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Abstract: Due to the uncertainties originating from the underlying physical model, material properties
and the measurement data in fatigue crack growth (FCG) processing, the prediction of fatigue crack
growth lifetime is still challenging. The objective of this paper was to investigate a methodology
for uncertainty quantification in FCG analysis and probabilistic remaining useful life prediction.
A small-timescale growth model for the fracture mechanics-based analysis and predicting crack-growth
lifetime is studied. A stochastic collocation method is used to alleviate the computational difficulties in
the uncertainty quantification in the small-timescale model-based FCG analysis, which is derived from
tensor products based on the solution of deterministic FCG problems on sparse grids of collocation
point sets in random space. The proposed method is applied to the prediction of fatigue crack growth
lifetime of Al7075-T6 alloy plates and verified by fatigue crack-growth experiments. The results show
that the proposed method has the advantage of computational efficiency in uncertainty quantification
of remaining life prediction of FCG.

Keywords: fatigue crack growth lifetime; uncertainty quantification; small-timescale; stochastic
collocation method; remaining life prediction

1. Introduction

Fatigue damage is among the most common failure modes in structural safety. It refers to
the performance degradation process of structural materials due to cyclic loading. The fatigue
damage process accumulates from small crack initiation, propagates to macro cracks and finally
leads to structural failure under certain conditions. In practical engineering, the prognosis of fatigue
damage plays a critical role in estimating an engineering system’s remaining useful life based on the
damage evolution model [1]. However, sources of uncertainties widely exist in the process of fatigue
propagation analysis, including the variability in material properties, experimental errors, variation in
loading conditions and model inaccuracy [2]. Therefore, the prognosis of the fatigue damage should
take the form of a probabilistic distribution. This paper focuses on the remaining useful life prognosis
taking into account the uncertainties in fatigue crack growth (FCG) analysis.

Numerous stochastic analysis methods have been proposed to deal with uncertainty factors
observed in large replicate FCG tests and investigate the uncertainties of FCG analysis [3–5]. The Monte
Carlo (MC) method, whose implementation is straightforward, has been the most commonly used
approach. Liu and Mahadevan proposed a MC simulation-based method for predicting the probabilistic
fatigue life [6]. However, the convergence rate of the MC method is slow due to the large number of
samples needed, especially for a complex system. Several variants of the MC have been developed to
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improve the computational efficiency for probabilistic fatigue crack analysis, such as the Markov chain
Monte Carlo method (MCMC) and subset simulation [7,8], which have application limitations due to
respective additional restrictions. Next, stochastic spectral methods [9] have been been proposed for
uncertainty quantification of complex multi-dimensional problems. The stochastic spectral methods
are based on the polynomial chaos expansion technique and construct the explicit response surface.
Hermite polynomials were usually used as the polynomial chaos basis for modeling the stochastic
responses caused by Gaussian variables. In recent years, the generalized polynomial chaos (gPC)
method has become the most popular stochastic spectral method, which is an analysis and quantification
method for the non-Gaussian random input parameters by the differential equations [10]. Stochastic
Galerkin method and stochastic collocation method are most commonly used to solve the coefficients of
the polynomial expansion in gPC. The stochastic Galerkin method has many applications for stochastic
problems in chemical systems and computational fluid dynamics [11,12]. However, this method
is computationally cumbersome and can be inapplicable for some highly complex and nonlinear
problems due to the large coupled set of equations. The stochastic collocation method achieves higher
resolution for polynomial approximations in random space compared with the stochastic Galerkin
method [10]. The functional interpolation by polynomials and integration of functions according to
Gaussian quadrature rules are the basic ideas of the stochastic collocation method. In this method, a
sparse grid is used for the construction of the set of the interpolation points. The stochastic collocation
method has been widely applied in many fields in the last several years, e.g., uncertainty analysis of
flow in random porous media [13], three-dimensional problems in solid mechanics [14], reliability
analysis of structures with stochastic loadings and material properties [15], etc. From the above
literature review, this approach shows the ease of implementation in high-dimensional random spaces
and maintains the integration accuracy as much as possible. Recently, the stochastic collocation method
has also served as an efficient way for fatigue crack propagation and health prognosis [16,17].

A large number of stochastic methods for FCG analysis have been developed to investigate the
uncertainty of remaining useful life prediction [18–21]. In general, the traditional fatigue prognosis
methods are performed in a cycle-based manner. This class of methods requires one to transform
a realistic loading history by cycle counting before the FCG analysis is performed. Paris proposed
the most widely applied fracture mechanics-based model for fatigue crack propagation in the 1960s.
The Paris model relates the stress intensity factor range ∆K with the crack growth rate [22]. However,
the original Paris model can only be applied to calculate the crack growth rate in a certain range with
fixed stress ratios under amplitude loading, which is impractical. Many modifications and extensions
of Paris model have been proposed. Forman et al. incorporated the stress ratio effect in the Paris
model [23]. In addition, the inclusions of the fracture toughness and the threshold stress intensity
range based on the Forman formulation were proposed. Wolf observed the contact between the crack
surfaces and introduced the concept of crack closure into crack propagation analysis under cyclic
loading for the first time [24]. Wolf proposed to replace ∆K with the stress intensity factor ∆KEFF,
which represents the difference between the intensity factor at the crack opening load and maximum
stress intensity factor. Many experimental and theoretical studies have been made based on Wolf’s
research [25,26]. Nevertheless, it has been argued that the concept of crack closure is unable to be
applied under some special conditions [27,28]. Another group of approaches including the Willenborg
model and Wheeler model investigate a much more complicated problem—the FCG analysis under
variable amplitude loading. Both models employ the interaction of the plastic zone to explain the
complex FCG behavior.

