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Abstract: Ball burnishing is a superfinishing operation whose objective is the enhancement of surface
integrity of previously machined surfaces, hence its appropriateness to complement chip removal
processes at the end of a production line. As a complex process involving plastic deformation,
friction and three-dimensional interaction between solids, numerical solutions and finite element
models have typically included a considerable amount of simplifications that represent the process
partially. The aim of this paper is to develop a 3D numerical finite element model of the ball
burnishing process including in the target workpiece real surface integrity descriptors resulting from
a ball-end milled AISI 1038 surface. Specifically, its periodical topological features are used to generate
the surface geometry and the residual stress tensor measured on a real workpiece is embedded in
the target surface. Secondly, different models varying the effect of the coefficient of friction and
the direction of application of burnishing passes with regards to the original milling direction are
calculated. Results show that the resulting topology and residual stresses are independent of the
burnishing direction. However, it is evident that the model outputs are highly influenced by the value
of the coefficient of friction. A value of 0.15 should be implemented in order to obtain representative
results through finite element models.

Keywords: ball burnishing; FEM; residual stress; topology; steel

1. Introduction

Ball burnishing is a method applied to providing residual stress at the surface layers of engineering
materials, as well as reducing the scale of the roughness of machined surfaces. It has a special role in the
industry as a means of enhancing surface quality and fatigue resistance [1]. In ball burnishing, a force
whose direction is normal to the machined surface is applied by a ball embedded in the tool in order
to generate high local stresses. The result is based on inducing enough amount of plastic deformation
to succeed in deforming the surface irregularities [2]. This technique is known for providing minimum
relaxation and cold work in comparison to other methods for surface improvement [3]. Furthermore,
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it is an easily automatable process, because it can be executed through the same machine where the
previous machining process has been performed [4]. The process also has some drawbacks, like the
fact that a bad planification of the process can lead to unburnished parts of the material [5]. Using a
ball as indenter can also be a focus of rise in improductivity time, as it allows the user to apply more
pressure, but it also experiences higher wear after several cycles, and a change of radius of rounding
shall be observed, which demands the substitution of the ball [6].

The transverse pitch of the classical burnishing paths (zig-zag or spiral), which is the space
between a pair of guide lines of the path, causes places without burnishing in addition to marks due
to the transverse movement of the ball. In other words, in the case of classical path, the transverse
movement of the ball acts as transverse roughness, which can be considered as the main disadvantage
of these paths. To overcome this disadvantage, a new trajectory of burnishing tool is created to achieve
a widespread multidirectional burnishing process of the surface.

The advances on the ball burnishing technology are extensively based on experimental testing,
focusing on process parameter optimization or result evaluation [7–9]. Many empirical works have
been developed to determine the effects of different process parameters (burnishing force, number
of passes, feed or ball diameter) to obtain the best results, in terms of roughness [10], hardness [11],
residual stress [12] or fatigue lifespan. However, theoretical and numerical models dealing with
the process are scarce in the bibliography. Furthermore, these models have been developed by
assuming numerous hypothesis to simplify its implementation, including friction, which is one of
the main drivers of plastic deformation [13]. Therefore they cannot fully account for the actual
process dynamics and kinematics. For instance, Yen et al. (2005) [14] proposed a 2D model based on
plane strain for the prediction of residual stress on a cylindrical material, neglecting both the friction
phenomena and the original residual stress due to the previous machining process. The control of the
burnishing force was mastered by controlling the depth of penetration of the ball inside the workpiece.
Sartkulvanich et al. (2007) [15] proposed a finite element model to study the burnishing process which
also neglected friction. Mohammadi et al. (2014) [16] developed a finite element model based on the
Johnson-Cook plasticity theory without considering the initial roughness to investigate the effect of
main parameters in ball burnishing.The theoretical results were afterwards combined with design of
experiments and the response surface method to obtain the optimum set of parameters.

