

Article

Monosodium Glutamate as Selective Lixiviant for Alkaline Leaching of Zinc and Copper from Electric Arc Furnace Dust

Erik Prasetyo ^{1,*}, Corby Anderson ², Fajar Nurjaman ¹, Muhammad Al Muttaqii ¹, Anton Sapto Handoko ¹, Fathan Bahfie ¹ and Fika Rofiek Mufakhir ¹

- ¹ Research Unit for Mineral Technology, Indonesian Institute of Sciences; Jl. Ir. Sutami km. 15 Tanjung Bintang, Lampung Selatan 35361, Indonesia; nurjaman_80@yahoo.com (F.N.); almuttaqiimuhammad@gmail.com (M.A.M.); e_electrical@yahoo.com (A.S.H.); fathanbahfie@gmail.com (F.B.); fika.cupiw@gmail.com (F.R.M.)
- ² George Ansell Department of Metallurgical and Materials Engineering, Kroll Institute for Extractive Metallurgy, Mining Engineering Department, Colorado School of Mines; 1500 Illinois St, Golden, CO 80401, USA; cganders@mines.edu
- * Correspondence: erik.prasetyo@lipi.go.id; Tel.: +62-721-350-054

Received: 27 April 2020; Accepted: 12 May 2020; Published: 15 May 2020

Supplementary Materials

Figure S1. Species distribution of (**a**) Al, (**b**) Fe, (**c**) Mg and (**d**) Ca in glutamate-H₂O system as function of pH. Glutamate concentration 1 M, Al²⁺ 350 mM, Fe³⁺ 10 mM, Mg²⁺ 10 mM and Ca²⁺ 20 mM.

Mineral	Chemistry	Percentage
Anorthite	CaAl ₂ Si ₂ O ₈	0.81
Corundum	Al ₂ O ₃	8.57
Gahnite	ZnAl ₂ O ₄	33.71
Hauyne	(Na,Ca)Al6Si6(O,S)24SO4Cl	0.72
Orthoclase	KAlSi ₃ O ₈	0.42
Wollastonite	CaSiO ₃	0.15
ZnO	ZnO	42.21
ZnCl ₂	ZnCl ₂	6.36
ZnFeAlO	ZnFeAlO	0.65
ZnFeAlSiO	ZnFeAlSiO	0.21
ZnFeO	ZnFeO	5.30
ZnMn ₃ O	ZnMn ₃ O	0.89

 Table S1. AMICS Mineralogy for Zinc EAF Dust Sample.

Figure S2. Identified AMICS Minerals for Zinc EAF Dust Sample.

Table S2. AMICS Color Scheme.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).