However, the abovementioned models are all cycle-based, which has many inherent difficulties
even for some widely-used models. Due to the temporal scale limitation, a realistic stress history needs
to be transformed into a cyclic manner time history, and it is impossible to reduce the time scale in
more fundamental investigation. A new FCG formulation, small-timescale FCG model, was proposed
to overcome the limitations of previous models [29]. The core issue in the small-timescale model is
the calculation of the incremental crack growth at some arbitrary time instant during a loading cycle.
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Extensive experiments under both constant and variable amplitudes have been implemented to validate
the accuracy of the novel small-timescale model for FCG analysis [30–34]. Previous investigations
have indicated that the presented model greatly promotes the fatigue prognosis for structural systems.
In addition, it has been observed from experimental observations that huge scatter exists in crack
growth process [35].

In view of above discussions, the objective of this paper was to investigate the uncertainty
quantification in small-timescale model-based FCG analysis using a stochastic collocation method.
Firstly, the fundamental basis of the stochastic collocation method was presented. Secondly,
the small-timescale model was introduced briefly and the framework of uncertainty quantification
based on this model was proposed. Then the experimental data for 7075-T6 aluminum alloy from
the literature was adopted to demonstrate the computational accuracy and efficiency of the proposed
approach. Finally, Section 5 draws some conclusions.

2. Stochastic Collocation Method for Uncertainty Quantification

In this section, the uncertainty quantification in the small-timescale model, which is defined
by partial differential equations (PDE) with uncertain input parameters, is considered. A class of
generalized polynomial chaos (gPC) method known as the stochastic collocation method is a popular
choice for these complex systems. The stochastic collocation method transforms the random problems
to the corresponding deterministic problems at each collocation point by using the high dimensional
polynomial interpolation technique [10]. In the following, this method is briefly introduced after the
description of the formulation of stochastic systems.

2.1. Stochastic Systems and Interpolation Formulation

The stochastic PDE system is defined in a spatial domain D ⊂ R` ` = 1, 2, 3 and a time domain [0,T]:
ut(x, t, Z) = L(u) D× (0, T] × IZ

B(u) = 0 ∂D× (0, T] × IZ

u = u0 D× {t = 0} × IZ

, (1)

where L is a differential operator, IZ ⊂ Rd is the support of Z, B is a boundary condition operator,
u0 is the initial condition, Z = (Z1, . . . , Zd) is the set of independent random variables, and the
random inputs are characterized by the distribution FZ(z1, . . . , zd) = P(Z1 ≤ z1, . . . , Zd ≤ zd). For each
i = 1, . . . , d, FZi(zi) = P(Zi ≤ zi) is the marginal distribution of Zi. FZ(z) = Πd

i=1FZi(zi) is given
because of the mutual independence of Zi. The solution of Equation (1) is a random quantity:

ut(x, t, Z) : D× (0, T] × IZ → Rnu , (2)

where nu = 1 is the dimension of u for the crack growth system in this paper. For any given x and t, it is
feasible to find a numerical approximation v(·, Z) to the true solution u(·, Z) in the proper polynomial
space Π(Z) satisfying that ‖v(Z) − u(Z)‖ is sufficiently small in a strong norm defined on IZ.

The multivariate gPC expansion is an efficient approximation for the stochastic process and

random variable. PN(Zi) is the univariate polynomial space and let
{
φk(Zi)

}N

k=0
∈ PN(Zi) be the

univariate gPC basis functions with degree up to N. The basis functions satisfy:

E[φm(Zi)φn(Zi)] =

∫
φm(z)φn(z)dFZi(z) = δmnγm, 0 ≤ m, n ≤ N, (3)

where γm is a normalized factor. i = (i1, . . . , id) is a multi-index with |i| = i1 + . . .+ id. The Nth degree
gPC basis functions for d variates are given by products of gPC polynomials as:

Φi(Z) = φ1(Z1)···φd(Zd), (4)



Metals 2020, 10, 646 4 of 17

Subsequently, the gPC approximation of u(Z) is:

v(Z) =
N∑
|i|=0

v̂iΦi(Z), (5)

where v̂i is the polynomial chaos expansion coefficient. The mean value and variance of u(Z) can be
approximated by the formulation.

In the collocation method, ΘM =
{
Z( j)

}M

j=1
⊂ IZ is a set of nodes generated from the random

space. For all j = 1, . . . , M, the stochastic PDE system is transformed at the node Z( j) by solving the
deterministic problem: 

ut(x, t, Z( j)) = L(u)
B(u) = 0
u = u0

D× (0, T]
∂D× (0, T]
D× {t = 0}

, (6)

Then based on the ensemble of deterministic solutions
{
u( j)

}M

j=1
, construct the polynomial v(Z).

The Lagrange interpolation approach is the basis of the construction of high dimensional interpolation
polynomial. Let us start from the fundamental one variate problem with d = 1. The goal of the
interpolation problem is to find a polynomial v(z) ∈ Π(z) such that v(z( j)) = u( j) for all j = 1, . . . , M.

Based on the given nodal set ΘM ⊂ Iz and the solution set
{
u( j)

}M

j=1
, the Lagrange interpolation

polynomial can be expressed as:

v(Z) =
M∑

j=1

u(Z( j))L j(Z), (7)

where:

L j(Z) =
M
Π
i, j

Z−Zi
Z j−Zi

, 1 ≤ i, j ≤M,
i = 1

(8)

are the Lagrange interpolating polynomials. The Lagrange polynomials have a specific property:

L j(Z(i)) = δi j, 1 ≤ i, j ≤M, (9)

Several choices exist for the interpolation nodes and the interpolation for univariate problems is
well studied. As for the multivariate problem, the Lagrange interpolation can be extended to apply to
the entire multidimensional space. The interpolation is then constructed by the full tensor product or
the sparse grid collocation introduced in the following sections.