Contrary to the references included in the previous paragraph, other authors have included the
modelling of the original surface roughness in their works. Bougharrio et al. (2010) [17] developed
a 2D simulation that was restricted to a single pass of a rigid ball on a cylindrical workpiece. A real
roughness pattern on the target surface was implemented and, regarding the symmetry of the problem
and assuming plane strain, the calculations were simplified by including only 1/4 of the workpiece and
1/8 of the burnishing ball in the simulation. The obtained results showed an improvement at the surface
roughness and compressive residual stress. However, this model could not predict the magnitude of
the final roughness. Rao et al. (2011) [18] made a 2D model including a triangle on the surface as one
peak of roughness in order to investigate variation of roughness due to variation of force burnishing.
Maximov et al. (2012) [19] developed a 2D model including roughness and friction in order to estimate
residual stress. In their works, the spherical motion was modelled through simultaneous rolling and
translation, so that the size of the FEM problem was decreased. Other authors considered the initial
texture as a result of a semicircular profile pattern [20], or a triangular one [2]. Balland et al. (2013) [2]
modelled a roughness pattern by successive triangles deployed on a cylindrical workpiece and
evaluated the final residual stress. They assumed that the machining effects, i.e., the residual stress
due to turning before burnishing were negligible. Rodriguez et al. (2012) [20] prepared a 2D model
in ANSYS based on the approach used by Sartkulvanich in order to quantify the final residual
stress. A semicircular periodic pattern was implemented as roughness profile. Sayahi et al. (2013) [21]
provided a 3D simulation in ABAQUS to estimate the residual stress without roughness. The model was
based on displacement control and maximum penetration that corresponded to the force burnishing
at every pass, so that the process was simulated to optimize the burnishing parameters in order to
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achieve maximum depth with compressive residual stress. Saldaña et al. (2015) [22] used a special
subroutine in ANSYS for providing random distribution of roughness on bars, considering a bilinear
material for simplification. In more recent models, the modelling of ball burnishing has been focused
on the ultrasonic-assisted process [23,24]. However, the computation time required to introduce this
oscillatory movement of the ball does not help to introduce friction as a variable of study, and, therefore,
still explore a side of the process complementary to the work presented here.

The bibliographical sources consulted for the elaboration of this paper evidence that previous
references dealing with ball burnishing model incorporate diverse simplifications, i.e., considering
it either non-frictional, or a bidimensional or neglecting the effects of the previous machining on
the results. In this paper, we show the results of a new model that eliminates those simplification,
thus showing a more comprehensive approach to the understanding of the process. Indeed, these
parameters are crucial to define the maximum contact pressure, and, therefore, shall define the final
effect of the ball burnishing process and cannot be neglected. Hence the focus of this paper, in which
less restrictive hypothesis are applied and it is demonstrated how different friction coefficients affect
the surface area involved in the contact of the ball with the roughness peaks, as well as the final residual
stress. Secondly, we include a three-dimensional distribution of the material composing the surface
texture, acknowledging like that the surface topography affects three-dimensionally the mechanics
of the process. It should be noted that even a perfect bidimensional modelling implies errors in the
estimation of the driving force for the burnishing, as the contact area of a circle with a flat triangular
profile is very different from the three-dimensional approach represented by a sphere with a wavy
surface. More specifically, the periodical topological features of a real ball-end milled are implemented
in the model, along with the actual residual stress state derived from the machining process itself.
For that reason, the actual texture of the target surface after machining must be entirely considered to
have a reliable model.

The elements of analysis introduced in this FEM can be considered a leap forward in the field of
ball burnishing modelling, as they represent the ball burnishing impact on real surfaces, as shall be
observed by comparing them with actual experimental results. This constitutes the main novelty of
this contribution. This model features the process on ball-end milled AISI 1038 surfaces, and is highly
valuable for process result prediction and phenomenology study, as this kind of surface is often found
in real manufacturing contexts.

2. Material Characterization

2.1. Power-Law Model for Plastic Behaviour

The material selected for the target surface to be treated through ball burnishing was AISI
1038 steel. It was acquired as laminated bars with a 40 × 80-mm2 section. In order to introduce
the mechanical properties of the material in the FEM, uniaxial tensile tests were performed on flat
specimens, equipped with extensometer to record the deformation experimented by it during the test
(Table 1). The tests and specimens were designed and performed according to the ISO 6892 standard,
with a 10-mm/min velocity, in a workroom at ambient temperature.

Table 1. Mechanical properties of the AISI 1038 alloy considered in the FEM.

Test E (GPa) σ0.2 (MPa) K (MPa) n

Uniaxial tensile stress tests 211.344 482 1117 0.190
Ultrasound testing 211.795 - - -

The plastic behaviour of the material was modelled through a power-law model represented by
Hollomon’s equation (Equation (1)), whose characteristic parameters were obtained experimentally
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by calculating the main descriptors of the strain-stress curve of the different specimens, following
standardized calculations established in the aforementioned standard.

σ = Kεn (1)

where σ is the stress, K is the stress for unitary strain, ε is the real plastic strain experienced by the
material, and n is the self-hardening coefficient of the material.

2.2. Hardness Quantification

The material hardness was measured through Vickers microindentation tests, applying a 100-g
load, on a specimen extracted from the core material. 50 measurements were taken and averaged,
so that the material hardness was calculated as 175 ± 10 HV.

3. 3D Finite Element Model

To simulate the three-dimensional ball burnishing process, the commercial FEM software ANSYS
was used. Since the inertia effects are very small, they were neglected. On the other hand, the static
analysis was performed implicitly with ANSYS. Although previous results from literature showed that
friction, and the original roughness profile at the surface layers due to machining have no direct impact
on the effects derived by the burnishing force, recent advances have shown that they should indeed be
taken into account, as they are highly relevant to understand the effects of ball burnishing [25]. This is
due to the fact that the displacement of the surface material caused by the cold plastic deformation
process, accounted mainly by piling up and protrusion effects, are not negligible. For the works
included in this contribution, the coefficient of friction was estimated in different simulations. Finally,
the design was done so that an approximation of the contact surface between the burnishing ball and
the surface material during the ball burnishing process was achieved. This last application of the
model is especially helpful to understand the actual mechanical interaction between the ball and the
surface, as determining the involved contact area during the process is obviously impossible in an
experimental context. The following subsections describe the specific aspects of the model.

