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Abstract: In this work, we report the results of an experimental investigation on the synthesis,
structure, microstructure, mechanical, electrical conductivity, and Seebeck coefficient of CoyXSn
(X = Zr, Hf) alloys. In both the alloys, the main constituent is a full Heusler-type compound that
coexists with small amounts of secondary phases. Both alloys show a rather high Vickers hardness
(around 900 HV) and an indentation fracture toughness typical of ceramics (around 2 MPa-m'/?2).
The electronic transport properties of the two alloys were measured for the first time. The temperature
dependence of both the Seebeck coefficient and the electrical conductivity of the two alloys shows
a change in correspondence of the Curie temperature. The Seebeck coefficient reaches a constant
plateau, while the electrical conductivities show a transition from metallic to semiconductor behavior.
As a consequence, almost constant values of the power factor have been obtained for the power factor
above the Curie temperature, which is promising for an efficient exploitation of thermal gradients
of several hundreds of degree in waste heat harvesting applications. Finally, on the basis of results
from this work and from the literature, the effect of the substitution of the X element on the electronic
transport properties in the series Co,XSn (X = Ti, Zr, Hf) is discussed.

Keywords: Heusler; arc melting; Seebeck; electrical conductivity; thermoelectric; Curie temperature

1. Introduction

The Heusler alloys represent an important class of thermoelectric materials since they generally
combine good performances with high thermal stability, and, in most cases, ease of synthesis.
The structure of the full-Heusler (FH) compounds consists of 4 FCC sublattices with a L2;-type
structure, while the one of the half-Heusler (HH) compounds consists of 3 FCC sublattices arranged
according to the C1b lattice prototype [1]. On the one hand, HH alloys show remarkable zT values
such as 1.5 for (Zr0.5Hf0.5)0_5Ti0.5NiSn0.9985b0_002 [2] and Nb().gngo_leeSb [3], and about 1.2 for
Tig 5210 5NiSng9gSbg o2 [4] and densification-aided Tig5Zrp5NiSn [5]. On the other hand, FH alloys
exhibit numerous worthwhile properties related to their particular electronic structures. For example,
Co-based FH alloys are proved to be half-metallic ferromagnets, and they display an electronic density
of states (DOS), which leads to the manifestation of spin-Seebeck effects [6-8]. For this reason, the
Co-based full-Heusler compounds can be promising materials for application in spintronics and
spin-caloritronics [7,9-11].

One of the first investigation on Co-based FH alloys was the work of Ziebeck and Webster [12]
in 1974, where both the structural characterization by means of neutron diffraction and the magnetic
properties are reported. Later, in 1987, De Souza et al. [13] confirmed the magnetic properties reported
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in Ref. [12]. Furthermore, they reported a Curie temperature (T¢) of 460 K for Co,ZrSn and 423 K
for CooHfSn.

As far as the thermoelectric properties are concerned, Barth et al. [14] investigated the magnetic
and electronic transport properties of the Co,TiZ (Z = Si, Ge, 5n) alloys and reported a maximum value
of thermopower of about —50 pV/K (which is quite high for a metallic compound) together with a T¢
of 360 K for the Co,TiSn alloy. Moreover, they highlighted that a remarkable characteristic of these
materials is the fact that the absolute value of the Seebeck coefficient linearly increases up to T¢, and
then it settles in a plateau and remains constant throughout the entire analyzed range of temperature.
They suggested also that this anomalous trend of the Seebeck coefficient can be explained by the
half-metallic behavior of the Co-based family of FH alloys. Concerning the electrical conductivity (o),
Co,TiSn exhibits a relatively small value of 2851 S/cm after T, which is the smallest of all compounds
investigated in that work.