2.2. Full Tensor Product Collocation

For the multivariate problem with d > 1, a straightforward approach is using the tensor product
of the Lagrange interpolation operator for each dimension:

Qi(z) =
mi∑
j=1

ui(z( j))L j
i (z), (10)

based on the one-dimensional nodal sets:

Θmi = {zi}
mi
j=1, (11)

Then in the entire space IZ ⊂ Rd, the interpolation formulation calculated by tensor product is:

W(q, d) = Qi1 ⊗ ··· ⊗Qid , (12)



Metals 2020, 10, 646 5 of 17

where i1 = ··· = id = k + 1 in a general way is the level of interpolation on each dimension, k ∈ N+ is
the level of the interpolation polynomial, and q = d + k. According to the basic property of the tensor
product, the detailed full tensor product formulation is:

W(q, d) =
mi1∑
j1=1

···

mid∑
jd=1

(L j1
i1
⊗ ··· ⊗ L jd

id
)·u(z j1

i1
, . . . , z jd

id
), (13)

and the corresponding nodal set is:

ΘM = Θmi1
× ··· ×Θmid

, (14)

Usually, the same interpolation formulation is used in each dimension and the number of the points
is the same in each dimension, i.e., mi1 = ··· = mid = m. Therefore, the total number of points, M = md,
increases rapidly in high dimensions, which makes the tensor product approach time-consuming.

2.3. Smolyak Sparse Grid Collocation

An alternative to the tensor product, the Smolyak sparse grid collocation method, has wide
applications due to its high accuracy and fast convergence. The Smolyak algorithm constructs a
linear combination of tensor products to select the set of collocation points. The linear combination
uses a relatively small number of points and preserves the interpolation property of d = 1 for d > 1
compared with the full tensor product. The Smolyak algorithm is based on the difference value of the
one-dimension interpolation polynomials on each level of interpolation. Let us define:

∆i = Qi −Qi−1, Q0 = 0, (15)

Then the formulation of the Smolyak algorithm is:

A(q, d) =
∑
|i|≤q

(
∆i1 ⊗ . . .⊗ ∆id

)
, . (16)

where |i| = i1 + . . .+ id and q = d + k. k ∈+ is the level of the interpolation polynomial, same as
the tensor product. Thus, the number of values of the multi-index i = (i1, . . . , id) is Ck

k+d due to the
limitation |i| ≤ q. The construction of the Smolyak sparse grid can also be expressed as:

A(q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
·

(
d− 1
q− |i|

)(
Qi1 ⊗ . . .⊗Qid

)
, (17)

The corresponding nodal set for the interpolation is a sparse grid:

Θd
M = H(q, d) = ∪

q−d+1≤|i|≤q

(
∆Θmi1

⊗ . . .⊗ ∆Θmid

)
, (18)

In the Smolyak algorithm, the Clenshaw-Curtis sparse grids are used to construct the
one-dimensional interpolation formulations. The Clenshaw-Curtis sparse grids are the extreme
value of Chebyshev polynomials. For any 1 ≤ i ≤ d, the points are given by: mi = 1 z1

i = 0

mi > 1 z( j)
i = − cos π( j−1)

mi−1 , j = 1, . . . , mi
, (19)

where mi = 1, i = 1; mi = 2i−1 + 1, i > 1. Compared with the traditional tensor product rule,
the Smolyak algorithm has significantly fewer collocation points to solve the high dimensional and
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high-level random problems efficiently. For a detailed discussion of the integration error estimates of
the Smolyak algorithm readers may refer to a previous study [36].

3. Uncertainty Quantification in FCG Analysis

3.1. Description of Small-Timescale FCG Model

The detailed derivations of the small-timescale model can be found in [29] and a brief introduction
of this model is presented here. The basis of this FCG model is the incremental crack growth at
any arbitrary small incremental time in a loading cycle. Figure 1 shows the geometric relationship
constructed between the instantaneous crack growth kinetics and the crack tip opening displacement
(CTOD). Thus, the crack growth rate da is calculated by:

da= (ctgθ/2)dδ = Cdδ, (20)

where θ is the crack tip opening angle (CTOA), δ is the CTOD, and C = ctgθ/2. It is assumed that
the crack growth in Equation (20) is infinitesimal. The CTOA changes from 90◦ to a very small angle
beyond a certain length until the final failure. Thus, the CTOA is assumed approximately to be a
function of material properties and the applied loading, which can be expressed as:

θ =
π
2
−
π
2

∆K − ∆Kth
Kc − ∆Kth

, (21)

where ∆K is the stress intensity factor range, ∆Kth is the intrinsic threshold stress intensity factor, and
Kc is the fracture toughness value. ∆Kth corresponds with the intrinsic material resistance to the FCG.
In this study, the FCG problem is a predominantly plane stress problem for surface cracks. Considering
the effect of material strain hardening, the CTOD can be expressed as:

δ = λσ2a, (22)

where λ = 3π
8Eσy

is a constant of material property, σ is the nominal stress, E is Young’s modulus, and σy

is the yield stress. According to Figure 1, when the crack tip grows from O to O′, the increment of
CTOD ignoring the high order terms can be expressed as:

dδ = δ′ − δ = λ(σ+ dσ)2(a + da) − λσ2a ≈ λ(2σadσ+ σ2da), (23)

Substituting Equation (23) into Equation (20), the instantaneous crack growth rate can be
expressed as:

1
Cλa

da
dt

=
2σ

1−Cλσ2
dσ
dt

, (24)

The previous discussion can only be applied when the crack grows. Nevertheless, the crack tip
plastic zone is critical for FCG and the reverse plastic zone produces a compressive residual stress after
unloading. Due to the energy principle and the reverse plastic zone effect, the crack growth may stop
during the initial part of the loading cycle as well as during the unloading cycle. Using the hypotheses
for the non-uniform crack growth kinetics, the general expression of the instantaneous crack growth
rate under arbitrary loading histories is:

.
a = H(

.
σ)·H(σ− σre f )·

2Cλ
1−Cλσ2 ·

.
σ·σ·a, (25)
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where H(x) =

1, if x > 0

0, if x ≤ 0
is the Heaviside function and σre f is the reference applied stress level.