3.1. General Description

In order to model the workpiece, a higher order 3D element composed of 20 nodes, named
SOLID186 in ANSYS R©, was used. Each node has three degrees of freedom: translations in the nodal x,
y, and z directions. Since this type of element exhibits quadratic displacement behaviour, it is more
accurate in estimating displacement than other elements with linear shape functions. This feature
makes it well suited to model irregular meshed areas, and the simulation utilizes an hexahedral type of
element (Figure 1). On the other hand, since the underlying solid elements have midside nodes at the
contact interface because of the quadratic shape function, elements satisfying this condition were used
to represent and compute contact and sliding between 3-D surfaces including the burnishing ball and
the material irregularities. In ANSYS R©, this kind of elements are CONTA174 and TARGE170. Specifically,
the CONTA174 element type has the same geometric characteristics as the solid element face with which
it is connected. Meanwhile the coulomb friction and shear stress friction are allowed in the CONTA174.

The augmented Lagrangian method was used as a contact algorithm in the simulation. The contact
stress (pressure and frictional stresses) are augmented during equilibrium iterations, so that the
final penetration is smaller than the allowable tolerance (TOLN). Compared to the penalty method,
the augmented Lagrangian method usually leads to better conditioning and is less sensitive to the
magnitude of the contact stiffness.

Gaussian points were defined to detect the contact areas between the ball and the surface,
governed by the Coulomb-Mohr’s frictional model without cohesion (Equation (2)).

τ = µpb (2)
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where τ is the frictional shear stress at the contact surface, µ is the coefficient of friction and pb is
the burnishing pressure due to the contact of the ball and the surface material, calculated through
Equation (3).

pb =
Fb
Ab

(3)

where Fb is the burnishing force exerted by the burnishing ball and Ab is the area of contact between
the burnishing ball and the material on the surface.

Figure 1. Left. SOLID186 homogeneous structural solid geometry. Right. Overview of modelled
surface, boundary conditions and path followed during ball burnishing.

The friction coefficient µ was kept constant in each simulation. This will prove useful when the
contact pressure is evaluated at all steps of the simulation. The ball was modelled as a rigid sphere with
a diameter of 10 mm, moving and rotating along the burnishing paths deployed on the target surface,
as shown in Figure 1. The surface of the rigid ball is associated with a pilot node at its geometric centre,
whose motion governs the entire ball surface displacement.

To simulate the ball burnishing process, the ball is pressed on the surface so that the total force
was set at 270 N, because this preload was successfully tested in actual experimental tests performed to
complement the model, and explained in [25]. Then, the ball rotates freely with frictional sliding along
longitudinal paths over the surface, spanning four peaks of the periodic texture profile. The lateral
offset between passes was fixed at 0.3 mm. Finally, the contact ball with surface was eliminated. Due to
high non-linearity in the contact surfaces and rotation during the process, number of iterations were
set as 200, and the maximum number of load steps were set in 10,000. The number of elements which
were used for the work surface and the ball were respectively 30,000 and 5400.

3.2. Surface Texture Modelling

The target surface was included in the model by developing a three-dimensional periodic texture
generated from a peak-valley profile whose dimensions were based on a real one obtained by ball
end-milling with a 10-mm diameter hemispherical milling tool and by adjacent lateral passes with a
0.3-mm lateral offset (Figure 2). The real profile was numerically measured through an ALICONA
Infinite Focus device equipped with a 10x objective with a 100-nm vertical resolution. To define the base
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profile, no filter was applied on the texture to retain all the height points, so that the P profile parameters
were used to generate the original texture. More specifically, the Psm and Pz factors according to the
UNE-EN ISO 1302:2002 standard, were approximated to 0.5 mm and 15 µm respectively, to generate
a simple unit that was juxtaposed to generate a reference profile. Table 2 shows all the dimensional
parameters defining the surface. Three-dimensional parameters were also retained for the sake of
comparing with ulterior results.

Figure 2. Real roughness profile obtained through ball end milling (discontinuous line) and
approximate profile extruded to generate the surface (continuous line).

Table 2. Texture (S) and 2D roughness profile (P) parameters defining the texture implemented in
the FEM.

