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Abstract: A compositional and crystallographic study was carried out on the Smy(FexNi1−x)4Sb11.5Sn0.5

filled skutterudite system (0.40 ≤ x ≤ 0.80) with the aim to determine the equilibrium Sm filling fraction (y)
within the considered x range. The relevance of the material lies in its potential thermoelectric properties:
in analogy with similar skutterudites systems, these features should in fact result as being improved with
respect to the ones of the corresponding Sn-free system thanks to the partial substitution of Sn for Sb,
which is expected to lower the phonon thermal conductivity. The results of Rietveld refinements allowed
us to study the skutterudite structural properties and to discuss them, adopting a comparative approach
with respect to the ones of the Sn-free system Smy(FexNi1−x)4Sb12. Relying on the refined Sm occupancy
factors, the p/n crossover is shown to be located at x ~ 0.53, meaning that the introduction of Sn induces
an enlargement of the p-region; moreover, at variance with the Sn-free system, the coefficient of thermal
expansion does not show any significant mismatch between n- and p-compositions, which should ensure
a prolonged lifetime of a device made of n- and p-legs that both derive from the studied system.

Keywords: thermoelectrics; filled skutterudites; coefficient of thermal expansion; powder X-ray diffraction;
Rietveld method; electron microscopy

1. Introduction

Filled skutterudites form a wide family of intermetallic compounds thoroughly studied for their
potential thermoelectric properties [1–7]. They formally derive from skutterudites, binary compounds
investigated for the first time by Oftedal in the first half of the last century [8]. Skutterudites have
the general formula MX3 (M ≡ Co, Rh, Ir, and X ≡ P, As, Sb) and crystallize in a body-centered
cubic cell belonging to the Im3 space group; the atomic arrangement consists of two atomic positions,
namely the 8c (1⁄4,1⁄4,1⁄4) and the 24g (0,y,z), which are occupied by the M and X atom, respectively. M is
coordinated to 6 X atoms forming strongly tilted octahedra. The parent compound CoSb3 does not
present exploitable thermoelectric properties despite its high charge carrier mobility, due to its overly
large thermal conductivity (λ ~ 10 W m−1 K−1 at 293 K [9]).

It is in fact well known that the optimization of a material’s thermoelectric properties implies the
maximization of the power factor σS2 and the minimization of λe and λph (where σ is the electrical
conductivity, S the Seebeck coefficient, and λe and λph the electron and phonon thermal conductivity,
respectively). This approach follows the phonon-glass electron-crystal (PGEC) concept [10], which states
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that the ideal thermoelectric material should conduct heat like a glass and electricity like a crystal.
The maximization of σS2 results from the optimization of the charge carriers concentration, the increase
of which at the same time causes an increase of σ and a drop of S; it implies the knowledge of
the material’s band structure and its engineering. The reduction of λe, in turn, is limited by the
Wiedemann–Franz law:

λe

σ
= LT (1)

where L is the Lorenz number [11]. Therefore, the most convenient way to reduce thermal conductivity
is the manipulation of λph, which essentially consists in the introduction of scattering centers,
such as interstitial and substitutional atoms, able to disturb the phonon propagation throughout
the structure. The introduction of interstitial and substitutional atoms, as well as actions directed
toward the modification of extrinsic factors, such as density enhancement [12–14], porosity control [15],
nanostructuring [16], mesostructuring [17], or precipitation of nano-sized secondary phases [18], can be
mentioned among the most effective methods to enhance phonon scattering, and hence to reduce λph.