Crack will only grow beyond a certain stress level σre f in the loading path. A detailed calculation of
σre f on the basis of the interaction of forward and reversed plastic zone can be found in [29].
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Figure 1. Schematic illustration of crack tip geometry.

The relationship between the classical FCG model (da/dN curves) and the presented FCG model is
investigated by rewriting the Equation (24). In addition, the crack only grows when σ > σre f according
to the previous discussion. The instantaneous crack growth rate is integrated within a loading cycle
can be calculated by direct time integration as:∫ a0+∆a

a0

da
Cλa

=

∫ σmax

σmin

2σdσ
1−Cλσ2 =

∫ σmax

σre f

2σdσ
1−Cλσ2 , (26)

Accordingly, the equivalent cycle-based formulation of the small-timescale model can be obtained
by solving the integral at both ends of the integral of Equation (24). The length increment ∆a during
one cycle can be expressed as:

∆a =
da
dN

=
πCλa

(
σmax

2
− σre f

2
)

π(1−Cλσmax2)
=

Cλ
(
Kmax

2
−Kre f

2
)

π(1−Cλσmax2)
, (27)

where:

Kre f =
−

(
3σy − 2Rσmax

)
+

√(
3σy − 2Rσmax

)2
− 4σmax

[
R2σmax − (2R + 1)σy

]
2

√
πa, (28)

where R = σmin/σmax is the stress ratio. In order to calculate the Kre f , it is assumed that crack
starts to grow when the boundary of the forward plastic zone reaches the boundary of the previous
reverse plastic zone. Equation (27) is used to predict the FCG under constant amplitude loading.
The predicted FCG rate already includes the stress ratio effects. The presented model shows better
accuracy compared with the traditional reversal-based model in previous research. For various time
and length scales, the continuous crack length can be calculated by the direct time integration of the
general expression of the presented FCG model (Equation (25)). The objective of this study was to
adopt the previously discussed small-timescale model for the uncertainty quantification in the FCG
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analysis. The small-timescale model is fundamentally different from the classical cycle-based FCG and
it can easily be utilized on any timescale and over any crack-length range.

3.2. Uncertainty Quantification in FCG

The presented stochastic collocation method is addressed accounting for uncertainty quantification
in the small-timescale FCG model. The stochastic collocation separates uncertainty quantification
from solving differential equations. The framework of the approach includes four steps. First, define
the uncertainty sources and the probability space in the study and choose the nodal set Θd

M from the
probability space based on the extrema of Chebyshev polynomials and the Smolyak algorithm. Second,
solve the deterministic differential equations (Equation (27)) of the small-timescale FCG model at the
nodal set. Then, the Lagrange interpolation polynomial is employed to construct the interpolation
polynomial for remaining useful life prediction based on the nodal set and the solution set. Finally,
estimate the probability characteristics of the prediction results by MC simulation as the post process.
The uncertainty quantification framework of the stochastic collocation method is shown in Figure 2.
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3.3. The Remaining Useful Life Prediction

The remaining useful life prediction is performed at an inspection point when the crack length
is estimated as initial crack length a0. The component will end in fatigue failure when the crack
propagates from a0 to the critical length ac in the small-timescale FCG model. According to the previous
discussion, the crack growth rate under constant amplitude loading is employed here. Let us rewrite
the formulation of crack growth rate:

f (a) =
da
dN

=
Cλ

(
Kmax

2
−Kre f

2
)

π(1−Cλσmax2)
, (29)
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where N is the number of loading cycles when the crack length propagates from a0 to the critical
length ac. Then the crack growth process is established by solving the following equation using the
Runge-Kutta algorithm: {

da/dN = f (a)
a|N=0 = a0

, (30)

The remaining useful life N at the inspection point can be expressed as:

N =

∫ ac

a0

Cπ(1−Cλσ2
max)

λ(K2
max −K2

re f )
da, (31)

The random input parameters in the fatigue crack propagation can be denoted by Z = (Z1, . . . , Zd)

with d variables. The distributions of the random parameters are assumed to be independent and
identical. Then the remaining useful life N is denoted by a function of the random parameters Z as
N(Z).

4. Results and Discussion

In order to show the efficiency and accuracy of the proposed method, uncertainty quantification in
the crack growth model of a metal plate is implemented with the stochastic collocation method using
the experimental data available in previous literature [35]. First, the crack growth curves are established
and the uncertainty parameters are defined in the FCG model. Then the stochastic collocation method
is applied to predict the remaining useful life accounting for the uncertainty. The prediction results are
compared with the experimental data from the literature.

4.1. FCG Analysis of A Metal Plate

The experimental data on 7075-T6 aluminum alloy plate specimens with a center through crack
(Figure 3) taken from the above research are collected to investigate the proposed approach of
uncertainty quantification for FCG.
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The test was conducted under constant amplitude loading (Pmax = 2000 N, Pmax = 200 N, stress ratio
R = 0.1) according to the ASTM standard. Seven sets of 7075-T6 aluminum alloy specimen experiments
are published. For easier access to the information in the previous paper, some essential information is
presented here: The material and geometry properties of the specimen and the corresponding test data
are listed in Tables 1 and 2, respectively. Figure 4 shows the seven raw data curves under constant
amplitude loading. It can be observed that the scatter of raw data curves exists due to the material
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uncertainty. Based on the test data, the initial crack length is ac = 0.011 m and the critical length is set
as ac = 0.0258 m to investigate the remaining useful life prediction.