It is also important to mention that the band structures and the electronic DOS of the Co,XSn
(where X is a metal of group 4 of the periodic table, namely Ti, Zr, and Hf) alloys have been studied
in several theoretical investigations [6-9,15-17]. There is a general agreement on the fact that all the
three alloys show an electronic DOS typical of half-metallic ferromagnets. This particular property
manifests itself in magnetic compounds with an electronic DOS consisting in quite continuous
majority-spin sub-bands and minority-spin sub-bands that instead exhibit semiconductor-like band
gaps [6]. This property would allow these compounds, at least below T¢, to generate spin-Seebeck
effects [6-9], which can be described as the ability of a material to conduct spin-polarized electrons
when the system is subjected to thermal gradients [7,10]. Despite these promising properties, until
now, there have been no significant advances in the determination of the transport properties of the
C02X5n compounds.

On the one hand, mechanical properties are useful for evaluating the reliability of materials
when assembled in a thermoelectric module. On the other hand, since the understanding of the
thermoelectric properties of the Co-based FH alloys is still lacking, it is valuable to gather as much
information as possible on the behavior of these compounds in view of spintronic and waste heat
harvesting applications. Thus, the aim of this work is to measure for the first time the mechanical
properties (i.e., Vickers hardness, indentation fracture toughness) and electronic transport properties
(i.e., Seebeck coefficient, electrical conductivity) of the CoyZrSn and Co,HfSn alloys. Furthermore,
considering the properties of the Co,XSn (X = Ti, Zr, Hf) series of FH alloys, it is discussed how the
electronic transport properties may vary when the X metal is changed.

2. Materials and Methods

The pure elements were weighted in the appropriate stoichiometric quantities and melted in
the arc furnace (Edmund Biihler GmbH, Bodelshausen, Germany). Due to the large difference in the
melting points of Zr/Hf and Sn, two pre-alloys were synthesized for each FH system, namely CoZr and
CoSn for CopZrSn, and CoHf and CoSn for Cop,HfSn, to guarantee a better homogenization of the melt.
Pre-alloys were melted together several times in order to obtain homogeneous samples. Then, the
ingots were wrapped in tantalum foils, sealed in evacuated quartz tubes, and annealed at 800 °C for
6 days.

X-ray diffraction (XRD) investigation was performed in Bragg-Brentano configuration with a
X'Pert Pro diffractometer (PANalytical B.V., Almelo, The Netherlands) using a Cu-K« radiation as the
X-ray source. For the XRD analysis, the samples were crushed in thin powders to remove the effect of
possible preferred crystallographic orientations. The Rietveld refinements of the XRD patterns were
performed with the MAUD software [18]. The surface analysis was executed by Scanning Electronic
Microscopy (SEM) with an EVO 50 microscope (Carl Zeiss Microscopy GmbH, Jena, Germany)
equipped with an Inca Energy 250 Energy Dispersion Spectrometer (EDS) under vacuum of 10~ mbar,
20 kV of potential, and 150 pA of current. All the SEM images presented in this work were collected
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in backscattered electrons (BSE) mode on mechanically polished surfaces. The XRD and SEM-EDS
investigations were performed on both the as-cast and annealed specimens.

Microhardness measurements were performed on the annealed samples with a microhardness
tester (Buehler, Lake Bluff, IL, USA) using a load of 4.9 N. The length of the indent diagonals and
crack length were measured using a DMLM optical microscope (Leica, Wetzlar, Germany). The error
associated with the mechanical properties was calculated using the standard t-student type formula
for independent measurements, or Er = SDt/n'2 (where Er is the obtained error, SD is the standard
deviation, t is the tabulated t-student value relative to a confidence interval of 95%, and # is the number
of independent measurements). The densities of the two alloys were measured by weighting ingots of
known volume and by the Archimedes principle using a pycnometer.

The Seebeck coefficient and electrical conductivity were measured on bar-shaped annealed
samples (12 X 2 x 2 mm?) under He flow between room temperature and 778 K by using a custom
test apparatus described in ref. [19]. Furthermore, in order to assess the thermal stability of the alloys,
the properties were measured upon heating and cooling.