In the framework of the introduction of foreign atoms, and according to Slack’s intuition [19],
filling the Sb12 icosahedral cage formed in skutterudites around the 2a position (0,0,0) by a proper
atom (mainly a lanthanide or an alkaline-earth element [1,7,20]) strongly reduces thermal conductivity,
as testified by many filled skutterudite systems, such as for example RE0.1Co4Sb12 (RE ≡ La, Ce, Nd,
Sm, Yb, Eu), which display much lower thermal conductivity values ranging between 3.5 and 5.5 W
m−1 K−1 at 293 K, depending on the rare earth identity [21]. Even more relevant results can be obtained
when a double or a multiple filling of the 2a position by different filler atoms is operated, such as in the
case of the (Sm,Gd)y(FexNi1−x)4Sb12 [22], the (Ba,Sr,DD,Yb)y(FexNi1−x)4Sb12 (DD ≡ didymium, a Nd/Pr
mixture) [23], the CexNdxFe3.7Ni0.3Sb12 [24], the Mmy(FexCo1−x)4Sb12 (Mm ≡mischmetal, a natural
mixture of Ce, La, Pr, and Nd) [25], and the BaxYbyCo4Sb12 systems [26]. When the transition metal is
also partially substituted, additional phonon scattering is provided, and thermal conductivity is further
reduced. Following this idea, a large variety of filled skutterudites containing two different transition
metals were prepared and studied; even when limiting oneself to antimonides, several Fe/Ni [27–31],
Fe/Co [32–37], and Ni/Co [38–40] filled skutterudites systems are documented in the literature.

A third way aimed at introducing further disorder into the structure, and hence at reducing
λ, involves the partial substitution of Sb at the 24g site by various elements or element mixtures,
such as Sn [32,33,41,42], Ge [32,43,44], Te [45], Se [46], Se/Te [46], Te/S [47], or Te/Sn [48]. Sn-doping,
in particular, proved to be particularly effective at reducing phonon thermal conductivity, as testified
by DD0.59Fe2.7Co1.3Sb11.8Sn0.2 [32], as well as by CeyCo4Sb12−δSnδ [42], Nd0.6Fe2Co2Sb12−δSnδ [41],
and CoSb3−δSnδ [49]. The positive effect occurs despite the closeness of Sn and Sb atomic masses,
which makes mass fluctuation scattering negligible.

The partial substitution of Sb by an aliovalent atom also exerts an effect on the electronic properties
of the material. Even without resorting to band structure calculations, skutterudites can be described
through Zintl’s approach, which allows one to explain the diamagnetic and semiconducting nature of
CoSb3 [1,7]. The substitution of Co by a Fe/Ni mixture induces an electron imbalance, which can be
only partly restored by the injection of electrons from the filler: it is in fact well known that the filling
fraction is an intrinsic property of a given skutterudite system [1], also affecting the structural properties
of the material [50], and that a different filler amount can hardly be forced into the structure [27]
unless drastic techniques are used, such as synthesis at a high [14] or extremely high pressure [51].
Consequently, p- and n-conducting skutterudites occur; in the Smy(FexNi1−x)4Sb12 system, for example,
the p/n crossover is located at x ~ 0.63 [29]. It can thus be expected that the partial substitution of
Sb by Sn, namely by an atom with an electron that is less in the outer shell, requires the insertion
of a larger number of electrons deriving from the filler to reach the electron count of a degenerate
semiconductor. Nevertheless, since the introduction of filler atoms does not generally satisfy the
requirement for a degenerate semiconductor for the aforementioned reasons, it can be expected that
Sn/Sb-based skutterudites are characterized by a larger p-compositional extent than the Sb-based ones,
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as indeed verified for CoSb3−δSnδ, where the Sb substitution by Sn was in fact originally employed to
obtain p-CoSb3 [52].

