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Abstract: The local fatigue strength within the aluminium cast surface layer is affected strongly by
surface layer porosity and cast surface texture based notches. This article perpetuates the scientific
methodology of a previously published fatigue assessment model of sand cast aluminium surface
layers in T6 heat treatment condition. A new sampling position with significantly different surface
roughness is investigated and the model exponents a1 and a2 are re-parametrised to be suited for
a significantly increased range of surface roughness values. Furthermore, the fatigue assessment
model of specimens in hot isostatic pressing (HIP) heat treatment condition is studied for all sampling
positions. The obtained long life fatigue strength results are approximately 6% to 9% conservative,
thus proven valid within an range of 30 µm ≤ Sv ≤ 260 µm notch valley depth. To enhance
engineering feasibility even further, the local concept is extended by a probabilistic approach invoking
extreme value statistics. A bivariate distribution enables an advanced probabilistic long life fatigue
strength of cast surface textures, based on statistically derived parameters such as extremal valley
depth Svi and equivalent notch root radius ρi. Summing up, a statistically driven fatigue strength
assessment tool of sand cast aluminium surfaces has been developed and features an engineering
friendly design method.

Keywords: cast aluminium; fatigue strength assessment; surface layer porosity; areal roughness
parameter; hot isostatic pressing; extreme value statistics; probabilistic long life fatigue strength

1. Introduction

For fatigue strength assessment of metallic castings in mechanical engineering the designer has to
consider a manufacturing process based on local material properties such as shrinkage pores or surface
texture based notches. Neglecting the effect of defects on fatigue strength will result in oversizing of
mechanical components to maintain globally sufficient component safety. As nowadays lightweight
construction demands and sustainable designs are encouraged, aluminium sand cast components
are often utilised which enable complex geometries and thus support significant weight savings
of up to 50% [1]. However, it is well known that aluminium castings inherit both internal casting
defects, particularly shrinkage pores, as well as surface texture related micro and macro notches
driven by the surface geometrical structure (SGS), affecting the local fatigue strength. Therefore,
applicable assessment methodologies, considering these local influences, are an advantageous tool in
fatigue design.

Metals 2020, 10, 616; doi:10.3390/met10050616 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-9953-834X
https://orcid.org/0000-0003-2728-9978
https://orcid.org/0000-0002-3530-1183
https://orcid.org/0000-0003-4817-4432
https://orcid.org/0000-0001-5308-762X
http://dx.doi.org/10.3390/met10050616
http://www.mdpi.com/journal/metals
https://www.mdpi.com/2075-4701/10/5/616?type=check_update&version=2


Metals 2020, 10, 616 2 of 26

In terms of porosity effect on the cast component fatigue strength various studies have been
conducted, thoroughly investigating crack growth behaviour [2–5] as well as statistical description
taking into account the effect of pore size, location and shape [6–21]. Therein, fatigue assessment
concepts like the

√
area-approach of Murakami [22], or threshold-based concepts like the concept of

Kitagawa and Takahashi [23], are frequently applied due to their engineering feasible applicability.
Defect size and spatial location within the components are thereby stated to be the driving forces in
terms of fatigue strength reduction effects. Other studies [15,16,22] point out that surface defects are
more critical than internal ones, which emphasises the crucial influence of the cast surface layer and its
defect distribution on the local fatigue resistance.

Aside from internal inhomogeneities, the surface texture, or surface roughness, plays a decisive
role on cast fatigue strength. Surface pits, caused by the SGS, basically act as micro and macro
notches and increase the stress concentration, thus reducing the local fatigue strength. Therefore,
cast mechanical components are often additionally surface finished by machining or by polishing,
in order to counteract the detrimental surface roughness effect. Thus, many studies contribute to
the surface roughness effect on fatigue strength, investigating machined surfaces obtaining periodic
surface textures [24–29]. As in the literature [30,31] various analytical equations are introduced to
characterise geometrical notches, these formulations are adapted to assess machined [32–35] or even
cast [36–38], and more recently also additively manufactured [39] surfaces.

As stated in [37,38] for cast surfaces, areal roughness parameters should be used in order to
characterise the surface texture thoroughly. The areal roughness evaluation methodology published by
the authors of [38] enables such a holistic characterisation of cast, as well as of additively manufactured,
surface textures. The presented sub-area analysis provides additional information about local
roughness parameters, which focusses on more distinctive, and therefore more fatigue crack-initiating
surface pits. A modification of Peterson´s stress concentration factor [31] and its application on
investigated sand cast aluminium surfaces lead to an engineering feasible areal fatigue assessment
approach, as presented in [36]. The modified stress concentration factor Kt,mod, as introduced in [36],
is given in Equation (1) and utilises the local surface pit depth Svlocal , the mean value of the crack
initiating cast surface pit depth Svrev and an equivalent notch root radius ρ. Taking the local notch
sensitivity into account, the surface fatigue notch factor K f ,s can be subsequently evaluated. Figure 1
depicts the result of an exemplary areal fatigue assessment for a sand cast surface layer, leading to
sub-area based K f ,s values. The red cross marks the technical crack initiation point of the tested sample,
evaluated by means of fracture surface analysis. The presented concept also features the assessment
of surface layer porosity, that is, pores directly beneath the surface which are partly broached by the
surface texture and therefore interact with the surface roughness based notches.

