces. All porous substrates presented higher surface contact area
due to the porosity designed compared to non-porous control samples. Indeed, 50% of total porosity
surfaces showed higher cell attachment and cell migration compared to lower porosity levels, 30%,
and control Ti surfaces. These factors, roughness and porosity promoted the increased cell adhesion on
titanium scaffolds. Moreover, an irregular pore morphology with higher interconnected porosity (Pi)
facilitates surface exposure to cells during the adhesion process, as SH_50%NaCl revealed.

Figure 4. Inverted fluorescence micrographs of C2C12-GFP cells seeded onto fully dense and porous
titanium samples fabricated by LS and SH using NaCl spacer particles at 24, 48 and 72 h. An increase
of cell adhesion and cell density is observed through the cell incubation time, as expected for cells that
are well attached and in a proliferation stage.

It is well-known that the osseointegration process of titanium implants is influenced by the surface
properties, the topography and the chemical nature of the material. This osseointegration has been
improved by the development of rough surfaces or porous substrates, or by implementing bioactive
coatings [42–44]. Commercial implants have been subjected to different surface modification treatments
to produce rough surfaces using different methods (mechanical, chemical, sol-gel, anodic oxidation,
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physical and biochemical) described elsewhere [37,45,46]. While porous substrates offer a higher
surface contact area, rough surfaces facilitate the cell anchorage and adhesion process. Indeed, many
research studies have reported the relationship between roughness (Sa) and cell adhesion [44,45]. In this
study, all specimens were polished to a mirror-like surface—reaching Sa values of 0.7 µm on flat surfaces
found in fully dense and on porous substrates, while the internal walls of the pores revealed higher Sa
values (i.e., 5 µm in SH_50%NH4NCO3) [20]. Besides the roughness difference, the pore geometry
has an impact on cellular attachment. Under this premise, SH_50%NaCl presented an extended pore
morphology, plus a bigger pore size, which facilitated the entrance and the cellular attachment to pore’s
wall. Furthermore, samples with low Deq such us LS at both temperatures did not allow for cellular
penetration inside the pore reducing the surface area exposed for cellular anchorage. In addition, lower
cell adhesion was detected in pores with rounded morphology (i.e., in SH_30%NaCl with 28.4 ± 4.6%
and 347 µm (Deq) compared to SH_50%NaCl with 47.9 ± 3% and 392 µm (Deq)). This relationship has
been reported for porous Ti substrates using NH4HCO3 spacer particles. While SH_30%NH4HCO3

showed a larger smooth surface area, SH_50%NH4HCO3 presented higher roughness values, with a
surface full of peaks and valleys of around 10 µm [39]. They showed not only a rough surface inside
the pores but also the presence of micropores due to the sintering process which also increases the
roughness inside the pores. Moreover, an irregular pore morphology including geometrical features
and the presence of some fractures and cracks due to the compaction process and the removal of the
spacer particles contributes to the increased roughness (higher Sa values on SH compared to LS).

After a preliminary biocompatibility study of Ti samples, following the cell culture by inverted
fluorescence microscopy, the metabolic activity of this murine cell line MC3T3E1 was assessed at 24, 48
and 72 h of cell incubation; see Figure 5.

Figure 5. Cell metabolic activity in adhesion and proliferation stages determined by AlamarBlue assay
of MC3T3E1 cell line; AlamarBlue results showed a remarkable increased in metabolic activity that
belongs to an increase in cell proliferation. Significance level at p value < 0.05 (*).

Both time and type of substrate, showed significant differences at the 0.05 level. According to
Tukey’s post-hoc test, the 24 h samples did not show statistical differences, and all surfaces behave
similarly. At 48 h, this metabolic activity was statistically different when compared to the SH route,
fully dense and LS samples. However, LS and fully dense achieved the highest metabolic levels (at
48 h, p > 0.05). Moreover, at 72 h, fully dense showed statistical differences to all porous LS and SH
substrates, with p < 0.05 and p < 0.01 respectively.