Table 1. Material and geometry properties of plate specimens.

Specimen
Material

Ultimate Strength
(MPa)

Yield Strength
(MPa)

Young’s Modulus
(MPa)

Plate Width
(mm)

Plate Thickness
(mm)

Al 7075-T6 573~582 502~516 71.7 40 5

Table 2. Test data of crack growth length.

Specimen 01 02 03 04 05 06 07
N a (mm) a (mm) a (mm) a (mm) a (mm) a (mm) a (mm)

0 10.921 10.913 10.921 10.992 10.921 10.921 10.931
1000 11.024 11.216 11.056 11.201 11.102 11.178 11.102
2000 11.153 11.486 11.266 11.452 11.344 11.376 11.353
3000 11.326 11.733 11.476 11.750 11.569 11.580 11.589
4000 11.545 11.993 11.638 12.137 11.734 11.837 11.755
5000 11.778 12.416 11.814 12.521 11.947 12.128 11.946
6000 12.005 12.778 12.020 12.843 12.224 12.400 12.184
7000 12.237 12.939 12.216 13.141 12.478 12.618 12.412
8000 12.491 13.484 12.435 13.541 12.724 12.890 12.671
9000 12.747 13.882 12.698 14.031 12.983 13.200 12.956

10,000 12.967 14.414 12.990 14.497 13.262 13.435 13.216
11,000 13.210 14.797 13.277 15.069 13.598 13.714 13.517
12,000 13.523 15.222 13.536 15.755 14.005 14.040 13.850
13,000 13.904 15.707 13.780 16.443 14.441 14.314 14.132
14,000 14.290 16.214 14.070 17.249 14.762 14.699 14.407
15,000 14.681 16.797 14.413 18.141 15.060 15.260 14.708
16,000 15.145 17.587 14.780 18.953 15.569 15.889 15.033
17,000 15.678 18.561 15.256 19.801 16.094 16.439 15.373
18,000 16.260 19.440 15.820 20.910 16.641 16.960 15.735
19,000 16.878 20.103 16.363 22.602 17.436 17.651 16.130
20,000 17.555 21.790 16.964 25.404 18.335 18.503 16.549
21,000 18.400 22.818 17.600 19.209 19.500 17.033
22,000 19.521 25.601 18.167 20.095 20.627 17.625
23,000 20.714 18.840 21.195 21.723 18.197
24,000 22.124 19.741 22.749 23.361 18.808
25,000 24.323 20.748 24.992 25.890 19.616
26,000 21.374 20.313
27,000 23.258 21.681
28,000 25.682 24.986

In this study, it is assumed that the uncertainty comes from the model parameters uncertainty.
To generate the simulated crack growth curves, the first step is to quantitate the statistics of the
material crack growth parameters. The small-timescale model has four independent underlying
parameters to be determined in Equation (27), i.e., the Young’s modulus E, the intrinsic threshold
stress intensity factor ∆Kth, the fracture toughness value Kc, and the yield strength σy. According to
the reference [35], the Young’s modulus E is assumed to be a constant. The randomness in the crack
growth is represented by three random variables ∆Kth, Kc, and σy. Then according to the reference [6]
and [37], the distribution characteristics of these random variables are determined by fitting crack
growth data from the literature. It is found that the lognormal distribution is appropriate for the
materials investigated in this paper (as shown in Table 3).
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Figure 4. Experimental data under constant amplitude loading.

Table 3. Statistical characteristics of model parameters.

Variable ∆Kth(MPa×m1/2) Kc(MPa×m1/2) σy(MPa)

Mean value 0.8 32 520
Standard deviation 0.011 2.72 30.32

In addition, the stress intensity factor range for the crack tip specimen according to ASTM E647-08
can be calculated by:

∆K =
∆P

B
√

W
·
(2 + α)

(1− α)3/2
(0.886 + 4.64α− 13.32α2 + 14.372α3

− 5.6α4), (32)

where α = a/W, and the calculation is valid when α ≥ 0.2. B and W are the thickness and the width of
the specimen, respectively. The generated crack growth curves by a directed Monte Carlo simulation
(10000 samples) show a general satisfactory agreement compared with the seven raw test data curves
(Figure 5), which indicates the ability of the small-timescale model to describe the fatigue propagation.
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The negligible inconsistency may be caused by different types of uncertainty including natural
variability in local geometry, variant loading conditions, and data uncertainty due to measurement
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errors during experiment, which are over the range of this study. In this investigation, due to the lack of
the exact solution of the problem, the prediction results from the proposed method are compared with
the results from Monte Carlo simulation, which is considered as the real distribution of the remaining
useful life.

4.2. The Stochastic Collocation Method for Remaining Useful Life Prediction

Based on the small-timescale FCG model under constant amplitude loading (Equation (27)),
the remaining useful life N of the 7075-T6 aluminum alloy plate can be expressed as Equation (31).

When calculating the remaining useful life in the uncertainty damage prognosis, the material
parameters Kc, ∆Kth and σy are sampled from the prescribed lognormal distributions. Therefore,
the remaining useful life prediction formula for the specimen with uncertainty is:

N(Z) =
∫ ac

a0

Cπ(1−Cλσ2
max)

λ(K2
max −K2

re f )
da, Z ∈ IZ, (33)

where Z = (Kc, ∆Kth, σy) is the set of independent random variables, and IZ is the probability space.
The quantization interval of the random variable is defined as [µ− 3σ,µ+ 3σ] to ensure the probability
of the value outside the interval is less than 0.003. Thus, the probability space is set as:

IZ = [0.767, 0.833] × [23.84, 40.16] × [459.04, 580.96], (34)

In the stochastic collocation method, the three-dimensional standard probability space [−1, 1]3 is
required by using the linear transformation of the previous probability space.