Parameter Real Value Value for the Extruded Profile

Roughness profile (2D)
Pa(µm) 4.254 –

Psm(mm) 0.5246 0.5
Pz(µm) 15.4518 15

Texture (3D)
Sa(µm) 4.4964 –
Sq(µm) 5.0582 –

S10z(µm) 15.8388 –

3.3. Boundary Conditions and Initial States

All degrees of freedom of the displacements perpendicular to the four lateral faces of the block
were constrained, as was shown in Figure 1. On the other hand, the residual stress state of the original
surface (Table 3) was implemented at the modelled surface by embedding a representative tensor
obtained from experimental measurements performed by x-ray diffraction on a real workpiece with
a Kα Cu radiation, applying the sin2 psi method [26]. As this method does not penetrate deeply in
the material layers, the flat tensor was implemented at a 10–µm depth in the model. The x direction
indicates the burnishing direction, whereas the z direction is perpendicular to burnishing.

Table 3. Flat residual stress tensor implemented on the surface due to previous machining based on
experimental tests.

σx (MPa) σz (MPa) τxz (MPa)

−368 ± 11 −537 ± 26 −8 ± 4

The FEMs were simulated by considering five different scenarios (Table 4). The first four ones
contemplate different friction coefficients between the ball and the surface peaks, including the
non-friction scenario (simulation A.0). On the other hand, the remaining two contemplate the
implementation of the residual stress tensor by flipping the axes, to contemplate the application
of ball burnishing to evaluate the effect of changing the relative direction of burnishing with regards to
the original machining.
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Table 4. Six FEM scenarios and justification regarding the reason to include them in the study.

Simulation σx (MPa) σz (MPa) τxz (MPa) µ Justification

A.0

−368 ± 11 −537 ± 26 −8 ± 4

0
A.01 0.1 Assess the effect of the
A.02 0.2 coefficient of friction
A.03 0.3

B.0 −537 ± 26 −368 ± 11 −8 ± 4 0 Assess the effect of changing the burnishing
B.03 0.3 direction with regards to the original machining

3.4. Simulation Steps

Every simulation included in Table 4 was composed of a sequence of ten different steps
represented by the flow chart in Figure 3. Besides the main simulation represented in that diagram,
a special macro was incorporated as a subroutine in order to define the instantaneous common nodes
between the elements of the ball and the surface peaks in contact, by returning those elements where
forces are not zero. Like that, the area of contact between both solids can be estimated. This parameter
is of high interest, as it defines the degree of plastic deformation that could be potentially attained
through pressure by the burnishing ball. It must be noted that, after all calculations performed as
described for the elemental areas, the summation of the reaction forces for the involved elements
was calculated as 270 ± 2.5 N, to prove that the imparted force along the simulation was within the
desired range.

Figure 3. Flow diagram showing the simulation steps of ball burnishing.

Once all burnishing conditions were simulated, the new surfaces textures were analysed by
generating datasets representing the point heights, as a result of the change of nodal displacement
in the vertical direction (uy). The residual stress at longitudinal and transverse directions were also
returned. The resulting surfaces were directly compared to surfaces burnished on the machined surface
with the ball burnishing tool developed and manufactured by Jerez-Mesa et al. (2018) [27].
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4. Result Discussion

4.1. Superficial Residual Stress after Ball Burnishing

The resulting residual stress tensor after the simulation proves that it is ball burnishing that
dominates and defines the preferential direction of the residual stress obtained after the process,
regardless of its distribution on the original machined surface. This result can be easily observed in
Table 5, where all simulations present higher compressive residual stress along the original direction,
regardless of the relative orientation of the original machining and the burnishing direction. These
values are even higher as the coefficient of friction increases. This could be explained by the fact that,
as µ increases, the ball engages with the material more easily, thus deriving in further cold work on the
surface. Results also show that if the coefficient of friction is lower than 0.1, then burnishing could lead
to residual stress relaxation, what could be detrimental for the material in terms of crack propagation
prevention. Therefore, a minimum friction coefficient of 0.1 should be required to guarantee enough
cold work so that the burnishing ball does not relax residual stress that was obtained during the
previous machining phase.

Table 5. Maximum compressive residual stress obtained for each FEM simulation.

Simulation µ
Original Surfaces Simulated Surfaces

σx (MPa) σz (MPa) max σx (MPa) max σz (MPa)

A.0 0

−368 ± 11 −537 ± 26

−268 −948
A.01 0.1 −361 −1001
A.02 0.2 −393 −1140
A.03 0.3 −407 −1290

B.0 0 −537 ± 26 −368 ± 11 −632 −944
B.03 0.3 −632 −1290

In overall, it can be observed that the effect of ball burnishing is more conspicuous in the direction
perpendicular to burnishing, regardless of the original residual stress distribution, as most other articles
state. This effect is graphically depicted in Figure 4, where all residual stress fields are represented
for A simulations. Specifically, the component perpendicular to burnishing σz is more sensible to
friction variation, as its evolution is towards more compressive values as it increases. On the contrary,
although σx also experiments change, it is not so pronounced.