Kt,mod = 1 + 2
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Svrev

)a1 · Svrev
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Figure 1. Exemplarily mapping of the surface fatigue notch factor K f ,s with 1 mm × 1 mm sub-areas.
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This methodology may be validated even further by additional datasets, which should provide
significantly different cast surface textures in order to broaden the applicability of the method towards
a wider range of surface roughness values. In addition, as this areal sand cast surface characterisation
method is based on local roughness values, the fatigue designer has to have knowledge about these
manufacturing process dependent values. However, such as localised information is in general not
available for cast surface structures. Therefore, this concept is extended by a probabilistic approach
as previously recommended in [36]. Moreover, the effect of sub-area size ought to be investigated to
cover miscellaneous evaluation area magnitudes as well.

Therefore, this paper scientifically contributes to the following key parts.

• Extension of the assessment methodology presented in [36] utilising an additional aluminium
sand cast surface exhibiting a significantly varying surface roughness structure.

• As-cast surfaces in the T6 heat treatment condition were the main research target in [36];
the applicability of the assessment model to cast specimens with additional hot isostatic pressing
(HIP) heat treatment is evaluated.

• Robustness study of the presented method in terms of sub-area magnitude or sample size and
their effect on the evaluated statistical distribution.

• Statistical characterisation of the sand cast surface texture and subsequently probabilistic
evaluation of the manufacturing process related surface fatigue strength as design
recommendations of cast components.

2. Investigated Material

The investigated aluminium alloy‘s EN numerical designation is EN AC-46200. The gravity sand
cast components are crankcases, manufactured by means of the core package system (CPS) casting
process [40–43]. For details about the specimen geometry and the nominal chemical composition
of the material the authors refer to the work in [36] as reference. As an additional different surface
roughness texture is investigated for validation in this study, the specimen series with this new
sampling position is denoted by P2, while the original specimen series investigated in [36] are labelled
as P1 in the following. Beside the variation of the specimen position the effect of an additional HIP
heat treatment (HIP+T6), as also studied in [44], is investigated and compared to T6 heat treatment
condition. The HIP+T6 specimens are subsequently labelled as HIP. Due to the HIP process, shrinkage
pores within the bulk material shall be closed and its effect on the surface layer will be studied.
Typically applied HIP parameters for aluminium alloys [44–48], such as temperature T, pressure p and
time t, are given in Table 1.

Table 1. Typical hot isostatic pressing (HIP) parameters for Al alloys [44–48].

T [◦C] p [MPa] t [h]

510–521 103 2–6

Metallographic analysis revealed that the HIP specimens do not differ in microstructure in terms
of secondary dendrite arm spacing (DAS) in comparison to T6 specimens, thus matching the findings
in [49,50]. The DAS has been evaluated as described in [51], and the mean values of sampling position
P1 and P2 in T6 as well as HIP heat treatment condition are listed in Table 2. For both, T6 P1 (Figure 2b)
and HIP P1 (Figure 2a) a mean DAS of about 26 µm was evaluated. For specimens at sampling position
P2 a slight DAS gradient is observable, see Figure 2c. This is caused by the increased solidification
rate within the surface layer at this sampling position. Near the surface a DAS of about 21 µm was
measured, which slowly increased to about 28 µm at a distance of 9 mm measured from the cast
surface. This matches the results of Aigner [49], investigating the bulk material of EN AC-46200
at sampling position P2. Although in Figure 2c a specimen with T6 heat treatment is presented,
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the HIP micostructure in terms of DAS is identical as the process only affects the bulk material porosity.
However, as DAS does not affect the fatigue strength in the presence of defects according to [6,13],
differences in DAS can be neglected.
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Figure 2. Microstructure of (a) HIP P1, (b) T6 P1 and (c) T6 P2.

Table 2. Evaluated mean dendrite arm spacing (DAS) for T6 and HIP at P1 and P2.

Measurement Position T6 P1 HIP P1 HIP P2 T6 P2 [49] HIP P2 [49]

surface DAS [µm] 27.3 26.5 21.4 - -
bulk DAS [µm] 26.1 25.1 28.8 27.5 27.2

The tested material properties of both HIP and T6 heat treatment are opposed in Table 3. While the
ultimate tensile strength Rm as well as Vickers hardness HV10, Young‘s modulus E and yield strength
RP0.2 only differ slightly, the elongation at rupture A is significantly increased, which matches the
findings in [20,44].

Table 3. Tested material properties of EN AC-46200 with T6 and HIP heat treatment.

Alloy HV10 [-] E [MPa] Rm [MPa] RP0.2 [MPa] A [%]

EN AC-46200 T6 123 74,300 300 285 0.51
EN AC-46200 HIP 124 74,600 320 260 1.78

3. Experimental

Within this work, fatigue tests were performed on HIP sand cast surfaces at sampling positions P1
and P2. Although three test series have been experimentally investigated (HIP P1, HIP P1(2), HIP P2),
only two of them (HIP P1 and HIP P2) will be presented in detail to enhance clarity. However, fatigue
test results such as S/N-parameters are evaluated and tabulated for all three investigated series.

All testing series possess cast surfaces and the fatigue tests were performed identically to the
procedure described in [36] utilising a Rumul Cracktronic®. Due to the load stress ratio of R = 0
under bending load the highly tensile-stressed region of the specimen is set to the cast surface layer.
The S/N-curves are statistically evaluated following the procedure applied in [36]. Figure 3 depicts
the nominal bending S/N-curve of the HIP test series at the new sampling position P2, possessing a
significantly reduced surface roughness, as discussed in Section 5. Within all S/N-figures, the stress
amplitude σa is normalised to the material‘s near defect-free long life fatigue strength σLLF,0. As stated
in [36], the value of σLLF,0 was experimentally evaluated by means of HIP specimens with machined
and subsequently polished surface condition. Thus, the observed fatigue strength is unaffected both
from porosity effect and surface roughness effect.
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Figure 3. Normalised S/N-curve of the specimen series HIP P2.