The core issue for the implementation of the Smolyak sparse grid is the choice of the nodal set
depending on the level of interpolation k. To investigate the computational accuracy, the relative
cumulative error errS is defined as:

errS =
‖Nk(z) −N(z)‖2
‖N(z)‖2

z ∈ Iz, (35)

and the norm is:

‖N(z)‖2 =

√∫
Iz

∣∣∣N(z)
∣∣∣2dz, (36)

where Nk(z) is the k-level interpolation polynomial. The relative cumulative error decreases rapidly
as the level of interpolation increases as shown in Figure 6a. On the other hand, the computational
efficiency of the proposed approach is considered by the total number of nodes for the three-dimensional
interpolation problem, which is also the number of solving the differential equations M (Figure 6b).
According to the above discussion, the level of interpolation k = 5 is appropriate to balance the
computational accuracy and efficiency with errS = 3.86 × 10−3 and M = 727. Take for example,
the elapsed time of directly solving the differential equations (9.1034 s) is more than three times as the
elapsed time using N5(z) (2.7600 s) at 10000 samples. In this study, N5(z) is selected as the interpolation
polynomial of the remaining useful life taking advantage of the efficient sparse grid method.
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4.3. Results of Remaining Useful Life Prediction

The mean value and the standard deviation of the remaining useful life N are convergent to
[2.68× 104, 2.685× 104] and [1300, 1350], respectively, when the number of samples is more than 10,000.
Therefore, the probability characteristics of N are investigated based on n = 10000 Monte Carlo samples
with the mean value X = 26801 and the standard deviation S = 1325.4. Due to the enormous number
of samples, four types of distribution including uniform distribution, normal distribution, 2-parameter
lognormal distribution and 3-parameter lognormal distribution, are used to fit the distribution of N by
a Kolmogorov-Smirnov test (K-S test). The K-S test quantifies a distance D between the cumulative
distribution function (CDF) of the samples and the CDF of the reference distribution. It is considered
that the samples take the specific distribution when D < D(n,α). The null hypothesis is rejected at
level α = 0.05, so that the critical distance is defined as D(10000, 0.05). Table 4 lists the results of the
K-S test indicating that N takes a 3-parameter lognormal distribution. The probability density function
can be expressed as:

f (N) =
1

(N −N0) ln 10
·

1
√

2πσ
e−

[lg(N−N0)−µ]
2

2σ2 , (37)

where N0, µ and σ are constant parameters. The probability density function (PDF) and the CDF of
the samples and the 3-parameter lognormal distribution are shown in Figures 7 and 8, and the MC
simulation results from solving the differential equations directly are also included for comparison.

Table 4. The results of the K-S test.

The Type of Distribution K-S Distance
D

Critical Distance
D(10000,0.05)

The Level of
Significance

Uniform distribution 0.289 0.0136 0
Normal distribution 0.017 0.0136 0.008

2-parameter lognormal distribution 0.016 0.0136 0.012
3-parameter lognormal distribution 0.007 0.0136 0.689
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Figures 7 and 8 show that the 3-parameter lognormal distribution fit the dataset of the remaining
useful life N acceptably, resulting in the following distribution parameters: N0 = 24306, µ = 4.408 and
σ = 0.0135. In this study, due to the lack of the experimental data, the results from MC simulation by
solving the differential equations in the small-timescale FCG model is considered as the real distribution
of the remaining useful life.

It can be observed that the distribution of remaining useful life prediction using the proposed
stochastic collocation method shows the goodness of fit of the MC simulation. Furthermore,
the predicted remaining useful life with 95% reliability is N = 24610, which is among the range of
experimental results. In addition, it is noted that the total number of nodes, which is also the number
of solving the differential equations is 757 and the number of realizations in direct MC simulation is
10000. The present results indicate the proposed approach has the capability to give an overall efficient
and accurate prediction of the FCG taking into account uncertainties of input parameters.
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5. Conclusions

In this paper, a stochastic collocation approach is developed for uncertainty quantification of
remaining useful life prediction in small-timescale FCG model. The presented FCG model improves
the accuracy of deterministic prediction of a −N curve based on the instantaneous crack growth
increment. Then the stochastic collocation method is utilized to evaluate the remaining useful life
prediction uncertainty. The stochastic collocation method based on the gPC expansion is able to reduce
the repetitious equation solving significantly. The main conclusions of this research are:

(1) The FCG curves predicted by the Monte Carlo simulation of the small-timescale model considering
the uncertainty parameters agreed well with the experimental data under constant amplitude
loading. It can be observed that parameter uncertainties do exist in FCG analysis. Besides,
the small-timescale model shows a continuous relationship between the fatigue crack length and
the loading history.

(2) The remaining useful life predictions obtained from the proposed approach were compared
with the Monte Carlo simulation results for the plate specimen. The comparisons show that the
proposed approach can greatly improve the efficiency and accuracy for uncertainty quantification
in FCG analysis by utilizing the stochastic collocation method.

(3) The significant computation efficiency of this uncertainty quantification approach for FCG can be
potentially applied to much more complicated multi-dimensional problems for crack and damage
propagations. Moreover, this study focuses on the material uncertainty quantification and other
types of uncertainties can be involved in potential applications.