Although both porous Ti substrates (LS and SH) reached lower cell metabolic activity levels
compared to control fully dense for all time points, it has been previously reported that a higher
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porosity percentage and interconnected porosity leads to cells settle down to the bottom of the tissue
culture plate. Thus, a reduced number of cells are able to attach on the sample from the beginning
of the experiment [20]. This fact is also observed during the first period of cell incubation using
C2C12-GFP and could explain the lower MC3T3E1 metabolic activity reached in SH porous substrates
compared to fully dense and LS at 24 h and 48 h. However, this trend evolved, and the metabolic
activity increased reaching in SH_50%NaCl similar metabolic levels to LS with no statistic differences
(p > 0.05). It should be noticed that the main differences were found in SH_30%NaCl which can be
explained by several factors: (1) lower amount of NaCl particles shows lower porosity percentage and
a lower interconnected porosity (Pi) which generates samples with lower surface area than 50%; and
(2) the Deq is similar to 50%NaCl but the pore morphology (Ff) is more spherical and homogeneous
which hinder the cellular attachment to pore walls.

On the other hand, the presence of cellular metabolism confirms the safety of sintering routes to
produce biocompatible porous titanium substrates with no residues due to the elimination of spacer
particles. These results have been described in previous studies on our research group [47]. In this
study, a better in-vitro biological performance was achieved using 50% spacer particles of NH4HCO3

compared to other percentages (30%, 40%, 60% and 70%). Indeed, lower cytotoxicity percentages were
found for 50% due to the roughness, and pore size and morphology. The two-temperature process in
low vacuum of NH4HCO3 particles induces higher surface defects, and thus, higher roughness, which
affects the cell metabolic activity and adhesion of osteoblast cells [20].

The cellular behavior observed in the flat control sample (fully dense) was similar to those reported
in previous studies, in which the metabolic activity during the adhesion process was higher on smooth
than the kinetic rough surface [19,20,48]. Cell metabolic activity changes due to the cellular machinery
in each step, presenting lower activity for adhesion than for proliferation or differentiation states.
Surface roughness has shown the influences on the adhesion and differentiation of osteoblastic cells,
thereby reaching a reduction of proliferation rate regarding the higher production of bone matrix
proteins, including ALP, collagen, osteopontin and osteocalcin [19,49]. Particularly, other cellular
processes such as protein adsorption or hemocompatibility can be improved using surface modification,
in bone and vascular tissue regeneration [49,50]. It has been reported that the protein layer deposited
onto Ti smooth and Ti rough surfaces is composed of different proteins and different amounts. While
Ti smooth surfaces revealed an increasing number of proteins related to glycolysis and apoptosis,
proteins related to the cell signaling pathway by integrin and blood coagulation process (Apo E,
and antithrombin) were upregulated in rough Ti substrates [50]. Furthermore, Chen and coworkers
studied the viability of the osteoblastic cells growing on porous Ti substrates fabricated with sugar as
spacer particles, and they did not observe statistical differences between different volume fractions of
30%, 40% and 50% samples [19]. In previous studies in our group, MC3T3 cells achieved lower cell
metabolic activity on porous than on flat substrates at 4 and 7 days, but similar responses were found
between percentages of the spacer [20]. All these results confirmed the higher cell metabolic levels
observed on flat Ti surfaces compared to the levels reached in LS and SH.

Changes in cell shape were also studied as a response to surface topography. Figure 5 shows the
evaluation of cell morphologies of the studied specimens. The fully dense surface showed a dense
cell monolayer at the center of the sample denoting a reduced cell spreading compared to LS and
SH. This delay on cell spreading was in agreement with previous results observed using myoblast
cells [20]. However, the increased cell density at the center hindered the analysis of cell cytoskeleton
morphology. For that reason, Figure 6 images are presented at the center for all substrates and in the
edges and inside the pores of the samples. Cell morphology located at the edge of the fully dense
control sample revealed a more rounded cell cytoskeleton which it can be correlated with a more
immature cell adhesion state. In contrast, all porous substrates showed an elongated cell morphology
and a wider cell cytoskeleton. For instance, LS and SH substrates (30% and 50%) presented flat and
pores surfaces that were totally covered and had higher cell density due to the higher surface contact
area. Inside the pores, LS had a lower presence of attached MC3T3 than SH substrates, which was
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noticed by the lower presence of cell nuclei. DAPI staining allowed for the quantification of cell nuclei,
confirming higher cell density on SH_50%NaCl compared to FD and LS, as Figure 6C shows.