The crack initiation cause is marked red if the crack initiated at a combination of a surface pit and
a micropore located directly within the surrounding area (Cast-M), and blue if only the cast surface
texture (Cast-S), that is, surface roughness, caused technical crack initiation. Figure 4 exemplary
depicts the fractographically evaluated crack initiating defects of Cast-S and Cast-M specimens of the
HIP P1 and HIP P2 testing series by means of scanning electron microscopy (SEM). Fractographic
images of HIP P1 are also representative for the T6 P1 testing series of [36]. For almost all Cast-M
specimens shrinkage porosity was observed to participate in crack initiation. Only few cases revealed
gas pores, bifilms or intermetallic phases to be critical. In contrast with the locations of the pores of
Cast-M P1 specimens, those of Cast-M P2 rarely have been broached, but were found to be located
about 10 µm to 30 µm beneath the surface. This may be caused by the elevated solidification rate
within the surface layer at this sampling position. For Cast-n.d. specimens, no distinct crack initiation
cause could be clearly determined by fracture surface analysis, which is why they are not subsequently
taken into account for validation.

The S/N-curves (Figures 3 and 5) are given with their 90% and 10% probability of survival and
the stress scatter index TS,1e7 is calculated according to [52] by means of Equation (2) at ten million
load cycles. The evaluated S/N-curve provides in Table 4 the value of the inverse slopes k1 and k2,
which is five times k1 [53], the transition knee point NT and the normalised long life fatigue strength
σa,Ps50 as well as the stress scatter index TS,1e7.

TS,1e7 = 1 :
σa(Ps = 10%)

σa(Ps = 90%)
(2)

Figure 5 depicts the evaluated S/N-curve of the HIP specimen series at sampling position P1,
which is similar to the original sampling position presented in [36]. The coloration of the markers is
the same as in Figure 3. The accompanying fracture surface analysis revealed great similarity to those
samples of the T6 P1 testing series in [36]. As the evaluation of the long life fatigue strength of the HIP
P1 specimen series by means of the arcsin

√
p method [54] would lead to a smaller scatter within the

long life region compared to the finite life region, the normalisation process of S/N-curves was applied
as proposed in [52,55], and also accordingly executed in [36]. The evaluated S/N-curve results are
listed in Table 4 as well. Additionally, within Figure 5 the evaluated long life fatigue strength σa,Ps50 of
the T6 testing series with cast surface, as sketched in [36], is highlighted by the purple dash-dotted line
for comparison.
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100 µm (a) HIP P1 Cast-M 100 µm (b) HIP P1 Cast-S

100 µm (d) HIP P2 Cast-S100 µm (c) HIP P2 Cast-M

Figure 4. Defect cases: (a) HIP P1 cast-M, (b) HIP P1 Cast-S, (c) HIP P2 Cast-M and (d) HIP P2 Cast-S.
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Figure 5. Normalised S/N-curve of the specimen series HIP P1.

At this point, it must be stated that the fact that Cast-M specimen fatigue results are similar to
Cast-S specimens does not imply that surface layer porosity can be neglected. Both surface layer
porosity and the cast surface texture showed similar fatigue results if the are evaluated independently.
Thus, they both affect the fatigue strength in a comparable manner. However, if the cracks initiate
combinatorial, as observed in Cast-M specimens, see Figure 4a,c, they lead to similar fatigue test
results even if the defects are smaller. Summing up, smaller surface layer inhomogeneities and less
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detrimental surface texture combinatorial considered may be more crucial than a single, distinct
surface pit. Therefore, they may be treated in a combined manner. For more information regarding the
combinatorial failure mechanism see the work in [36].

Table 4. Evaluated results of the fatigue tests of the investigated specimen series.

Specimen Series k1 [-] k2 [-] σa,Ps50 [-] NT [-] TS,1e7 [-]

T6 P1 [36] 3.97 19.85 0.435 927.960 1:1.290
HIP P1 4.14 20.68 0.452 779.323 1:1.168
HIP P1(2) 3.29 16.48 0.411 734.094 1:1.150
HIP P2 5.11 25.56 0.614 641.770 1:1.167

HIP Effect on the Cast Surface Layer

While the HIP process leads to significantly enhanced fatigue strength results in terms of bulk
material testing [45,50,56–59], this effect was not present for any of the investigated HIP cast surface
series. While for one HIP P1 testing series the evaluated long life fatigue strength σa,Ps50 was above the
T6 value (as presented in Figure 5), the other HIP P1(2) testing series the σa,Ps50 was slightly lowered,
but both within the 90% and 10% stress scatter band of HIPped samples. In terms of Cast-S specimens,
it was found that the evaluated surface roughness values, and therefore the estimated fatigue strength
by means of the introduced fatigue assessment model, was comparable to those of the cast T6 P1 series.
Therefore, it is reasonable that the Cast-S points of the HIP P1 specimens in Figure 5 fit to the cast T6 P1
S/N-curve. However, regarding the Cast-M specimens, one may expect a significantly higher fatigue
strength due to closed shrinkage porosity. Investigations on metallographic T6 specimens revealed a
higher porosity within the surface layer, especially up to a certain depth, see Figure 6. Almost without
exception these were shrinkage pores evolving during the solidification process. The left sub-figure
shows the detected micropores, while on the right diagram the evaluated degree of porosity is plotted.
By means of a user defined routine, pores are detected on a metallographic specimen, which have
been captured by means of a digital optical microscope. The degree of porosity was then evaluated by
counting the black pixels of the picture, which have been determined as pores, in relation to the white
pixels within the same horizontal line. Subsequently, mean values of the degree of porosity have been
calculated within a vertical range of 250 µm. It is clearly recognisable that the highest degree of porosity
occurs in about 1 mm to 2 mm depth measured from the cast surface. To achieve information about
the spatial distribution of the micropores, the metallographic specimen was subsequently grinded,
thereby removing about 100 µm, and subsequently evaluated again. This methodology hast been
carried out several times for four T6 specimens, resulting in 140 metallographic analysis in total.
It emerged that the trend of degree of porosity, as depicted in Figure 6, is representative for the T6 P1
specimens series. An increased degree of porosity near the cast surface of AlSi castings was also stated
by Leitner et al. [60]. This increased porosity formation may be reasoned by the oxide entrainment
mechanism as a result of turbulent mould filling, see [61–63]. However, a comprehensive insight in the
degree of porosity can be more properly evaluated by means of XCT-scans [21,60].