3. Results and Discussion

3.1. Structural and Microstructural Characterization

The XRD patterns of both annealed alloys are shown in Figure 1. The XRD patterns of the as-cast
alloys are shown in the supplementary materials (Figure S1). Figure 2a,b and Figure 2c,d show the
backscattered SEM images of annealed Co,ZrSn and Co,HfSn ingots, respectively, where the gray
contrast suggests the homogeneous distribution of two secondary phases immersed in the main phase.
The same SEM images relative to the as-cast alloys can be found in the supplementary materials
(Figures S2 and 53). Table 1 shows the results of the Rietveld refinement of the XRD patterns shown in
Figure 1 and the EDS elemental compositions of the phases observed in Figure 2, which are all related
to the annealed samples, together with the results of the same investigations performed on the as-cast
alloys. As reported in Table 1, both the Rietveld refinement and the EDS investigation indicate that
phase 1 and 4 correspond to the Co,ZrSn and Co,HfSn full Heusler structures, respectively, and they
represent the main component of each alloy. In the case of Co,ZrSn alloy, phases 2 and 3 are found to
be the binary compounds Co,Zr and CoSn, respectively. In the case of Co,HfSn alloy, phases 3 and
5 are the binary compounds CoSn and Co,Hf, respectively. In addition, Ziebeck and Webster [12]
reported the presence of secondary phases, together with the FH phase even after annealing.
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Figure 1. XRD patterns and Rietveld refinements of the Co,ZrSn (a) and Co,HfSn (b) annealed
alloys. The black symbols and the red continuous line are the experimental and the calculated patterns
respectively, while the blue line represents the difference between the two. The peaks proper of the
full-Heusler phases are marked with their relative Miller indexes, whereas the signals of the secondary
phases are highlighted with colored shapes (orange circles for Co,Zr and green squares for Co,Hf).
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Figure 2. Backscattered electrons SEM images of the Co,ZrSn (a,b) and Co,HfSn (c,d) annealed alloys.
In accordance with the results of the Rietveld refinement of the XRD patterns (Figure 1 and Table 1),
the observed phases are the L2;-type Co,ZrSn full-Heusler (1), the C15-type Co,Zr (2), CoSn (3),
the L2;-type Co,HfSn full-Heusler (4), and the C15-type Co,Hf (5).

Average EDS measurements at low magnifications indicated that the overall composition of the
specimens slightly deviates from the nominal stoichiometry. The average atomic compositions of the
samples resulted to be 53% Co, 25% Zr, and 22% Sn for the Co,ZrSn sample, and 51% Co, 25% Hf, and
24% Sn for the Cop,HfSn alloy, indicating slight Sn depletion and Co excess, with consequent formation
of the observed secondary phases.

As reported in Table 1, the Rietveld analysis allowed quantifying the amount of secondary phases
in the samples, which is 12% for Co,Zr (2) and 7% for Co,Hf (5). Concerning phase 3 (CoSn), its
abundance is too small to be calculated with the Rietveld refinement (so its quantity will be considered
negligible). The relative amount of the secondary phases does not change after annealing; however,
slight changes of the EDS phase composition and lattice parameters can be observed. The lattice
parameters found for the as-cast alloys are 6.2338 A and 6.2101 A for Co,ZrSn and Co,HfSn, respectively.
After annealing, the values of the lattice parameters become 6.2458 A for Co,ZrSn and 6.2157 A for
Co,HfSn, which are very close to the equilibrium values reported by Ziebeck et al. [12] (i.e., 6.249 A
and 6.218 A for Co,ZrSn and Co,HfSn, respectively).

Densities of 9.2 g/cm® and 11.7 g/cm® were obtained for Co,ZrSn and Co,HfSn samples, respectively.
As a result of the presence of secondary phases and the deviation of the phase composition from the
stoichiometry (see Table 1), the measured values cannot be compared with the values of crystallographic
density for the pristine compounds [20] (i.e., 8.92 g/cm3 and 11.47 g/cm? for Co,ZrSn and Co,HfSn,
respectively), and experimental values [12] of monophasic Co,ZrSn (8.90 g/cm?®) and Co,HfSn
(11.40 g/cm3) [12]. Thus, the crystallographic density of each phase was calculated on the basis of the
actual composition and the refined lattice parameter. Subsequently, the theoretical densities of the
two-phases samples were obtained as the weighted average of the crystallographic density of the
phases present in each sample, leading to values of 9.2 g/cm3 and 11.9 g/cm? for the Co,ZrSn and
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Co,HfSn samples, respectively. It follows that the relative densities of CoyZrSn and Co,HfSn samples
are 100% and 98%, respectively.