Figure 4 also shows that the border of all burnished patches present a higher residual stress
than in their central areas. Friction and irregular contact surface cause that the amount of superficial
compressive residual stress increases along every path where the ball is in direct contact with workpiece,
while the approximation of stress at the points located among paths is closer to the experimental
values. For this reason, to compare the experimental results with FEM simulation, the mean of the
twelve paths in the middle of the burnished area have been later on considered.
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Figure 4. Evolution of residual stress (MPa) as the coefficient of friction increases. (a). Along the
burnishing direction. (b). Perpendicular to the burnishing direction.

4.2. Deep Residual Stress after Ball Burnishing

The residual stress in deeper layers of the material can also be computed through the model,
although they are not the main focus because of the high cost of obtaining the in-depth profile
experimentally to confirm the adequacy of the model. However, the average value of deep residual
stresses down to a certain depth can be obtained as a representative value of the process, and later
compared to X-ray diffraction results.

Figure 5 shows the evolution of deep residual stress in the direction perpendicular to burnishing
(σz), which has been described in the previous section as the most affected by the process. This new
representation shows that the effect of increasing the coefficient of friction derives in a slight
relaxation of deep compressive residual stresses, which is obvious considering that the model searches
equilibrium. If the compressive residual stress at the surface increases, then it must be reduced in
deeper layers, as has been observed in previous works [7].
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Figure 5. Deep residual stress (MPa) perpendicular to the burnishing direction (σz) as the coefficient of
friction increases.

These results have also been used to compute the average residual stress values that could
be experimentally obtained through X-ray diffraction measurements. For steel alloys, the depth of
penetration of this technique is around 15 µm. Specifically, the nodes composing the volume of the
material down to that depth have been considered and their residual stress values averaged to obtain
a representative value of overall residual stress after the process with different coefficients of friction.
Figure 6 shows the resulting residual stress in the direction perpendicular to burnishing, as well as
a band that represents the actual value obtained through X-ray diffraction on the test workpiece.
The image shows that a coefficient of friction of 0.2 already is representative of the residual stress
obtained on a real workpiece. In fact, even slightly lower values would also agree with the real result.

Figure 6. Averaged residual stress of all nodes down to a 15-µm depth vs coefficient of friction.
Blue band: experimental residual stress obtained through X-ray diffraction.

4.3. Plastic Deformation after Ball Burnishing

The residual plastic deformation can be also quantified by analysing the displacement experienced
by the nodes after the process. The nodes located in their new positions after their displacement were
exported as a height dataset, and the representative Sq and Sa amplitude parameters computed, based
on a mean square plane calculated in the same routine. Table 6 presents the results, showing that the
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degree of plastic deformation experienced by the surface does not depend on the original residual
stress distribution, as tests with identical coefficients of friction (A.0 & B.0 and A.03 & B.03) present
similar Sa values. On the other hand, it could be stated that the surface texture results obtained
experimentally agree with those corresponding to the extrapolation of the resulting surfaces obtained
with coefficients of friction 0.1 and 0.2. This observation, along with the previous deep residual stress
results, evidence that a coefficient of friction of 0.15 could be adequate to predict texture results in this
kind of simulations.

Table 6. Surface amplitude descriptive parameters for the experimental surfaces and surfaces derived
from the five FEMs.

Source State of Surface Sa(µm) Sq(µm)

Experimental [25] Before burnishing 4.254 4.810
After burnishing 1.956 2.430

FEM

A.0 1.465 1.947
A.01 1.660 1.970
A.02 2.216 2.823
A.03 2.745 2.961
B.0 1.410 1.710

B.03 2.782 3.012

Figure 7 evidences the results described above. As it can be observed, the texture obtained
after a highest coefficient of friction presents a higher variability of heights and depths in the surface
represented by different colours, that is, a highest difference between peaks and valleys. This graphical
result also depicts that a higher coefficient of friction increases the pile-up effect, as the boundaries of
the burnishing patch in the surface simulated with µ = 0.3 presents more acute valleys than the rest of
the imprint. Numerical values for further insight on this effect are presented in Table 7. This effect is
accordance with results observed in spherical indentation tests [28], which can be assimilated to the
process tackled with in this paper. Consequently, a different behaviour of the system according to the
coefficient of friction that characterizes it can be identified. This relationship is discussed further in the
next subsection.

Figure 7. Surface topology after simulation (µm). Left. µ = 0. Right. µ = 0.3
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Table 7. Pile up effect estimation after all simulations with the same residual stress distribution.