The same investigations and evaluation procedure have been conducted for four HIP specimens,
again resulting in 140 metallographic analysis slices. A representative result is depicted in Figure 7. It is
clearly recognisable, that the HIP process lead to significantly reduced, or even partially completely
suppressed porosity within the bulk material. Only within the first mm in depth, porosity was still
observable whereat the HIP process did not close these micropores. As this is within the highly stressed
region of the specimen, crack initiation is still caused by those surface roughness and microporosity
mixed cases (Cast-M), thus resulting in similar long life fatigue strength values as previously discussed.
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1000 µm

Figure 6. Detected pores and degree of porosity of an exemplary cast surface T6 P1 cross section.

1000 µm

Figure 7. Detected pores and degree of porosity of an exemplarily cast surface HIP P1 cross section.

The comparably high possibility of observing a mixed (Cast-M) defect case becomes visible by a
comparison of the cast surfaces in T6 and HIP condition by means of SEM. Figure 8a,b depicts SEM
images of the cast T6 surface at sampling position P1. Both sub-figures show that the cast surface is
frequently broached by cavities, or shrinkage pores. Those cavities can be found both within surface
pits as well as at surface peaks. In Figure 8b, even the dendritic structure of the α-phase is observable.
Thus, a relatively high chance of crack initiation occurring at a combination of both surface pits due to
the surface roughness and surface layer porosity is present.

In Figure 9, the SEM images of the investigated cast surfaces in HIP condition are illustrated for
both sampling position P1 and P2. For cast surface texture comparison purpose, Table 5 lists the mean
values Samean of the global Sa roughness parameter of all specimens, in respect to the sampling position.
Additionally, the 10–90% scatter values are given. The cast surface of P1 (Figure 9a) is basically identical
to the cast surface in T6 heat treatment condition presented in Figure 8a. Especially broached pores are
again observable in a similar amount. Those cavities and dendritic canals, created by the solidification
process, can reach down to about 1 mm in depth in some cases, as those micropores can not be closed
by the HIP process. This matches the statement of Atkinson [56] on surface connected porosity. Thus,
it can be stated that if, subsequently to the casting process, the machined surface finish is conducted
with the aim of removal of surface near porosity, the process has to cover a certain depth. For the
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exemplified case of Figure 7, removing only 0.5 mm of the cast surface would lead to a broached pore.
As broached pores essentially decrease the local fatigue strength as well, such a machining process
would not have the intended favourable fatigue effect and lead to similar fatigue strength results as
those including cast surface, as presented in [36]. For the cast surface in HIP condition at sampling
position P2, see Figure 9b, no broached pores were recognisable on the surface. This matches the
results of the HIP P2 fracture surface analysis, where predominantly surface layer pores have been
observed which are not broaching the cast surface, but are located about 10 µm to 30 µm beneath.
As already mentioned, this might be caused by the significantly increased solidification rate at this
sampling position P2 compared to P1.

100 µm(a) Cast surface in T6 condition 10 µm(b) Increased magnification of the surface

Figure 8. SEM image of the specimen series T6 P1 investigated in [36].

200 µm(a) Cast surface in HIP condition; P1 100 µm(b) Cast surface in HIP condition; P2

Figure 9. SEM image of the specimen series (a) HIP P1 and (b) HIP P2.

Table 5. Mean value Samean of the global Sa values with its 10–90% scatter.

Roughness Parameter T6 P1 HIP P1 HIP P2

Samean [µm] 17.9 ± 6.4 18.7 ± 8.0 9.3 ± 3.6

4. Fatigue Assessment Model

This section contributes to the alteration of the fatigue assessment model as originally presented
in [36] on HIP surfaces as well as on sampling position P2, which possesses a significantly different
surface roughness. Thereby, the model‘s application range in terms of surface roughness parameter
values is studied.

4.1. Modification of the Model

First, the local roughness values Svlocal and ρ at the crack initiation point as well as the modified
parameter Svrev were evaluated. Originally, Svrev was introduced as the mean value of crack initiating
surface pits and it has been substituted as a statistical parameter, based on the most critical surface pits.



Metals 2020, 10, 616 10 of 26

It represents the value with 50% probability of occurrence of the five biggest Sv sub-area valley depth
distribution (Svi GEV), which is referenced in detail within Section 5. It was found, that the in [36]
presented exponents of a1 = 0.6 and a2 = 2 caused too conservative results for Cast-S specimen failures
taken from sampling position P2. Thus, these parameters have been adapted to a1 = 0.4 and a2 = 1.8
instead, to improve the range of applicability of the basic assessment concept.