Figure 6. Micrographs of inverted fluorescence microscopy of MC3T3E1 cells seeded onto c.p. fully
dense and porous titanium samples fabricated by LS and SH using NaCl spacer particle at 72 h. (A) Cell
adhesion in the centers of Ti samples. (B) Cell adhesion at the edges and inside the pores of Ti substrates.
(C) Quantification of cell density on each substrate.

These two PM routes offer a higher contact surface compared to fully dense, which it has been
reported to promote cytoskeleton development and advanced cell adhesion [20,51]. However, between
LS and SH routes, the higher surface exposed inside the pores favored the cell adhesion, as Figure 7
shows by comparing LS with SH_50%NaCl.

In order to further analyze the cell morphology studied on these porous specimens, and to solve
the limitations associated with the inverted fluorescence microscope, SEM was performed, and the
results are shown in Figure 8. Here, MC3T3E1 cell monolayer was found in all c.p. Ti substrates.
Whereas fully dense had an extended cell cytoskeleton at the edges of the sample, the osteoblastic cells
were covering the internal walls of pores on porous SH surfaces.
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Figure 7. Cell morphology of MC3T3E1 cells growing on LS and SH_50%NaCl scaffolds comparing flat
surfaces and inside pores at 72 h of incubation. Images were taken by fluorescent microscopy. Notice
an increase of attached cells in SH_50%NaCl inside the pores compared to its flat surface. In contrast,
LS presented lower porosity and the preosteoblasts were more abundant on the flat area. Yellow dotted
lines and arrows mark the pore edges to indicate the presence of cells attached inside each pore.

Figure 8. SEM images of MC3T3 E1 cell morphology growing on LS and SH_NaCl surfaces comparing
flat surfaces and inside pores at 72 h of incubation.

Furthermore, osteoblasts growing on the control (fully dense) surface presented lower filopodia
protrusions which are essential cellular structures during the cell adhesion process. These observations
are in agreement with those presented in other studies using MC3T3E1 and SAOS cells [47]. Muñoz
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and coworkers observed an osteoblastic cell morphology when porous substrates had 50% of the
spacer particles [47].

There was a different cell response to higher Deq in SH compared to LS substrates. Higher surface
contact area, bigger pore size and a more irregular geometry, facilitated the surface exposed to cell
contact which promoted cell interactions reaching an advanced adhesion with the substrate.

SH sintering route, using NaCl and NH4HCO3 particles, produces a bigger pore size related to
the size of the spacer particle compared to LS, and due to the sintering process and the removal of
spacer particles, an increased roughness inside the pores is defined, which also promotes the cell
attachment inside the pore. The percentage of spacer particles did not seem to affect cell viability using
AlamarBlue (see Figure 9) and MTT [35]; however, the higher amount of spacer particles drives in- pore
coalescence, affecting the mechanical properties and its integrity, which finally reduces the implant
stability. It is essential to reach a compromise between the mechanical properties of porous implants
and biological performance to promote the desired osseointegration [52]. Although multiple factors
intervene during bone osseointegration, many studies have reported the relationship between surface
roughness, geometry of pores, pore diameter, total and interconnected porosity. The combination of all
these factors to reproduce a similar surface to the bone ECM (extracellular matrix) is a great strategy to
promote cell differentiation and bone regeneration [33,47,53].

Figure 9. Cell metabolic activity in long proliferation stage (1, 4, 7, 14 and 21 days) determined
by AlamarBlue assay of MC3T3E1 cell line; AlamarBlue results showed a remarkable increased in
metabolic activity that belongs to an increase in cell proliferation. The p values of < 0.05 (*) and < 0.01
(**) indicate statistical differences, while n.s. indicates a non-significant value.