Following the idea of increasing the disorder degree of the structure, the Smy(FexNi1−x)4Sb11.5Sn0.5

filled skutterudite was taken into consideration, as it derives from the Smy(FexNi1−x)4Sb12 system,
which was thoroughly studied by the present research group [53–61] for its promising thermoelectric
properties, which provide ZT = 0.55 at ~600 K [62]. As aforementioned, the filling fraction is of primary
importance in driving the electronic properties of a filled skutterudite; nevertheless, its equilibrium
value can hardly be predicted a priori, and the issue needs to be fixed in the first stages of the study
of a new system to ensure the preparation of pure samples. A preliminary work of compositional
optimization was thus undertaken on the chosen system: in the absence of literature data, experimental
y values found for each x in the Smy(FexNi1−x)4Sb12 system [29] were employed for the synthesis of
Sn-containing samples. A subsequent compositional and structural study was performed in order to
reveal the actual Sm content of specimens, and ultimately to optimize the synthesis procedure.

Moreover, a further technologically relevant issue when dealing with a thermoelectric material
concerns its coefficient of thermal expansion (CTE). Ideally, the CTE mismatch between the n- and
p-leg of a thermoelectric device should be as small as possible, in order to reduce the thermal stress
caused by the uninterrupted work under large temperature gradients, and therefore to prolong the
device lifetime. It is generally meant for this goal to be reached if both the p- and the n-elements
derive from the same matrix [63]; nevertheless, the issue is not obvious, and this prediction is only
confirmed in some cases, such as for the (Ba,DD,Yb,Sr)yFe3NiSb12 system [23]. In most skutterudite
systems, on the contrary, CTE is shown to be higher for p- than in n-compositions [63,64], so that Rogl
et al. proposed for instance the dispersion of nano-sized Ta0.8Zr0.2B particles into a (Mm,Sm)yCo4Sb12

matrix to reduce the n/p CTE mismatch [65]. In this respect, an interesting case is represented by
Smy(FexNi1−x)4Sb12, which displays a significant p/n CTE mismatch [61], as a consequence of the
discontinuity occurring at the p/n crossover in the lattice parameter trend vs. the Fe content [29].
In the present work, crystallographic data collected up to 773 K were employed to determine the
Smy(FexNi1−x)4Sb11.5Sn0.5 CTE, which revealed a much lower p/n mismatch and thus a very promising
mechanical behavior.

2. Materials and Methods

2.1. Synthesis

Four compositions belonging to the Smy(FexNi1−x)4Sb11.5Sn0.5 system (x = 0.40 and y = 0.06;
x = 0.55 and y = 0.23; x = 0.60 and y = 0.31; x = 0.80 and y = 0.55) were prepared via the conventional
melting-quenching-annealing technique commonly used for the Sn-free system [29,61]; in the absence
of specific literature data, the Sm amount (y) to be added in association to each x value was chosen to
be identical to the experimental value observed in the Smy(FexNi1−x)4Sb12 system [29]. The starting
materials were stoichiometric amounts of Fe (Alfa-Aesar, Kandel, Germany, 99.99 wt. %), Ni (Alfa-Aesar,
Kandel, Germany, 99.99 wt. %), Sm (NewMet, Waltham Abbey, UK, 99.9 wt. %), and pre-alloyed
Sb0.96Sn0.04. The precursor alloy, in turn, was prepared from due amounts of Sb (Mateck, Jülich,
Germany, 99.99 wt. %) and Sn (Sigma Aldrich, Darmstadt, Germany, 99.99 wt. %) by melting the proper
mixture at 903 K in a quartz vial sealed under Ar gas (P = 80 KPa). Materials were mixed and placed
into a quartz tube, which was evacuated, closed, and heated up to 1238 K, and then rapidly cooled to
obtain microcrystalline phases that can be easily decomposed in favor of the filled skutterudite during
the subsequent annealing treatment. In addition, the rapid cooling of the liquid phase prevents the
formation of the (FexNi1−x) Sb phase, which is stable at high temperature and does not evolve into
the filled skutterudites at the annealing temperature. Samples were then annealed under vacuum at
873 K for ten days, and afterwards slow-cooled. Samples were named Fe40_303, Fe55_373, and so
on, where the first number stands for the Fe % amount with respect to the overall (Fe + Ni) content,
and the second one stands for the temperature in K which the diffraction pattern was collected at.
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2.2. Scanning Electron Microscopy–Energy-Dispersive X-Ray Spectroscopy (SEM-EDS)