Author Contributions: Conceptualization and Methodology, H.T.; Investigation and Validation, X.G.;
Writing—Original Draft Preparation, H.T., and X.G.; Writing—Review and Editing, H.T. and S.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was supported by the Ministry of Science and Technology of China (Grant No.
SLDRCE19-B-02) and the Natural Science Foundation of Shanghai (Grant No. 17ZR1431900).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Farrar, C.R.; Lieven, N.A. Damage prognosis: The future of structural health monitoring. Philos. Trans. Math.
Phys. Eng. Sci. 2007, 365, 623–632. [CrossRef] [PubMed]

2. Novak, E.; Ritter, K. High dimensional integration of smooth functions over cubes. Numer. Math. 1996,
75, 79–97. [CrossRef]

3. Jallouf, S.; Casavola, K.; Pappalettere, C.; Pluvinage, G. Assessment of undercut defect in a laser welded plate
made of Ti–6Al–4V titanium alloy with probabilistic domain failure assessment diagram. Eng. Fail. Anal.
2016, 59, 17–27. [CrossRef]

4. Long, X.Y.; Liu, K.; Jiang, C.; Xiao, Y.; Wu, S.C. Uncertainty propagation method for probabilistic fatigue
crack growth life prediction. Theor. Appl. Fract. Mech. 2019, 103, 102–268. [CrossRef]

5. Lin, Y.; Ding, Z.; Zio, E. Fatigue crack growth assessment method subject to model uncertainty. Eng. Fract. Mech.
2019, 219, 106–624. [CrossRef]

6. Liu, Y.; Mahadevan, S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution.
Int. J. Fatigue 2009, 31, 476–487. [CrossRef]

7. Chen, M.; Fang, W.; Yang, C.; Xie, L. Bayesian prediction and probabilistic model of fatigue cracks in steel
structures. Eng. Fail. Anal. 2019, 103, 335–346. [CrossRef]

8. Shiao, M.; Chen, T.; Mao, Z. Probabilistic Maintenance-Free Operating Period via Bayesian Filter with
Markov Chain Monte Carlo (MCMC) Simulations and Subset Simulation. In Model Validation and Uncertainty
Quantification; Springer: Cham, Switzerland, 2019; Volume 3, pp. 225–234.

9. Bäck, J.; Nobile, F.; Tamellini, L.; Tempone, R. Stochastic Spectral Galerkin and Collocation Methods for PDEs with
Random Coefficients: A Numerical Comparison; Springer: Berlin, Heidelberg, Germany, 2011; pp. 43–62.

http://dx.doi.org/10.1098/rsta.2006.1927
http://www.ncbi.nlm.nih.gov/pubmed/17255054
http://dx.doi.org/10.1007/s002110050231
http://dx.doi.org/10.1016/j.engfailanal.2015.11.018
http://dx.doi.org/10.1016/j.tafmec.2019.102268
http://dx.doi.org/10.1016/j.engfracmech.2019.106624
http://dx.doi.org/10.1016/j.ijfatigue.2008.06.005
http://dx.doi.org/10.1016/j.engfailanal.2019.04.061


Metals 2020, 10, 646 16 of 17

10. Xiu, D.; Hesthaven, J.S. High-order collocation methods for differential equations with random inputs.
Siam. J. Sci. Comput. 2005, 27, 1118–1139. [CrossRef]

11. Najm, H.N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics.
Annu. Rev. Fluid Mech. 2009, 41, 35–52. [CrossRef]

12. Reagan, M.T.; Najm, H.N.; Debusschere, B.J.; Le Maître, O.P.; Knio, O.M.; Ghanem, R.G. Spectral stochastic
uncertainty quantification in chemical systems. Combust. Theor. Model. 2004, 8, 607–632. [CrossRef]

13. Li, H.; Zhang, D. Probabilistic collocation method for flow in porous media: Comparisons with other
stochastic methods. Water Resour. Res. 2007, 43, W09409. [CrossRef]

14. Foo, J.; Yosibash, Z.; Karniadakis, G.E. Stochastic simulation of riser-sections with uncertain measured
pressure loads and/or uncertain material properties. Comput. Method Appl. Mech. 2007, 196, 4250–4271.
[CrossRef]

15. He, J.; Gao, S.; Gong, J. A sparse grid stochastic collocation method for structural reliability analysis.
Struct. Saf. 2014, 51, 29–34. [CrossRef]

16. Riahi, H.; Bressolette, P.; Chateauneuf, A. Random fatigue crack growth in mixed mode by stochastic
collocation method. Eng. Fract. Mech. 2010, 77, 3292–3309. [CrossRef]

17. Zhao, F.; Tian, Z.; Zeng, Y. A stochastic collocation approach for efficient integrated gear health prognosis.
Mech. Syst. Signal Process. 2013, 39, 372–387. [CrossRef]

18. Beck, A.T.; Gomes, W.J.D.S. Stochastic fracture mechanics using polynomial chaos. Probabilistic Eng. Mech.
2013, 34, 26–39. [CrossRef]

19. Sankararaman, S.; Ling, Y.; Mahadevan, S. Uncertainty quantification and model validation of fatigue crack
growth prediction. Eng. Fract. Mech. 2011, 78, 1487–1504. [CrossRef]

20. Tang, H.; Li, D.; Li, J.; Xue, S. Epistemic uncertainty quantification in metal fatigue crack growth analysis
using evidence theory. Int. J. Fatigue 2017, 99, 163–174. [CrossRef]

21. Long, X.Y.; Jiang, C.; Liu, K.; Han, X.; Gao, W.; Li, B.C. An interval analysis method for fatigue crack growth
life prediction with uncertainty. Comput. Struct. 2018, 210, 1–11. [CrossRef]

22. Paris, P.; Erdogan, F. A critical analysis crack propagation laws. J. Basic Eng. 1963, 85, 528–534. [CrossRef]
23. Forman, R.G.; Kearney, V.E.; Engle, R.M. Numerical analysis of crack propagation in cyclic-loaded structures.