For the Cast-M specimen failures, the introduced neural network (NN) in [36] has been adapted
to only four neurons and four input variables. The pore location and elongation parameters
emin, emax and α have been replaced by the statistical roughness value Svrev. Thus, the overall condition
of geometry dependent distinct roughness values is now considered by Svrev. Therefore, only the defect
size
√

area, the local maximum pit height Svlocal , the equivalent notch root radius ρ and the statistical
pit depth with 50% probability of occurrence Svrev act as input variables. The network was further
trained by four specimens of the HIP P2 testing series in addition to the twenty-five T6 P1 specimens
from [36]. The coefficient of determination for the training set was R2 = 0.988, resulting in the interaction
coefficients ψ, listed in Table 6. Therein, the mean values ψmean as well as its standard deviation ψstd
and the minimum ψmin and maximum ψmax values are listed in detail. The individual interaction
coefficient ψ of each Cast-M specimen is subsequently used within Equation (4) for calculation of
the mixed fatigue strength reduction factor K f ,m by taking the fatigue strength reduction factor K f ,p
of surface layer microporosity and the surface fatigue notch factor K f ,s of surface roughness-based
notches as combinatorical defect case into account. K f ,p is calculated by Equation (3), as introduced
in [36].

Table 6. Evaluated interaction coefficients of the NN training series of T6 P1 [36] and HIP P2.

Training Series ψmean [-] ψstd [-] ψmin [-] ψmax [-] Sample Size [-]

T6 P1 [36] 0.598 0.034 0.547 0.674 25
HIP P2 0.420 0.025 0.384 0.473 4

K f ,p =
1.6 · HV

C1 · HV+C2
(
√

area)1/6

(3)

K f ,m = (K f ,s · K f ,p)
ψ (4)

4.2. Validation of the Model

After modification of the concept in order to improve the overall performance, the model was
validated by means of the HIP P2 Cast-S data as well as the remaining two Cast-M specimens,
which have not yet been taken into account for training of the modified neural network. The fatigue
assessment result is depicted in Figure 10. The fatigue strength is normalised by the material‘s near
defect-free long life fatigue strength σLLF,0, which was evaluated at a load stress ratio of R = 0 under
bending load at ten million load cycles. The black dashed line marks the long life fatigue strength with
50% probability of survival, taken from the fatigue testing, see Figure 3. The fatigue strength values for
each specimen, received by the fatigue assessment model, are depicted in blue for Cast-S specimens
and in red for Cast-M specimens. Additionally, for each specimen, the experimental fatigue test data
point is extrapolated to one million load cycles and additional plotted into the Figures 10 and 11
represented by σa,1e7. Overall, the fatigue strength assessment is 7% conservative, regarding the fatigue
strength σLLF,∗,Ps50 with a probability of survival of 50% in respect to the experimental fatigue strength
result σa,Ps50. The evaluated fatigue strength σLLF,∗,Ps10 with a probability of survival of 10% is 6.1%
conservative as well. The stress scatter index TS,1e7 of the model results was evaluated by Equation (2).
At this stage, only six specimens from the HIP P2 testing series were available for validation; however,
the model lead to sound fatigue results so far for both, Cast-M specimens, as well as Cast-S specimen,
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where no neural network was involved for prior fatigue strength assessment. The experimental and
model-based fatigue strength results of the validation series HIP P2 are compared in Table 7.

Figure 10. Long life fatigue strength assessment result of the validation series HIP P2.

To prove the fatigue assessment model‘s applicability to HIP-treated cast surfaces even further,
the specimen series HIP P1 was used for additional validation. Figure 11 shows the calculated fatigue
assessment results. Again, Cast-S specimens with crack initiation at a surface pit due to the surface
roughness are marked in blue, and Cast-M specimens representing a combinatorial defect case with
surface roughness and surface layer porosity interaction are marked in red colour. The model‘s long
life fatigue strength at 10%, 50% and 90% probability of survival as well as the evaluated stress scatter
index TS,1e7 and the experimental fatigue strength of the associated S/N-curve σa,Ps50 represented
by the dashed black line, are again diagrammed. Both Cast-S as well as Cast-M specimens are well
assessed, resulting in an overall 9.3% conservative long life fatigue strength design with a probability
of survival of 50%. The stress scatter index increased compared to HIP P2, but still shows sound results
as it is below the value of the associated S/N-curve, see Figure 5. An overview of the validation results
of the HIP P1 series is also given in Table 7.

Table 7 also lists the validation results of the specimens series HIP P1(2) utilising 16 specimens.
Further, as the assessment of Cast-S as well as of Cast-M specimens has been adapted, the validation
data set of [36] with 14 specimens has been re-evaluated and is also given in Table 7, labelled as T6 P1.
Utilising the modified fatigue assessment model, the result of T6 P1 becomes slightly more conservative
compared to the results in [36] and the stress scatter index increased. However, the overall applicability
in terms of sand cast aluminium surface layers with different heat treatment conditions, possessing
cast surface textures and surface layer porosity is confirmed by this comprehensive validations sets.
Summing up, the results of the estimated fatigue strength are about 6% to 9% conservative. Therefore,
the introduced model supports an engineering feasible local fatigue assessment concept, to assess
distinctions in cast surface roughness structures and their effect on cyclic endurance limit.
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Figure 11. Long life fatigue strength assessment result of the validation series HIP P1.

Table 7. Validation series results and re-evaluation of the T6 P1 validation series from [36].