Samples were cut in pieces to be micrographically polished prior to the observation by electron microscopy
coupled to an energy dispersive system (Zeiss LEO 1430, Jena, Germany, equipped with EDS INCA Energy 200,
Link Analytical–Oxford Instruments, Abingdon-on-Thames, UK). By this technique, the occurrence of phases
was studied, and their composition was evaluated. Microphotographs were taken both by backscattered and
secondary electrons, and EDS analyses were performed on at least five points for each sample.

2.3. High Temperature Powder X-ray Diffraction

The room and high temperature structural properties of all the samples were studied by
a Bragg–Brentano powder diffractometer (PANalytical X’pert Pro, Almelo, The Netherlands, Cu Kα

radiation); Ge was used as an internal standard to accurately determine the skutterudite lattice parameter
of each specimen. Samples were crushed, ground, sieved through a 75 µm sieve, placed on an alumina
sample-holder, and introduced into a high temperature oven chamber (Anton Paar, HTK 1200N, Graz,
Austria); diffraction patterns were collected at room temperature (303 K), as well as at 373, 473, 573,
673, and 773 K (angular range: 10–112◦, step 0.017◦, time per step: 90 s). Samples were protected from
oxidation by He atmosphere. The structural models of skutterudite and, when possible, of extra phases,
were refined for samples Fe40, Fe55, and Fe60 by the Rietveld method through the FullProf software,
version September 2020 [66]. Due to the large content of extra phases, it was not possible to refine the
skutterudite structural model of sample Fe80. On the contrary, the skutterudite cell parameter was
calculated for all the compositions by the least squares method. To this purpose, the Ge CTE was found
by collecting the diffraction patterns of Ge at the same temperatures as the samples, and by refining
the Ge lattice parameter. The CTE values resulting at the different temperatures for Ge were found in
good agreement with literature data [67], and were employed to calculate the Ge cell parameter at each
temperature; the cell parameter a = 5.6575 Å [67] was used as the room temperature reference value.

3. Results

3.1. Compositional and Morphological Characterization

SEM microphotographs indicate that in all the samples, except in Fe80, the filled skutterudite is
the main phase; nevertheless, even other phases are present: in particular, three differently colored
regions appear in Figure 1. Relying on EDS analyses, the darkest one consists of (Fe,Ni)Sb2, the lightest
one of Sb1−xSnx, and the intermediate one of the Sn-containing skutterudite. Moreover, the observation
of Figure 1 also suggests that Fe55 is essentially formed of skutterudite, the amount of extra phases
being almost negligible (see Figure 1b), and that Fe80 is mainly composed of Sb1−xSnx and (Fe,Ni)Sb2.
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Figure 1. SEM microphotographs taken by backscattered electrons on the polished surface of the
samples (a) Fe40, (b) Fe55, (c) Fe60, and (d) Fe80.



Metals 2020, 10, 692 5 of 15

The results of the room temperature X-ray diffraction analyses confirm the outcome of the electron
microscopy while revealing the presence of tiny amounts of other extra phases, such as for example
SbSn. An overview of the compositional analyses of all the samples is provided in Table 1; the amounts
of extra phases whose structural models could be refined are reported too. The amount of additional
phases in Fe80 was not quantified due to the impossibility to refine the structural models of phases
contributing to the sample.

Similarly to Sn-free skutterudites [22], even the present samples present a high porosity degree, as
observable in Figure 2, where microphotographs taken by secondary electrons are collected.
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Figure 2. SEM microphotographs taken by secondary electrons on the polished surface of the samples
(a) Fe40, (b) Fe55, (c) Fe60, and (d) Fe80.

Table 1. Refined composition, amount of additional phases as revealed by EDS and X-ray diffraction,
skutterudite cell parameter, and Rietveld agreement factors for each sample. Sample Fe80 is mainly
composed of the extra phases Sb and FeSb2.