J. Basic Eng. 1967, 89, 459–463. [CrossRef]
24. Wolf, E. Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 1970, 2, 37–45. [CrossRef]
25. Chang, T.; Li, G.; Hou, J. Effects of applied stress level on plastic zone size and opening stress ratio of a

fatigue crack. Int. J. Fatigue 2005, 27, 519–526. [CrossRef]
26. Newman, J.C. A crack opening stress equation for fatigue crack growth. Int. J. Fract. 1984, 24, R131–R135.

[CrossRef]
27. Vasudevan, A.K.; Sadananda, K.; Louat, N. Reconsideration of fatigue crack closure. Scr. Metall. Mater. 1992,

27, 1673–1678. [CrossRef]
28. Zhang, J.Z.; He, X.D.; Tang, H.; Du, S.Y. Direct high resolution in situ SEM observations of small fatigue crack

opening profiles in the ultra-fine grain aluminium alloy. Mater. Sci. Eng. 2008, 485, 115–118. [CrossRef]
29. Lu, Z.; Liu, Y. Small time scale fatigue crack growth analysis. Int. J. Fatigue 2010, 32, 1306–1321. [CrossRef]
30. Lu, Z.; Liu, Y. Concurrent fatigue crack growth simulation using extended finite element method. Front. Archit.

Civ. Eng. China 2010, 4, 339–347. [CrossRef]
31. Lu, Z.; Liu, Y. A comparative study between a small time scale model and the two driving force model for

fatigue analysis. Int. J. Fatigue 2012, 42, 57–70. [CrossRef]
32. Wang, H.; Zhang, W.; Zhang, J.; Dai, W.; Zhao, Y. Investigative method for fatigue crack propagation based

on a small time scale. Materials 2018, 11, 774. [CrossRef]
33. Huo, J.; Zhu, D.; Hou, N.; Sun, W.; Dong, J. Application of a small-timescale fatigue, crack-growth model to the

plane stress/strain transition in predicting the lifetime of a tunnel-boring-machine cutter head. Eng. Fail. Anal.
2017, 71, 11–30. [CrossRef]

34. Ye, H.; Wang, T.; Wu, C.; Duan, Z.; Liu, C. A comparative analysis of driving force models for fatigue crack
propagation of CFRP-reinforced steel structure. Int. J. Fatigue 2020, 130, 105266. [CrossRef]

35. Lu, Z.; Liu, Y. Experimental investigation of random loading sequence effect on fatigue crack growth.
Mater. Des. 2011, 32, 4773–4785. [CrossRef]

http://dx.doi.org/10.1137/040615201
http://dx.doi.org/10.1146/annurev.fluid.010908.165248
http://dx.doi.org/10.1088/1364-7830/8/3/010
http://dx.doi.org/10.1029/2006WR005673
http://dx.doi.org/10.1016/j.cma.2007.04.005
http://dx.doi.org/10.1016/j.strusafe.2014.06.003
http://dx.doi.org/10.1016/j.engfracmech.2010.07.015
http://dx.doi.org/10.1016/j.ymssp.2013.03.004
http://dx.doi.org/10.1016/j.probengmech.2013.04.002
http://dx.doi.org/10.1016/j.engfracmech.2011.02.017
http://dx.doi.org/10.1016/j.ijfatigue.2017.03.004
http://dx.doi.org/10.1016/j.compstruc.2018.09.005
http://dx.doi.org/10.1115/1.3656900
http://dx.doi.org/10.1115/1.3609637
http://dx.doi.org/10.1016/0013-7944(70)90028-7
http://dx.doi.org/10.1016/j.ijfatigue.2004.09.008
http://dx.doi.org/10.1007/BF00020751
http://dx.doi.org/10.1016/0956-716X(92)90164-A
http://dx.doi.org/10.1016/j.msea.2007.08.006
http://dx.doi.org/10.1016/j.ijfatigue.2010.01.010
http://dx.doi.org/10.1007/s11709-010-0078-2
http://dx.doi.org/10.1016/j.ijfatigue.2011.05.016
http://dx.doi.org/10.3390/ma11050774
http://dx.doi.org/10.1016/j.engfailanal.2016.11.002
http://dx.doi.org/10.1016/j.ijfatigue.2019.105266
http://dx.doi.org/10.1016/j.matdes.2011.06.034


Metals 2020, 10, 646 17 of 17

36. Barthelmann, V.; Novak, E.; Ritter, K. High dimensional polynomial interpolation on sparse grids.
ADV Comput. Math. 2000, 12, 273–288. [CrossRef]

37. Wang, Q.Y.; Kawagoishi, N.; Chen, Q. Fatigue and fracture behaviour of structural Al-alloys up to very long
life regimes. Int. J. Fatigue 2006, 28, 1572–1576. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1018977404843
http://dx.doi.org/10.1016/j.ijfatigue.2005.09.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Stochastic Collocation Method for Uncertainty Quantification 
	Stochastic Systems and Interpolation Formulation 
	Full Tensor Product Collocation 
	Smolyak Sparse Grid Collocation 

	Uncertainty Quantification in FCG Analysis 
	Description of Small-Timescale FCG Model 
	Uncertainty Quantification in FCG 
	The Remaining Useful Life Prediction 

	Results and Discussion 
	FCG Analysis of A Metal Plate 
	The Stochastic Collocation Method for Remaining Useful Life Prediction 
	Results of Remaining Useful Life Prediction 

	Conclusions 
	References