Similarly, these porous substrates were elaborated using a pull of particle sizes without taking
into account a specific range. When the spacer particle used to produce porous substrates was sieved
before the sample preparation into a limited size, the porosity achieved was more accurate to the
percentage designed (see Table 2 for SH_NH4HCO3-40%, 100–200 µm and 355–500 µm). These samples
offered a similar PT percentage (40.02% ± 0.6% and 40.08% ± 0.5% for both surfaces), similar density
(2.69 ± 0.02 g/cm3 and 2.67± 0.02 g/cm3) and same enlarged and irregular pore morphology (0.71 ± 0.12
and 0.67 ± 0.06 g/cm3). The main differences were found in Deq and interconnected porosity, which
were superior in SH_NH4HCO3-40% (355–500 µm). To analyze the influence of the latter factors,
the osteoblast response was studied in longer-term experiments using murine MC3T3E1 cells for
21 days.

Figure 9 shows the results of the metabolic activity of osteoblasts expressed in absorbance,
and therefore, their cellular viability. The metabolic activity increases during the period of cellular
incubation, reaching optimal values at 21 days, as it has been reported in other studies in which the
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metabolic activity is greater in differentiation and mineralization stages (14 and 21 days) than in adhesion
stages (1–4 days) [20]. There is a greater viability of the osteoblastic cells on SH_NH4HCO3-40%
(100–200 µm) porous substrates at 21 days of cell culture. Based on the statistic treatment, the cell
metabolic activity was significantly different compared to time and samples. At 1, 4, 7 and 14 days
all samples showed a similar cellular response in all substrates except in fully dense which showed
significant results when compared to 4 days in a fully dense sample. At 21 days the scenario changes,
and as pointed out earlier, optimal values were found in porous SH substrates when compared with
fully dense and SH_NH4HCO3-40% (355–500 µm).

Regarding the cell metabolism at 14 and 21 days, the metabolic activity is focused on the latter
differentiation process, synthesizing a higher increase of proteins and fibers to develop a nutrient
extracellular matrix (ECM). The pore size and the percentage of interconnected pores found in these
samples offered suitable properties to create a rich bone ECM.

In order to confirm the previous results regarding an increased cell metabolic activity on
SH_NH4HCO3-40% (100–200 µm) at 21 days, alkaline phosphatase activity (ALP) was evaluated
at 4 and 21 days, as Figure 10 shows. At 4 days, osteoblast cells growing on SH_NH4HCO3-40%
(100–200 µm) achieved similar ALP level to fully dense surfaces, but ALP increased at 21 days on the
porous scaffolds and lower enzymatic activity was observed on the fully dense surface.

Figure 10. Cell differentiation of osteoblasts on porous scaffolds SH_NH4HCO3-40%. In-vitro evaluation
of alkaline phosphatase enzyme (ALP) activity measured at 4 and 21 days of cell culture in osteogenic
media. Statistical differences are indicated at p < 0.05 *.

This increased cell differentiation was contrasted through SEM analysis in all studied specimens.
Figure 11 shows the SEM micrographs of osteoblasts growing on Ti substrates. These SEM
images showed the osteoblast cell expansion over all surfaces for 7, 14 and 21 days of cell culture.
It was observed that osteoblastic cells were well attached and spread onto the surfaces and inside
porous in all samples. Detailed observations of the interactions, cell–cell and osteoblasts–surfaces,
demonstrated the interconnectivity of the matrix (marked with yellow arrows and asterisks in Figure 11).
The cytoplasmatic extensions created bridges across the pores and enlarged filopodia and lamellipodia
protrusions which are presented on porous surfaces. The increased cell density on porous samples
compared to fully dense ones is remarkable, which at 14 days, still revealed empty areas in the surface
with no attached cells. However, at 21 days all surfaces appeared to be completely covered by MC3T3E1
cells (covering pores) and surrounded by bone matrix.
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Figure 11. SEM micrographs of the 7, 14 and 21 days of osteoblast culture growing on porous
SH_NH4HCO3-40%, 100–200 µm and 355–500 µm. Cell morphology and osteoblast proliferation are
shown on SH surfaces. The pores covered by osteoblasts at 7 days in SH substrates should be noticed.
Cell–cell interaction (white arrow), a cell-surface junction (yellow arrow) and hydroxyapatite (red
asterisks) are indicated in the images.