Table 1. Composition, prototype—structure, cell parameters, and relative abundances of the different
phases in the Co,ZrSn and Co,HfSn samples. The structure of the phase 3, CoSn, is shown as reported
in the Co-Sn phase diagrams [21].

Co02ZrSn As-Cast

Elemental composition (at %)

Co P Sn Label Phase Structure a(A) Abundance (wt %)
45 28 27 1 CoyZrSn L2 6.2338 88%
65 21 13 2 COZZrXSny C15 6.9174 12%
58 - 42 3 CoSn B35 - -
C02Z1rSn Annealed
Elemental composition (at %) Label Phase Structure a(A) Abundance (wt %)
Co Zr Sn
46 27 27 1 CoyZrSn L2 6.2458 88%
66 19 15 2 COZZrXSny C15 6.9212 12%
58 - 42 3 CoSn B35 - -

CoHfSn As-Cast

Elemental composition (at %)

Co HE Sn Label Phase Structure a(A) Abundance (wt %)
45 27 28 4 Co,HfSn L2 6.2101 93%

65 26 9 5 Co,HfxSny C15 6.9024 7%

56 - 44 3 CoSn B35 - -

Co,HfSn Annealed
El tal iti t % .

Ce(r)nen a corIr}I};oa ron (aSn ) Label Phase Structure a(A) Abundance (wt %)
47 26 27 4 Co,HfSn L2 6.2157 93%

66 25 9 5 Co,HfxSny C15 6.8915 7%

55 - 44 3 CoSn B35 - -

Ultimately, the unaltered relative abundance of the phases before and after the annealing treatment,
and the small changes in their elementary composition and in the lattice parameters suggest that the
full-Heusler phases 1 and 4 crystallize congruently from the melt with small impurities of secondary
compounds Co,Zr and Co,Hf (2 and 5 respectively) and small traces of CoSn (3), which is due to the
slight deviation of the prepared samples from the nominal stoichiometry. Thus, these alloys can be
easily processed by direct solidification of the melt.

3.2. Mechanical Properties

As reviewed by Ponton et al. [22], when the surface of a material is indented, the cracks that
propagate from the imprint can be of two different classes: halfpenny type and Palmqvist type.
It is known that the halfpenny cracks propagate both on the surface (radial direction) and deeply
below (median direction) the imprint. For this reason, they are also called radial-median cracks.
Conversely, the Palmqvist type is shallower and includes cracks that do not propagate directly below
the indentation, but only in the radial direction. It is possible to distinguish between the two typologies
of cracks by performing a light polishing of the surface of the sample after indentation. After the
procedure, if the cracks remain visible and always connected to the inverted pyramid of the indent,
the behavior can be classified as halfpenny; whereas, a small detachment should be visible in case of
cracks of the Palmqvist type, or, alternatively, only the indenter imprint should be observed in case of
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very shallow cracks [23-25]. It was also generally observed that fairly shallow Palmqvist-type cracks
are expected for hard metallic materials [23].

As expected, significant cracks have been observed after the first indentation, which has been
used to determine the hardness, as reported in Table 2. After light polishing of the surface using a 3 um
diamond paste, the radial cracks were no longer visible, indicating that these are extremely shallow.
In Figure 3, as an example, one of the several indentations performed for each alloy is shown before
and after the polishing treatment. No secondary cracks propagated from the Vickers imprint, which
indicates that the whole load was transferred to the radial cracks, allowing an accurate estimation of
the fracture toughness (Kjc). The same result was observed for all the other indentations.

Figure 3. Examples of Vickers indentations on the Co,ZrSn (panel a and b) and Co,HfSn (panel ¢ and
d) alloys before (a,c) and after (b,d) light polishing.