Sample Refined Composition Additional Phases
(wt.%)

Skutterudite a
Cell Parameter

[Å]
χ21 Skutterudite RB

2

Fe40_303

Sm0.22(Fe0.41Ni0.59)3.9Sb11.8Sn0.2 Sb0.95Sn0.05 (11%)

9.0948(1) 18.5 9.39
Fe40_373 9.1023(1) 15.0 9.91
Fe40_473 9.1128(1) 12.5 10.5
Fe40_573 9.1245(1) 12.7 9.43
Fe40_673 9.1370(1) 12.1 11.0
Fe40_773 9.1487(1) 12.8 9.88

Fe55_303

Sm0.26(Fe0.55Ni0.45)3.7Sb11.5Sn0.5

Fe0.66Ni0.33Sb2
(traces); SbSn

(traces)

9.1004(1) 7.30 6.44
Fe55_373 9.1085(1) 6.85 6.11
Fe55_473 9.1203(1) 7.63 6.18
Fe55_573 9.1326(1) 6.58 6.19
Fe55_673 9.1457(1) 5.81 5.79
Fe55_773 9.1585(1) 6.03 5.18

Fe60_303

Sm0.27(Fe0.59Ni0.41)3.7Sb11.7Sn0.3

Sb0.92Sn0.08 (9%);
Fe0.66Ni0.33Sb2

(29%)

9.1005(1) 8.39 8.26
Fe60_373 9.1086(1) 8.03 9.26
Fe60_473 9.1203(1) 7.27 7.48
Fe60_573 9.1322(1) 6.08 7.90
Fe60_673 9.1453(1) 6.90 8.25
Fe60_773 9.1573(1) 4.66 5.14

Fe80_303

Sm0.61(Fe0.79Ni0.21)3.9Sb11.8Sn0.2
Sb; FeSb2;

SbSn (traces)

9.1181(1) – –
Fe80_373 9.1267(1) – –
Fe80_473 9.1392(1) – –
Fe80_573 9.1508(1) – –
Fe80_673 9.1661(1) – –
Fe80_773 9.1831(1) – –

1 χ2 =
(

Rwp
Rexp

)2
, 2 RB =

∑
k |Ik,obs−Ik,calc|∑

k |Ik,obs|
.
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3.2. Structural Characterization

The skutterudite structural model was refined by the Rietveld method for the samples Fe40,
Fe55, and Fe60 according to the previously described cubic cell crystallizing in the Im3 space group.
For each diffraction pattern, in the last refinement cycles the structural parameters (y and z atomic
coordinates of Sb, and the Sm occupancy factor of the 2a position), as well as the scale factor, nine peak
parameters (U, V, W, η [the Gaussian/Lorentzian mixing parameter], Y [the θ dependence of η], and four
asymmetry parameters), and the background points were refined. The background was fitted by linear
interpolation of a set of ~ 70 points taken from the experimental pattern, and the peak profiles were
optimized by the pseudo-Voigt function. The Fe and Ni occupancy factors were fixed to the value
obtained from the EDS analyses, due to the closeness of their atomic scattering factors. The (Sb + Sn)
occupancy factor was constrained at 1, relying on the EDS results, which indicate a (Sb,Sn)/(Fe,Ni)
amount ratio slightly higher than 3 for each composition. The Sm occupancy factor, on the contrary,
was refined for all the compositions at each temperature considered, being a reliable and critical
parameter in the compositional optimization of the studied system. Angular regions corresponding to
Ge peaks were excluded from the refinements. In Figure 3, the Rietveld refinement plot of sample
Fe55_373 is reported as a representative example; a small peak attributable to an unknown compound is
marked with an asterisk. The agreement factors (χ2 and the skutterudite RB), as well as the skutterudite
cell parameters, can be found in Table 1; the refinement plots of all the samples at each temperature
considered are reported as Supplementary Materials.
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Figure 3. Rietveld refinement plot of sample Fe55_373. The red and black lines are the experimental
and the calculated diffractograms, respectively; the lower blue line is the difference curve; green vertical
bars indicate the calculated positions of Bragg peaks of the filled skutterudite; the asterisk indicates the
presence of a small amount of an unknown compound. Angular regions corresponding to the positions
of Ge peaks were excluded.