The number of cells detected was greater in the sample of SH_NH4HCO3-40% (100–200 µm)
since there are pores completely covered by cells at 14 days. The cells adhered through filopodia (fine
cellular projections) marked by the white arrow in Figure 11, and lamellipodia (wider extensions),
demonstrating the connection with the biomaterial. Fine extensions allowing the cell–cell connection
are also distinguished.

From the 14th day of cell culture, the elevated presence of vesicles on the cell surface was
highlighted. They are produced by polarized sprouting from the surface of the osteoblast, suggesting
the development of a nutrient bone ECM. Many vesicles were observed due to the medium containing
β-glycerophosphate (organic phosphate), a substrate of alkaline phosphatase that induces an increase
of inorganic phosphates in the medium that will transform into hydroxyapatite marked with a red
asterisk in Figure 11 [54,55].

On the 21st day, fully dense Ti and SH_NH4HCO3-40% (350–500 µm) discs showed hexagonal
structures that suggest a possible nucleation of hydroxyapatite (see Figure 11, red asterisks). In the
SH_NH4HCO3-40% (100–200 µm) samples, a cell monolayer of mature osteoblast was observed.
In previous studies, we have demonstrated that osteoblasts in the samples of 40% space-holder
(SH_NH4HCO3-40%) were well attached to peaks inside the pores or among depressions, which
appear separated by a length that is similar to osteoblast diameter (~20 µm), and the samples with the
highest space-holder contents (60 and 70 vol.%) did not show such proper shape of well-attached cells;
therefore, the large sizes of pores also could be negative for the osteoblast proliferation [47]. Our results
agreed with other authors; they have reported that different ranges of porosity can promote different
osteoblast functions. Conway et al. showed that Ti scaffolds with a pore range between 45 and 106 µm
presented the best microarchitecture for early stages of osteoblast attachment, whereas a pore size
higher than 300 µm exhibited the most favorable conditions for cell proliferation [56].
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4. Conclusions

In this study, we have correlated the porosity designed by two different routes, LS and SH, and
the mechanical and cellular behavior of porous titanium substrates towards bone osseointegration.
In summary, both techniques are simple, economical and easily reproducible for fabricating porous
materials as potential substitutes for cortical bone tissue. However, the sizes and contents of the pores
obtained using the LS route are insufficient (Deq = 19µm) to guarantee the bone ingrowth (>100µm) and
to reach appropriate stiffness values (E = 52 GPa versus ECortical bone = 20–25 GPa), while the use of large
and heterogeneous (wider populations) spacers compromises the reliability mechanical (σy = 180 MPa)
of the implant. In-vitro tests show a successful adhesion and spreading of the C2C12-GFP and MC3T3
cell lines (on a flat surface and inside pores of porous samples) confirming the biocompatibility and
non-toxicity of both sintering routes. Moreover, both methods enhanced cell adhesion, spreading,
proliferation and differentiation of osteoblasts compared to fully dense. However, the use of SH
provides bigger pore size, with an irregular pore geometry and higher interconnected porosity, factors
that influence cell differentiation of osteoblast. In that sense, SH_NH4HCO3-40% (100–200 µm) reached
a higher cellular metabolic activity and increased alkaline phosphatase levels at 21 days compared to
fully dense and SH_NH4HCO3-40% (355–500 µm). In this context, the substrates obtained with 40 vol.%
NH4HCO3 and ranges size of 100–200 µm, are those that offer suitable biomechanics (E = 45.3 GPa and
σy = 235 MPa) and biofunctional behavior balance to promote in-vitro osseointegration and solve the
stress shielding phenomenon, key factors for the improvement of clinical success of titanium implants.
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