Several polishing cycles were performed until the Vickers imprints disappeared (not shown), and
also in these cases, no median cracks were observed.

It is possible to distinguish between the two types of cracks from the ratios ¢/ or [/a (where c is the
length of the cracks from the center of the indent to their tip, a is half of the indentation diagonal, and !
is the length of the crack measured from the corner of the indent). Being ¢ = a + I, it turns out that ¢/
and /a are linked by the following relationship [/a = (¢/a) — 1. According to Refs. [23] and [26], when
c/a <2.5 (or l/la <1.5), the crack should be classified as Palmqvist. Other studies [27,28] fix the upper
limit of Palmqvist cracks for values of [z around 2.5 (or ¢/a < 3.5). The [/a ratio was calculated for both
the alloys and the values obtained are lower than 1.5 in all the cases (see Table 2).

Therefore, in agreement to the micrographic observations, the cracks can be described as
Palmqvist-type, so the fracture toughness Kjc can be evaluated using the Shetty-Wright-Mincer-Clauer
equation [22,29], which in the case of a standard Vickers indenter is

p
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where P is the applied load.

As reported in Table 2, the two alloys exhibit similar mechanical properties, showing a rather
high hardness for metallic compounds and a fracture toughness comparable to those of ceramics [30].
These values are close to those generally exhibited by half Heusler alloys [31], so they can be considered
suitable for application in devices.

Table 2. Average values of //a ratios, Vickers hardness, and fracture toughness Kjc for the Co,ZrSn and

Co,HfSn alloys.
Alloy Hardness (HV) la Kjc (MPa-m*2)
CoyZrSn 903 + 31 1.42 2.07 £0.23
Co,HfSn 899 + 26 1.41 2.06 £0.14

3.3. Temperature Dependence of Electrical Conductivity, Seebeck Coefficient, and Power Factor

The trends of the electrical conductivity (o), Seebeck coefficient (S), and power factor (PF) of
annealed Co,ZrSn and Co,HfSn ingots as a function of the temperature are shown in Figure 4.
The transport properties were measured imposing a cyclic ramp of temperature in order to ensure the
thermal stability of the samples and the reproducibility of the results under thermal cycling. Since no
hysteresis is observable between heating and cooling, it is confirmed that the specimens are stable and
the outputs are reproducible. Values previously obtained for Co,TiSn [14] are reported for comparison.
It should be noted that the values measured in this work refer to samples containing metallic secondary
phases (i.e., CopZr and Co,Hf) [32], which likely tend to increase the electrical conductivity and lower
the absolute value of the Seebeck coefficient with respect to the corresponding single-phase materials.

Figure 4a shows that the electrical conductivities of CoyZrSn and Co,HfSn are quite similar to
each other. At room temperature (298 K), electrical conductivities values of 4196 S/cm and 4476 S/cm
are measured for Co,ZrSn and Co,HfSn, respectively. Since for this class of compounds, the Curie
point can be determined measuring the point at which o changes its slope [14], T¢ values of 465 K and
426 K have been obtained for CoyZrSn and Co,HfSn, respectively. The electrical conductivity decreases
almost linearly as a function of the temperature until T¢ is reached, where it exhibits the lowest value,
namely 2982 S/cm for CopZrSn and 3046 S/cm for Co,HfSn. After Tc, the electrical conductivities
show a slight increase with the temperature, until values of 3235 S/cm and 3267 S/cm are observed
for CopZrSn and Co,HfSn, respectively, at 778 K. Considering these trends, it is possible to observe
that the materials show metallic-like behavior at temperatures lower than T, whereas the electrical
conductivities switch to a semiconductor-like behavior at higher temperatures. This is a consequence
of the ferromagnetic—-paramagnetic transition, which strongly influences the electronic DOS of the
alloys. These results are in good agreement with those reported by De Souza et al. [13]

The Seebeck coefficient of both alloys is shown in Figure 4b as a function of temperature. It is
negative as in the case of Co,TiSn [14], indicating that the major charge carriers are electrons (n-type).
At 298 K, the values of S are —9 uV/K and —13 puV/K for Co,ZrSn and Co,HfSn alloys, respectively.
The absolute values of S of two alloys show a linear increase from room temperature to Tc. At higher
temperatures, the values of S settle on a plateau at approximately —34 uV/K and —38 uV/K for CopZrSn
and Co,HfSn samples, respectively. As reported for Co,TiSn and other types of compounds [14,33,34],
a linear increase of Seebeck coefficient followed by a constant value above the Curie temperature can
be related to a steady position of the Fermi level over an extended range of temperature.