The skutterudite cell parameter linearly increases along the whole considered temperature span,
as shown in Figure 4: the data can be excellently fitted by regression lines, as reported in Table 2,
where the equations of the regression lines, as well as the corresponding R2 value, are collected. A more
detailed data analysis indicates that the expected value of the skutterudite cell parameter a is very
close to the experimental one; the goodness of the fit is further confirmed by the R2 value. The slightly
lower R2 value of Fe80 is due to the presence of extra phases within the sample, which does not allow
a more accurate determination of the cell parameter.
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The dashed lines are the regression lines fitting the experimental points; the error bars are hidden by
data markers.

Table 2. Equation of the regression lines a = mT + q fitting the a lattice parameter vs. the temperature
(T) for each composition; the expected a values at 303 K and the calculated R2 values are reported too.

Sample Equation of the Regression Line Expected a Value
at 303 K [Å] R2

Fe41 a = 1.1520 × 10−4 T + 9.0592 9.0941 0.999
Fe55 a = 1.2370 × 10−4 T + 9.0623 9.0998 0.999
Fe59 a = 1.2135 × 10−4 T + 9.0633 9.1001 0.999
Fe79 a = 1.3595 × 10−4 T + 9.0756 9.1168 0.994

The Sm occupancy factor is a crucial parameter in the study of the structural and electronic
properties of filled skutterudites, as described in the Introduction and discussed in more detail in the
following section. Moreover, the high atomic number of the element allows a reliable determination of
its occupancy factor. In Figure 5, the trend of the Sm occupancy factor in the 2a site as a function of the
temperature is reported for each sample, revealing a roughly linear increase.
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4. Discussion

The position of the p/n crossover in filled skutterudites can be at least roughly determined, relying on
the simple bonding model adopted in the framework of the Zintl’s concept. According to this approach,
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CoSb3, and also the isoelectronic Fe0.5Ni0.5Sb3, are degenerate semiconductors, as experimentally
confirmed [1]. Filling the cavity located in (0,0,0) with an electropositive element introduces a certain
number of electrons per filler atom, which tend to fix the electron imbalance; nevertheless, filler atoms
generally introduce excessive holes or excessive electrons, thus giving rise to p- and n-skutterudites,
respectively. A convenient graphical method highlighting the position of the crossover in the
Smy(FexNi1−x)4Sb12 system consists in reporting two lines in a y vs. x diagram: the one representing the
Sm amount theoretically necessary to exactly reproduce the electronic count of the parent compound
CoSb3, and the one fitting the experimental y data corresponding to each x value. The crossing
point of the two lines can be considered as the p/n crossover, as revealed by the structural data.
In Figure 6, the thick and thin dash-dot green lines represent the ideal and the regression lines,
respectively, for the Smy(FexNi1−x)4Sb12 system: as aforementioned, the p/n crossover is located at
x ~ 0.63, as indeed confirmed by the room temperature Seebeck measurements [29]. When Sb is partly
substituted by an element with an electron that is less in the outer shell, such as Sn, fewer electrons are
provided for the skutterudite bonding scheme and more electrons are required from the filler to fix
the electron imbalance; as a consequence, the ideal line moves toward higher y values, meaning that
higher Sm amounts are necessary to reproduce the electron count of a compensated semiconductor.
This scenario is evident in Figure 6, where the thick dashed blue line represents the ideal line for the
Smy(FexNi1−x)4Sb11.5Sn0.5 system. The blue points appearing within the diagram represent the refined
y values of this system. Two main issues are worth noting: first of all, experimental y values can be
satisfactorily fitted by a line, similarly to the Sn-free system. This evidence allows one to localize the
crossing point of the two lines, and hence the p/n crossover, which results in being located at x ~ 0.53,
thus confirming the expectation for a larger p-region with respect to the Sn-free system.
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of the Smy(FexNi1−x)4Sb12 system. The latter outcome is the reason why both cited samples are 
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Figure 6. Sm content (y) in Smy(FexNi1−x)4Sb12−δ filled skutterudites as a function of x. The thick dash-dot
green and dashed blue lines represent the theoretical Sm amount necessary to reproduce the electronic
count of a compensated semiconductor in the Smy(FexNi1−x)4Sb12 and Smy(FexNi1−x)4Sb11.5Sn0.5 systems,
respectively; the thin ones are the regression lines interpolating experimental points; vertical lines highlight
the position of the p/n crossover for both systems. Error bars are hidden by data markers; the data of the
Smy(FexNi1−x)4Sb12 system are taken from ref. [29].