Simulation µ Pile up at Boundaries (µm)

A.0 0 3.6–6.2
A.01 0.1 3.8–6.4
A.02 0.2 6.0–8.9
A.03 0.3 8.7–12.2

4.4. Effect of the Coefficient of Friction on the Interaction Between Ball and Surface

Previous results have shown that the coefficient of friction has been determinant in the results
obtained after ball burnishing. More specifically, as its value increases, the surface presents higher
compressive residual stress, whereas texture is not improved to such a higher extent. This behavior
cannot be explained phenomenologically through experimental application, due to technical limitations
to observe the ball-surface contact interface. However, it can be hypothesized that the reason behind
this effect is that different coefficients of friction derive in different contact mechanics between the
burnishing ball and the material distributed on the surface texture features. To understand the reason
behind this observation, a special macro to calculate the involved contact area of the surface with the
ball during the burnishing simulations was implemented. To that effect, the CONTA174 and TARGE170
element types were implemented in the model. Since the type of analysis is static, here time is a counter.
Accordingly, the instantaneous location of the pilot node at the centre of the ball can be determined
in terms of time through a counter. The value of the displacement of that pilot node along the x and
z directions, ux and uz respectively, is set to zero at the start point of each simulation. The former
represents paths 1–2, 3–4, 5–6, 7–8 and 9–10 represented in Figure 1, whereas the latter refers to paths
2–3, 4–5, 6–7 and 8–9. The time elapsed for each load step is 1 s, and the increment is of 0.1 s.

Figure 8 shows the approximate burnishing pressure (according to Equation (3)) with regards to
the position of the ball computed for all simulations with the same original residual stress distribution
(noted as A simulations). The trend and evolution of the burnishing pressure is similar for all tests,
but its absolute value is higher as the coefficient is lower. That change of pressure can be attributed
to the variability of the area of contact as the process evolves. This numerical results evidence that,
indeed, the ball and the surface engage to one another differently depending on the kind of friction
interaction they are experiencing during the processing. Hence the high influence of that parameter in
the effectiveness of the process itself.

The increase of burnishing pressure with the reduction of the coefficient of friction can also be
interpreted in terms of local yielding. When there is no friction it is easier for the material to flow below
the burnishing ball and mainly receive compression stress, that induces low plastic strain. As the
friction increases, the material tends to pile up in front of the ball and is forced to flow around it,
inducing shear stresses and a large plastic strain. As Wang and Chung (2013) [29] point out, the higher
the friction, the higher the value of deviatoric stresses because of lateral forces. This explains also
the fact that deep residual stress are slightly relaxed when the residual stress on the surface is more
compressive, because in order to be compressed on the surface, the bottom layers must be drawn.
The computation of the von Mises stress and the shear stress at the contact surface applying the
Coulomb-Mohr’s frictional model described in Equation (2) evidence that, indeed, the increase of
the coefficient of friction derives in a higher overall von Mises stress, mostly accounted by the shear
stress (Table 8). That is, plastic strain, that induces cold work, succeeds in introducing a large amount
of dislocations in the crystal lattice, which accumulate elastic energy. Hence the higher value of the
compressive residual stress.
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Figure 8. Evolution of process descriptors along the different steps of the simulation for different coefficients
of friction. Top. Contact area between the ball and surface material. Bottom. Burnishing pressure.

Table 8. Estimation of local von Mises and maximum shear stress for simulations with different
coefficients of friction.

Simulation µ τmax (MPa) τmax Increase σvM (MPa) σvM Increase

A.0 0 355 ± 55 base 800 ± 50 base
A.01 0.1 415 ± 35 17% 940 ± 60 18%
A.02 0.2 470 ± 20 32% 1065 ± 65 33%
A.03 0.3 535 ± 35 51% 1250 ± 60 57%

5. Conclusions

In this paper, an innovative FEM of a ball burnishing process has been presented. Compared
to other models found in the bibliography and presented in the introduction of this paper, this one
incorporate and combines three distinctive features:

1. It evaluates three-dimensional interaction between solids (ball and surface topology).
2. It incorporates the 3D texture of a real surface machined through ball-end milling.
3. The actual surface residual stress after machining has been embedded in the system.

The different simulations performed have proven that the relative direction of burnishing passes
with regards to the original direction of the original ball-end milling do not influence the results in
terms of texture or residual stress. In fact, it is the coefficient of friction the factor that primarily
dominates the residual stress distribution, being the component perpendicular to ball burnishing the
predominant value in the 2-dimensional tensor. The high influence of the coefficient of friction has been
explored by calculating the real area of contact between the burnishing ball and the surface, concluding
that this area increases as the coefficient of friction is higher, and causes a better engagement of the ball



Metals 2020, 10, 638 14 of 16

with the material. Hence the lower burnishing pressure that provokes a lower reduction of the surface
texture. At the same time, the compressive residual stress values increase with a higher value of the
coefficient of friction. However, the model suggests that a lack of friction could derive in residual
stress relaxation in the burnishing direction.