Validation Series Experiment Model Difference Model Sample Size
σa,Ps50 [-] σLLF,∗,Ps50 [-] ∆ [%] TS,1e7 [-] [-]

T6 P1 [36] (re-evaluated) 0.416 0.336 −7.9 1:1.189 14
HIP P1 0.452 0.360 −9.2 1:1.150 17
HIP P1(2) 0.411 0.353 −5.8 1:1.158 16
HIP P2 0.614 0.544 −7.0 1:1.032 6

5. Probabilistic Fatigue Strength Assessment

The proposed surface fatigue assessment model utilises local roughness values evaluated at crack
initiation points, identified by means of fracture surface analyses after fatigue testing. However, in
engineering design, no a priori knowledge about surface texture is available, instead probabilistic
values of the surface layer act as link to the manufacturing process dependent surface layer properties.
Moreover, the random variable Svrev, a parameter based on the distribution of distinctive Sv sub-area
values, is an important factor for an appropriate long life fatigue strength calculation. Svrev should be
evaluated with accurateness, necessitating a statistically based recommendation about the sample size
of surface measurements.

Thus, this section contributes to the probabilistic assessment of crack initiating surface roughness
pits. Previously conducted experiments on Cast-S specimens revealed that for mostly all cases, crack
initiation occurred at one of the five deepest surface pits, respectively, one of the five highest Sv values.
However, not strictly the maximum value Svmax of all evaluated sub-areas initiates a crack, as the notch
root radius interacts in terms of notch stress effect. Concluding, the authors suggest to consider the
five highest Sv values of each investigated surface to be representative for statistical surface roughness
effect. Subsequently, these surface valley series of five deepest depths is denoted by Svi with 1 ≤ i ≤ 5.
The following sections discuss the effect of sub-area size, statistical distribution, recommendable
sample size of surface measurements and demonstrate finally a fatigue strength assessment based on
probabilistic surface values.
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5.1. Sub-Area Size Effect

First, for statistical characterisation of cast surface textures based on sub-area values, the required
sub-area size has to be chosen. The effect of the selectable sub-area size is depicted in Figure 12.
It shows the course of the unified mean value of the five deepest surface pits Svi,mean over the sub-area
size. The five deepest surface pits are normalised against the ultimate valley depth of the surface
Svmax. Four randomly selected surfaces have been investigated covering both T6 as well as in HIP heat
treatment condition, subsequently labelled as specimens 1 to 4. To study the effect of sub-area size,
the surface structures are evaluated for the same scope of each specimen. The three pictures (panels
(a–c)) within Figure 12 all have the same dimensions and show the same region of the cast surface of
specimen 1. In terms of 1 mm × 1 mm sub-area size (Figure 12c), the roughness pit is covered basically
by a single patch. As originally published in [36], the Sv value of a sub-area size Asub is evaluated
according to Equation (5).

Sv = |min
Asub

z(x, y)| (5)

Thus, the five extremal Svi valley depth values characterise five different surface pits. Comparing
the result to the 0.25 mm × 0.25 mm sized sub-area evaluation in Figure 12a, it is recognisable, that at
least two or more of the five patches now capture the same surface roughness pit in an adjacent manner.
Therefore, no independent statistical description is achieved as the chosen sub-area regions are related.
This effect of increasing characterisation of the same surface pit is also indicated within the diagram
in Figure 12, as the unified ratio suddenly increases from 0.5 mm sub-area side length to 0.25 mm
sub-area side length. Following this trend of continuously decreasing sub-area size, one would end
at a ratio of nearly one, when all five sub-areas reflect the deepest spot within the deepest pit of the
surface by their value. Of course, this sub-area characterisation also depends on the location of the
sub-areas based on the original definition of the surface measurement frame. On the other hand, if the
sub-area size is too big, possible crack initiating pits may get neglected, for example, let us assume
three critical surface pits are close to each and they may be covered by only one pattern instead. Thus,
also not leading to sufficient extreme value characterisation.

Finally, the recommendable sub-area size can also be linked to the sand grain size used in the
mould which are typically within the range of 100 µm to 300 µm according to Campbell et al. [40].
As the sand grain sizes, observable in Figures 8 and 9, are up to several hundred µm, a sub-area side
length of 0.25 mm would be too small to reliable characterise a single surface pit. Taking these findings
into account, the applied sub-area size of 1 mm × 1 mm is an appropriate and recommendable choice
for the investigation of the present sand cast surface textures. At this point it should be mentioned that
the measured surface should cover a large area of the cast surface to obtain enough sub-area entries
reflecting the casting manufacturing process itself. Based on the chosen sub-area size, an amount of at
least 100 patches should be evaluated. Within this study, approximately 240 sub-areas are within the
investigated cast surface area per cast T6 or HIP-treated specimen.
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(a) (b) (c)

Figure 12. Size effect of (a) 0.25 mm, (b) 0.5 mm and (c) 1.0 mm sub-area side lengths.

5.2. Distribution Parametrisation

For statistical analysis, fatigue-initiating defects can be characterised by means of an extreme
value distribution [64]. In terms of limiting extreme value distributions, originally three types have
been defined by Gnedenko [65]: the Gumbel distribution (type 1), the Fréchet distribution (type 2) and
the Weibull distribution (type 3). The applicable type is thereby determined by the distribution of the
basic population from which the extreme value sample has been taken. Jenkinson [66] introduced the
General Extreme Value (GEV) distribution, which covers those three types, and is therefore suitable for
extreme value statistics. The formulation of the cumulative distribution function of the GEV is given
in Equation (6). Therein, δ is the standard deviation (scale parameter), µ is the mean value (location
parameter) and ξ is the shape parameter of the distribution. They are often estimated by means of the
maximum likelihood method [67,68]. Based on the value of ξ, the type of the distribution is assigned,
as the most appropriate GEV type is given by the data itself. Thus, the GEV distribution is frequently
used to statistically describe the crack initiating extremal defect size [7,8,14].