Secondly, the samples Fe40 and Fe80 are characterized by y values quite far from the ones typical of
the Smy(FexNi1−x)4Sb12 system. The latter outcome is the reason why both cited samples are polyphasic
and also provides a clear indication toward the synthesis of monophasic samples, which is essential
for reliable measurements of the skutterudite transport properties. This conclusion is confirmed by
the substantial monophasicity of sample Fe55, which presents a refined y very close to the one of the
composition with the same Fe content in the Sn-free system.

The analysis of microphotographs taken at a higher magnification by backscattered electrons
on polyphasic samples also suggests the skutterudite formation mechanism. It is known that after
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the melting–quenching stage, leading to (Fe,Ni)Sb2 and Sb [55], the subsequent annealing treatment
promotes the formation of the filled skutterudite. The image of sample Fe80 shown in Figure 7 confirms
that the skutterudite formation occurs by a reaction between (Fe,Ni)Sb2 and Sb1−xSnx, and that it stops
before the complete consumption of the reacting alloys, most probably due to the incorrect Sm amount.
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Despite the presence of different amounts of additional phases, the results of the Rietveld
refinements on the filled skutterudite (performed on Fe40, Fe55, and Fe60), as well as of the cell
parameters determination at each temperature (performed on all the samples), reveal intriguing
characteristics of the skutterudite structure, especially when compared to the ones of the Sn-free system
Smy(FexNi1−x)4Sb12.

In Figure 8, the trend of the skutterudite cell parameter a is reported as a function of the Fe content
(x) at each considered temperature. For the sake of comparison, the cell parameter of the Sn-free
system at room temperature is also reported. Again, two main issues can be noticed. Firstly, the cell
parameters values indirectly confirm that Sn indeed entered the skutterudite structure, since for each
composition they are larger than the corresponding ones of the Sn-free system, as a direct consequence
of the larger size of Sn4− (2.94 Å) [49] with respect to Sb5− (2.45 Å) [49]. A further confirmation of this
conclusion comes from the analysis of the Sm–Sb/Sn interatomic distance, which can be considered as
the size of the cavity centered on the 2a site: as evidenced in Figure 9, at each temperature the cited
distance is larger for the Sn-containing than for the Sn-free skutterudite. The observed increase in the
interatomic distance with an increasing temperature is also in good agreement with the slight increase
in the Sm occupancy factor with a rising temperature observed in all the analyzed samples (Fe40, Fe55,
and Fe60) and reported in Figure 5. A strict correlation between the cage size and the filler content was
previously demonstrated [29].
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the room temperature values for the Smy(FexNi1−x)4Sb12 system (red circles), taken from ref. [29],
are also reported as a term of comparison.
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Secondly, the observation of Figure 8 suggests that the slope change occurring in the trend of
the cell parameter of the Sn-free system in correspondence of the p/n crossover, widely discussed
in [29,61] and possibly attributed to a low/high spin transition of Fe2+, seems to be absent from the
Sn-containing one.