The comparison of the model outputs with experimental results, both in texture and deep residual
stress terms, show that a coefficient of friction around 0.15 is the most representative of the actual
process. It can also be stated that surface texture and residual stress cannot be simultaneously improved
for any coefficient of friction, at least with the ball burnishing conditions that have been simulated in
this model.
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Abbreviations

The following abbreviations and symbols are used in this manuscript:

FEM Finite element model
E Young’s modulus
Ab Area of contact during burnishing
pb Burnishing pressure
Fb Burnishing force
K Stress for unitary strain
n Self-hardening coefficient
Pa Average surface roughness of the P profile
Pq Root mean square surface roughness of the P profile
Psm Mean period of the P profile
ui Vertical displacement of the nodes in the i direction
Sa Average surface texture amplitude
Sq Root mean square surface texture amplitude
S10z Mean 10 height-peak texture amplitude
σ0.2 Elastic limit at 0.2% deformation
ε Real plastic strain
σx Residual stress along the burnishing direction
σz Residual stress along the machining direction i.e., perpendicular to the burnishing direction
τxz Shear stress in the xz plane
µ Coefficient of friction

References

1. Nalla, R.; Altenberger, I.; Noster, U.; Liu, G.; Scholtes, B.; Ritchie, R. On the influence of mechanical surface
treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and
elevated temperatures. Mater. Sci. Eng. A 2003, 355, 216–230. [CrossRef]

2. Balland, P.; Tabourot, L.; Degre, F.; Moreau, V. Mechanics of the burnishing process. Precis. Eng. 2013,
37, 129–134. [CrossRef]

3. Prevéy, P.S. The Effect of Cold Work on the Thermal Stability of Residual Compression in Surface Enhanced IN718;
Technical Report; Lambda Research: Cincinnati, OH, USA, 2000.

http://dx.doi.org/10.1016/S0921-5093(03)00069-8
http://dx.doi.org/10.1016/j.precisioneng.2012.07.008


Metals 2020, 10, 638 15 of 16

4. Jerez-Mesa, R.; Travieso-Rodríguez, J.A.; Landon, Y.; Dessein, G.; Lluma-Fuentes, J.; Wagner, V.
Comprehensive analysis of surface integrity modification of ball-end milled Ti-6Al-4V surfaces through
vibration-assisted ball burnishing. J. Mater. Process. Technol. 2019, 267, 230–240. [CrossRef]

5. Alghazoul, R.; Makki, A.; Abdel Wahab, M. Improvement of Flat Surfaces Quality of Aluminum Alloy
6061-O By A Proposed Trajectory of Ball Burnishing Tool. CMC Comput. Mater. Contin. 2019, 61, 555–568.

6. Swirad, S. The effect of burnishing parameters on steel fatigue strength. Nonconv. Technol. Rev. 2007,
1, 113–118.

7. García-Granada, A.A.; Gomez-Gras, G.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Reyes, G. Ball-burnishing
effect on deep residual stress on AISI 1038 and AA2017-T4. Mater. Manuf. Process. 2017, 32, 1279–1289.
[CrossRef]

8. Gomez-Gras, G.; Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Lluma-Fuentes, J.; de la Calle, B.G. Experimental
study of lateral pass width in conventional and vibrations-assisted ball burnishing. Int. J. Adv. Manuf.
Technol. 2016, 87, 363–371. [CrossRef]

9. Robles, A.S.; De la Peña, J.Á.D.; García, A.d.J.B.; Gómez, E.A.; MORA, H.P.; Robles, N.S. El proceso de
bruñido con bola: Estado del arte de una tecnología en desarrollo. DYNA 2017, 92, 28–33. [CrossRef]

10. Ding, Z.; Zhao, J.; Liu, H.; Dong, Y. Effects of ball burnishing on surface properties of SKD11 mold steel.
Eng. Res. Express 2020, 2, 025004. [CrossRef]

11. Hamadache, H.; Bourebia, M.; Taamallah, O.; Laouar, L. Surface hardening of 36 NiCrMo 6 steel by ball
burnishing process. Mater. Res. Express 2019, 6, 106538. [CrossRef]

12. Kuznetsov, V.; Smolin, I.Y.; Dmitriev, A.; Tarasov, S.Y.; Gorgots, V. Toward control of subsurface strain
accumulation in nanostructuring burnishing on thermostrengthened steel. Surf. Coat. Technol. 2016,
285, 171–178. [CrossRef]

13. González-Rojas, H.A.; Travieso-Rodríguez, J.A. Physical model to predict the ball-burnishing forces.
Adv. Mater. Res. 2012, 498, 195–200. [CrossRef]

14. Yen, Y.; Sartkulvanich, P.; Altan, T. Finite element modeling of roller burnishing process. CIRP Ann. 2005,
54, 237–240. [CrossRef]

15. Sartkulvanich, P.; Altan, T.; Jasso, F.; Rodriguez, C. Finite element modeling of hard roller burnishing:
An analysis on the effects of process parameters upon surface finish and residual stresses. J. Manuf. Sci. Eng.
2007, 129, 705–716. [CrossRef]

16. Mohammadi, F.; Sedaghati, R.; Bonakdar, A. Finite element analysis and design optimization of low plasticity
burnishing process. Int. J. Adv. Manuf. Technol. 2014, 70, 1337–1354. [CrossRef]

17. Bougharriou, A.; Saï, K.; Bouzid, W. Finite element modelling of burnishing process. Mater. Technol. 2010,
25, 56–62. [CrossRef]

18. Rao, J.M.; Reddy, A.C.K.; Rao, P.R.; Mayuri, B. Finite element approach for the prediction of residual stresses
in aluminum workpieces produced by roller burnishing. Int. J. Des. Manuf. Technol. 2011, 2, 0976–6995.