P(X ≤ x) =
∫ x

−∞
exp

{
−
[

1 + ξ

(
y− µ

δ

)]− 1
ξ

}
dy (6)

According, the probability of occurence of an assessment value greater than a chosen threshold
value x. is denoted as.

P(X ≥ x) = 1− P(X ≤ x) (7)

As outlined before, the five highest surface pit depth values Svi are well suited for parametrisation
of a GEV distribution. As both sampling positions as well as the heat treatment of the surface vary, GEV
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parameters are evaluated to characterise each manufacturing process-based surface texture. Within
Figure 13, three examples of GEV distributions are depicted. The green dash-dotted line symbols
the GEV distribution of the T6 P1 validation series, whereas the other two HIP series are marked as
yellow dashed line for sampling position P1 and as black continuous line for sampling position P2.
Additionally, the Svi values of each evaluated surface are plotted within the diagram. The HIP P2 series
showed the lowest extremal values Svi. However, comparing the GEV distributions of the HIP P1 series
and the T6 P1 series at the same sampling position, the HIP P1 series exhibited higher values of Svi
instead. It was observed that the HIP post treatment may affect the extremal Svi distribution but keeps
the basic population mostly unchanged. It should be noted that the population itself is dependent
from the local casting condition and thus no general course of surface valley depth is feasible, but the
extremal values can be well parametrised to reflect the local casting process. Table 8 lists the evaluated
distribution parameters of the Svi GEV distribution as well as the statistical parameter Svrev. The
value Svrev is based on the associated Svi GEV distribution and is calculated as the value with 50%
probability of occurrence (Svrev = Svi(P = 50%)). This characteristic value is subsequently used in the
derived fatigue strength model and characterises the extremal surface pits in a probabilistic manner.

Figure 13. Visualisation of the function P(Svi ≥ y) of the Svi GEV distributions.

Moreover, for a probabilistic fatigue assessment, the distribution of the equivalent notch root
radius ρ has to be evaluated as well. The ρ values are taken from the identical sub-areas as the Svi
values, thus characterising the notch root radius of the five deepest, most critical surface pits, and thus
subsequently denoted by ρi. In order to check for a linear dependency of the population of Svi and
associated ρi, the coefficient of determination R2, which is the squared Pearson correlation coefficient
(SPCC) [69], was calculated as a measure for the strength of an assumed linear relationship. It is
defined as the ratio of the covariance of two random variables A and B to their standard deviations SA
and SB, see Equation (8).

R2(A, B) =
cov2(A, B)

S2
AS2

B
(8)

The results in a coefficient of R2(Svi,ρi) = 0.01, which deduces, almost no dependency between Svi
and ρi. Thus, they are treated as two independent random variables. The evaluated GEV distributions
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of ρi are diagrammed in Figure 14 and the fitted distribution parameters are also listed in Table 8. As,
in terms of targeted fatigue strength, small notch root radii values are more crucial, the probability of
occurrence has to be plotted inversely. Thereby, the T6 P1 series shows the lowest, respectively most
critical notch root radii, while the HIP P2 series seems to possess mostly shallow notch curvatures.

Figure 14. Visualisation of the function P(ρi ≤ x) of the ρi General Extreme Value (GEV) distributions.

Table 8. Statistical parameter Svrev and evaluated GEV distribution parameters of Svi and ρi.

Specimen Series Svi GEV Svrev [µm] ρi GEV

ζ [-] µ [µm] δ [µm] Svi(P = 50%) ζ [-] µ [µm] δ [µm]

T6 P1 [36] −0.22 99.78 43.04 114 0.27 79.26 23.41
HIP P1 −0.45 128.10 51.11 145 0.07 119.43 40.91
HIP P1(2) −0.26 126.15 60.95 148 0.03 84.23 29.90
HIP P2 0.24 45.07 8.94 48 −0.28 228.20 82.94

5.3. Impact of Sample Size

For engineering feasibility it is essential for the design engineer to know how many surfaces
should be assessed in order to receive statistically reliable information about the cast surface texture.
To evaluate an adequate sample size of surface measurements for an assumed basic population, the
following methodical procedure is suggested by the authors. The overall workflow is depicted in
Figure 15, exemplified for the Svi GEV distribution by means of the T6 P1 specimen series. The Svi GEV
distribution of the T6 P1 specimen series, presented in Figure 13, has been already obtained by means of
34 cast surfaces resulting in 170 Svi values in total (five values for each specimen). The evaluated GEV
distribution parameters ζ, µ and δ in Table 8 are subsequently treated as main population parameters
and support the generation of synthetic, random sample sizes. The dataset S1 acts as reference set as it
is based on the original distribution parameters, while the set S2 is randomly derived. Both datasets
are parametrised as GEV distributions, implying a stepwise evaluation of probability of 0.5%, leading
to 200 equally distanced values. The two datasets S1 and S2 are assessed by means of the coefficient of
determination R2.
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Exemplary, let the synthetic sample size be one, and thus five random Svi values will be
generated. This synthetically generated random values simulate new samples and thus are applicable
for comparison. In the next step, the five random Svi values are fitted by a GEV distribution resulting
in another ζ2, µ2 and δ2 of the synthetic sample set. Based on that distribution, the synthetic dataset
S2 is computed by calculation of n = 200 Svi values at equally distanced, stepwise (0.5% per step)
increased probability of occurrence (0.5% ≤ P ≤ 99.5%). Finally, the two datasets S1 and S2 can be
opposed and assessed by the value of R2(S1, S2). If, in this exemplary case, the GEV distributions of S1
(based on the originally evaluated basic population inheriting a quantity of 34 samples) and S2 (based
on only one sample) would match, the coefficient of determination would be one. To obtain statistically
reliable correlation measures, the procedure of randomly calculating and subsequent evaluation of S2
is repeated several times. In detail, this R2(S1, S2) evaluation procedure has been conducted 100 times
for sample size one before the sample size is stepwise increased as well.