The coefficient of linear thermal expansion (CTE) is defined in a certain temperature range as:

CTE =
1

aT0

(aT − aT0)

T − T0
(2)

with aT0 being the cell parameter at the reference temperature T0 (T0 = 303 K in this work). Due to the
excellent linearity of the skutterudite cell parameters vs. temperature along the considered temperature
range (see Table 1), only one CTE was calculated for each composition. The obtained CTE values are
reported in Figure 10 as a function of the composition, together with the ones of the Sn-free system,
taken from [61]. In good agreement with the aforementioned lacking slope change in the cell parameter
vs. x shown in Figure 8, even the CTE trend shows no discontinuity in the Sn-containing samples;
on the contrary, in the Sn-free system Smy(FexNi1−x)4Sb12, a 16% CTE mismatch between samples with
x = 0.55 and x = 0.63 occurs [61]. This is quite an important and promising point, since a small CTE
mismatch between n- and p-compositions is of primary importance in the design of thermoelectric
devices with n- and p-legs deriving from the same matrix. The data reported in Figure 10 thus
suggest that the employment of an Sn-containing n-composition and an Sn-free p-composition could
conveniently build the n- and the p-leg of a thermoelectric device made of the same skutterudite
matrix having virtually identical CTE values. The described result assumes a remarkable significance
because most of the skutterudite CTE values reported in the literature present a noticeable gap
between the higher p- and the lower n-values; even when limiting oneself to Fe/Ni-based antimonides
skutterudites, the DDy(FexNi1−x)4Sb12 system represents an interesting example, displaying a 23%
CTE mismatch between compositions with x = 0.5 and x = 0.75 [64]; similarly, the Mmy(FexNi1−x)4Sb12

system is characterized by a 24% CTE mismatch between the sample with x = 1 and the one
with x = 0.62 [64]. Within this scenario, the only skutterudite system presenting p- and n-compositions
with a substantially identical value of CTE is Ba0.09Sr0.02DD0.22Yb0.02Fe2.4Ni1.6Sb12 [23], even if one must
take into account that the study is limited to the compositions Ba0.09Sr0.02DD0.22Yb0.02Fe2.4Ni1.6Sb12

and Ba0.15DD0.28Yb0.05Fe3NiSb12. Finally, looking in more detail at the obtained data, one can note that
the CTE values of Sn-containing samples are significantly higher than the ones of the corresponding
Sn-free compositions. This result is in good agreement with the aforementioned larger size of Sn4−

than Sb5−, and it is analogous to the behavior of Sn-containing and Sn-free samples belonging to other
systems, such as the TlyCoSb11−δSnδ one [68].
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bars are hidden by data markers; the data of the Smy(FexNi1−x)4Sb12 system are taken from ref. [61].

5. Conclusions

A compositional and crystallographic study was performed on several samples belonging
to the Smy(FexNi1−x)4Sb11.5Sn0.5 system, due to its potential interest as a thermoelectric material.
The composition was optimized by determining the experimental y value (i.e., the Sm content)
corresponding to each x (i.e., the Fe content).

The crystallographic investigation performed on the filled skutterudite phase allowed us to draw
the following conclusions.

- Relying on the refined Sm amounts, the p/n crossover is expected to be located at x ~ 0.53, meaning
that the p-region is enlarged with respect to the Sn-free system.

- No slope change is observed in the trend of the skutterudite cell parameter vs. x in correspondence
of the p/n crossover at any considered temperature.

- A much smaller CTE mismatch is revealed between p- and n-compositions in the present system
than in the Sn-free one, which makes Smy(FexNi1−x)4Sb11.5Sn0.5 a promising thermoelectric
material in terms of mechanical properties.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/10/5/692/s1:
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