The behavior of the power factor (PF = S20) as a function of temperature is similar for the two
alloys, as shown in Figure 4c. Between room temperature and T, the PF of the two alloys increases as a
function of temperature. Above T, the PF values for both alloys reach a plateau, which is maintained
up to 778 K. The observed behavior strongly reflects the trend of the Seebeck coefficient, which
actually gives the main contributions to PF. At room temperature, values of 0.026 mW-m~-K~2? and
0.068 mW-m~1.K~2 are observed for S, while at 778 K, they show a plateau value of 0.38 mW-m™~1-K~2
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and 0.47 mW-m~1-K=2 for Co,ZrSn and Co,HfSn samples, respectively. In most of the thermoelectric
materials, the temperature dependence of the power factor shows a peak value in a narrow temperature
range (approximately 100 K) [35], leading to a less efficient conversion when large temperature
gradients are imposed. In the case of Cop,ZrSn and Co,HfSn alloys, the extension of the power factor
plateau across a wider temperature range (200-300 K) would allow obtaining optimal conversions also

when temperature gradients of hundreds of degrees are used.

4600
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Figure 4. Electrical conductivity (a), Seebeck coefficient (b), and power factor (c) of the Co,ZrSn and
CoyHf5Sn alloys. The transport properties of Co,TiSn are shown as a comparison [14].
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3.4. Effect of Composition on Electrical Conductivity, Seebeck Coefficient, and Power Factor

In the case of homogeneous solid solutions, the thermoelectric properties can be modulated
on the basis of the fraction of the substituting elements. For example, the substitution effects are
deeply known for the Fe, VAl and Fep VAl-related FH compounds [36-39]. In fact, it is known that in
multi-substituted Fe-based FH alloys, where the V atoms are replaced with isoelectronic elements
(Nb and Ta), the thermoelectric performances result generally enhanced. The properties of the Fe, XZ
alloys can then be finely tuned by introducing specific quantities of substituents; therefore, they can be
considered highly versatile compounds [37,38]. Thus, the implementation of these strategies on the
Co-based FH alloys would be a considerable step forward in the application of this class of materials.

Potentially, isoelectronic substitution of X in Co,XSn (X = Ti, Zr, Hf) might lead to a complete
solubility over the whole compositional range, such as in (Zr,Hf)NiSn half-Heusler compound, or to
partial solubility in a limited compositional range, such as in (Ti,Zr)NiSn and (Ti,Hf)NiSn half-Heusler
alloys [40].

An overview of the transport properties measured at 673 K for the series of Co,X5n alloys (X = Tj,
Zr, Sn) is reported in Table 3 and they are shown as a function of the atomic number of X in Figure 5.
Data for the CopTiSn compound have been taken from Ref. [14]. As far as the Seebeck coefficient is
concerned, Co, TiSn shows the highest absolute value of about 50 uV/K after T, while for Co,HfSn and
Co,ZrSn compounds, values equal to 38 pV/K and 34 nV/K, respectively, can be observed. However,
when the electrical conductivity is taken into account, Co,TiSn is the compound with the lowest o,
while CopHf and CopZrSn display similar values of 3153 S/cm and 3214 S/cm, respectively. This leads
to power factor values of 0.71 mW-m~ K2, 047 mW-m~1-K=2 and 0.38 mW-m~1-K~2 for Co,TiSn,
CopHfSn, and Co,ZrSn compounds, respectively. All these values are quite high for metallic materials.