19. Maximov, J.; Duncheva, G. Finite element analysis and optimization of spherical motion burnishing of
low-alloy steel. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012, 226, 161–176. [CrossRef]

20. Rodríguez, A.; de Lacalle, L.L.; Celaya, A.; Lamikiz, A.; Albizuri, J. Surface improvement of shafts by the
deep ball-burnishing technique. Surf. Coat. Technol. 2012, 206, 2817–2824. [CrossRef]

21. Sayahi, M.; Sghaier, S.; Belhadjsalah, H. Finite element analysis of ball burnishing process: Comparisons
between numerical results and experiments. Int. J. Adv. Manuf. Technol. 2013, 67, 1665–1673. [CrossRef]

22. Saldaña-Robles, A.; Aguilera-Gómez, E.; Plascencia-Mora, H.; Ledesma-Orozco, E.; Reveles-Arredondo, J.;
Saldaña-Robles, N. FEM burnishing simulation including roughness. Mechanik 2015, 88, 79–91. [CrossRef]

23. Teimouri, R.; Amini, S.; Guagliano, M. Analytical modeling of ultrasonic surface burnishing process:
Evaluation of residual stress field distribution and strip deflection. Mater. Sci. Eng. A 2019, 747, 208–224.
[CrossRef]

24. Teimouri, R.; Amini, S.; Bami, A.B. Evaluation of optimized surface properties and residual stress in
ultrasonic assisted ball burnishing of AA6061-T6. Measurement 2018, 116, 129–139. [CrossRef]

25. Jerez-Mesa, R.; Landon, Y.; Travieso-Rodriguez, J.A.; Dessein, G.; Lluma-Fuentes, J.; Wagner, V. Topological
surface integrity modification of AISI 1038 alloy after vibration-assisted ball burnishing. Surf. Coat. Technol.
2018, 349, 364–377. [CrossRef]

26. Withers, P.J.; Bhadeshia, H. Residual stress. Part 1–measurement techniques. Mater. Sci. Technol. 2001,
17, 355–365. [CrossRef]

http://dx.doi.org/10.1016/j.jmatprotec.2018.12.022
http://dx.doi.org/10.1080/10426914.2017.1317351
http://dx.doi.org/10.1007/s00170-016-8490-y
http://dx.doi.org/10.6036/7916
http://dx.doi.org/10.1088/2631-8695/ab8443
http://dx.doi.org/10.1088/2053-1591/ab3733
http://dx.doi.org/10.1016/j.surfcoat.2015.11.045
http://dx.doi.org/10.4028/www.scientific.net/AMR.498.195
http://dx.doi.org/10.1016/S0007-8506(07)60092-4
http://dx.doi.org/10.1115/1.2738121
http://dx.doi.org/10.1007/s00170-013-5406-y
http://dx.doi.org/10.1179/175355509X387110
http://dx.doi.org/10.1177/0954406211412024
http://dx.doi.org/10.1016/j.surfcoat.2011.11.045
http://dx.doi.org/10.1007/s00170-012-4599-9
http://dx.doi.org/10.17814/mechanik.2015.2.79
http://dx.doi.org/10.1016/j.msea.2019.01.007
http://dx.doi.org/10.1016/j.measurement.2017.11.001
http://dx.doi.org/10.1016/j.surfcoat.2018.05.061
http://dx.doi.org/10.1179/026708301101509980


Metals 2020, 10, 638 16 of 16

27. Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Gomez-Gras, G.; Lluma-Fuentes, J. Development, characterization
and test of an ultrasonic vibration-assisted ball burnishing tool. J. Mater. Process. Technol. 2018, 257, 203–212.
[CrossRef]

28. Taljat, B.; Pharr, G.M. Development of pile-up during spherical indentation of elastic–plastic solids. Int. J.
Solids Struct. 2004, 41, 3891–3904. [CrossRef]

29. Wang, Q.J.; Chung, Y.W. Encyclopedia of Tribology; Springer: Berlin, Germany, 2013.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmatprotec.2018.02.036
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.033
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Material Characterization
	Power-Law Model for Plastic Behaviour
	Hardness Quantification

	3D Finite Element Model
	General Description
	Surface Texture Modelling
	Boundary Conditions and Initial States
	Simulation Steps

	Result Discussion
	Superficial Residual Stress after Ball Burnishing
	Deep Residual Stress after Ball Burnishing
	Plastic Deformation after Ball Burnishing
	Effect of the Coefficient of Friction on the Interaction Between Ball and Surface

	Conclusions
	References