Table 3. Transport properties and Curie temperature of the Co,XSn (X = Ti, Zr, Sn) series of full-Heusler
alloys. All properties are reported at 673 K. T¢ is the Curie temperature, S the Seebeck coefficient, o the
electrical conductivity, and PF is the power factor.

Alloy Tc (K) S (uV/K) o (S/cm) PF (mW-m~1.K~2)
Co,TiSn [14] 360 =50 2851 0.71
CoyZrSn 465 -34 3157 0.38
Co,HfSn 426 -38 3214 0.47

Considering Co,TiSn and Cop,HfSn, which respectively show the largest Seebeck coefficient
and electrical conductivity in the series, as end members, we could expect that if Ti is progressively
substituted by Hf, the absolute value of the Seebeck coefficient would decrease, while the electrical
conductivity would increase. As suggested by Figure 5d, the substitution of Ti with Hf would shift the
Curie temperature at higher values, similarly to Co,TiZ (Z = Si, Ge, Sn), where a fine tuning of T¢ can
be achieved by substituting the Z atom [14]. An increasing value of T¢ can be useful in spintronics
and spin-caloritronics applications, where it is desirable to have ferromagnetic materials even at high
temperatures [10].
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Figure 5. Trends of the transport properties (a): Seebeck coefficient; (b): electrical conductivity; (c):
power factor) at 673 K, and Curie temperatures (d) of the Co,XSn (X = Ti, Zr, Hf) series of full-Heusler
alloys as a function of the atomic number of the X element.

4. Conclusions

In this work, the CopZrSn and Cop,HfSn full-Heusler compounds were synthesized by arc melting
and characterized from the structural and microstructural point of view. Vickers indentation allowed
measuring the microhardness and deriving the fracture toughness, Kjc. Finally, the Seebeck coefficient
and electrical conductivity were measured here for the first time. Both the alloys were obtained with
sufficiently high purity as as-cast materials. The almost invariance of the relative abundances of
phases after annealing reflects that the equilibrium is reached directly by solidification of the melt.
The presence of small quantities of secondary phases, as previously reported by other studies [12],
can be explained by the observed slight deviation of the samples from the nominal stoichiometry.
The two alloys show high hardness (about 900 HV) and fracture toughness typical of ceramics (about
2 MPa-m'?2). The transport properties of Co,ZrSn and Co,HfSn were measured for the first time.
The Seebeck coefficient values are negative for both the alloys across the entire range of temperature
explored (i.e., from room temperature up to 778 K), indicating an n-type behavior where electrons are
the major charge carriers. For both the alloys, the absolute value of the Seebeck coefficient increases
almost linearly between room temperature and the Curie temperature and shows a constant plateau
after Tc instead of the typical peak shape. No sign of hysteresis was shown after thermal cycling,
indicating the good thermal stability of the alloys in the considered temperature range. Concerning
the electrical conductivities, both the compounds are found to behave similar to metals before T, and
similar to semiconductors after Tc; furthermore, the values of o set in almost constant plateaus at
temperatures sufficiently higher than the Curie point. The power factor of the alloys also exhibits a
quite linear increase, followed by a constant ceiling, reflecting the trends of the Seebeck coefficients that
are the dominant contributors to the power factor. Taking into account the information available in the
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literature for the Co,TiSn compound, we ordered the transport properties of the CopXSn (X = Ti, Zr, Hf)
family of full-Heusler compounds. While Co,ZrSn and Co,HfSn show larger electrical conductivities,
Co,TiSn shows a larger absolute value of the Seebeck coefficient. Thus, Co,TiSn shows the largest
power factor in the series. The possible effects of the substitution of Ti with Hf on the electronic
transport properties were discussed on the basis of the observed experimental trends.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/10/5/624/s1,
Figure S1: XRD patterns and Rietveld refinements of the Co,ZrSn and Co, HfSn as-cast and annealed alloys, Figure
S2: Backscattered electrons SEM images of the Co,ZrSn as-cast and annealed ingots, Figure S3: Backscattered
electrons SEM images of the Co,HfSn as-cast, and annealed alloys.
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