T6 P1
Svi- GEV

random

ξ, μ, δ

Synthetic
sample size

GEV

fitting
ξ2, μ2, δ2

n = 200

ξ, μ, δ
S1 S2

R2(S1, S2)

n = 200

ξ2, μ2, δ2

Figure 15. Workflow of the R2(S1, S2) evaluation exemplified for the T6 P1 Svi-GEV distribution.

The result of the sample size effect is depicted in Figure 16a for the distribution of Svi of the T6
P1 specimen series. Therein, the mean values of the coefficient of determination R2

mean(S1, S2) are
given for each sample size. Furthermore, the area of R2(S1, S2) values with a probability of occurrence
higher than 10% is highlighted by the red area. Once the user-defined criteria (R2(S1, S2) with
P ≥ 0.1)≥ 0.99 is fulfilled, a satisfying correlation between the sets S1 and S2, respectively, between
the GEV distributions of the original and the synthetic samples, is achieved. This area is marked in
grey within Figure 16a and was reached for sample size of nineteen in this case. It is clearly visible that
the scatter of the R2(S1, S2) value decreases as the sample size increases. Thus, the original sample
size of 34 investigated specimens has most likely already lead to a basically stable distribution.

The confidence interval of the distribution can be evaluated as well as a measure for change in
mean Svi values. As for probabilistic fatigue assessment, both Svrev and Svi rely on the distribution,
a tight confidence interval has to be aspired. As Svrev is defined as Svi(P = 0.5), the 80% confidence
interval at P = 0.5 has been studied. For each sample size the evaluation loop of 100 repetitions
lead to a certain scattering of the Svi values. Figure 16b shows the confidence intervals behaviour
of the distributions based on the synthetic sample sets. The mean values of the upper and lower
Svi confidence bounds are marked as red triangles per sample size, as well as their overall 10–90%
Svi(P = 0.5) area bordered by the black dotted line. The Svrev value of 114, as listed in Table 8,
is represented by the bold continuous black line. The evaluated sample size threshold from Figure 16a
is also drawn, as well as the grey highlighted area whereat the user defined criterion is fulfilled. This
indicates that, at the current sample size threshold, the Svrev value is within 100 µm ≤ Svrev ≤ 128 µm.
This refers to a scatter index of ± 12% for sample size nineteen, respectively TSvi = 1 : 1.28. If a tighter
confidence interval is aspired, the sample size of surface measurements has to be increased.
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(a) (b)

Figure 16. Sample size effect on (a) Svi-GEV distribution. (b) Confidence interval.

5.4. Fatigue Strength Assessment

Utilising both the Svi GEV distribution of the roughness parameter Sv and the ρi GEV distribution
of the notch root radius, a bivariate distribution can be evaluated. As it has been proven that Svi
and ρi can be handled as independent random variables, the combined probability of occurrence
P(Svi ≥ y, ρi ≤ x) can be calculated by multiplication of the two single probability functions following
Equation (9).

P(Svi ≥ y, ρi ≤ x) = (1− P(Svi ≤ y)) · P(ρi ≤ x) (9)

The bivariate cumulative distribution function is exemplary diagrammed in Figure 17 for the T6
P1 specimen series. Figures A1–A3, depicting the bivariate cumulative distribution function of the
other investigated specimens series, are added in the Appendix A. The projected GEV distributions of
Svi and ρi are additionally plotted as red lines and the surface mesh color depends on the value of
P(Svi ≥ y, ρi ≤ x). The available Cast-S specimens of this series are marked in blue.

20

40

60

80

Figure 17. T6 P1 bivariate distribtion of Svi GEV distribution and ρi GEV distribution.

Concluding, the surface fatigue assessment model can be applied utilising this probabilistic surface
texture values. The result is the probabilistic cast surface long life fatigue strength σLLF,s(P(Svi ≥
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y, ρi ≤ x)), which is normalised to the near defect-free long life fatigue strength σLLF,0, as diagrammed
in Figure 18. The mesh colour again highlights the combined probability of occurrence P(Svi ≥
y, ρi ≤ x). The 3D-view is additionally depicted from all three axis projections (Figure 18a–c) to
show the model‘s fatigue life dependency. By comparison of the ρi-plot (Figure 18a) with the Svi-plot
(Figure 18b) it is recognisable that, although both parameters do have an effect on the fatigue strength
result, the notch depth, respectively, surface pit depth Sv, is more pronounced.

This probabilistic fatigue assessment procedure facilitates an engineering feasible fatigue design
by providing reliable calculation of the long life fatigue strength, utilising the probability of occurrence
of the two statistical model parameters Svi and ρi. Based on the fatigue design safety requirements, the
designer can obtain the long life fatigue strength by comparably low effort in surface measurements
and surface texture evaluation.

(a) (b) (c)

Figure 18. T6 P1 probabilistic cast surface long life fatigue strength σLLF,s(P(Svi ≥ y, ρi ≤ x))
with views: (a) ρi - σLLF,s (b) Svi - σLLF,s (c) ρi - Svi.

6. Discussion

The presented fatigue strength assessment approach, reparametrising the model introduced by
Pomberger et al. [36] for sand cast aluminium surface layers with T6 heat treatment, has been applied
on two HIP-treated testing series at similar sampling positions (HIP P1 and HIP P1(2)). Furthermore,
another cast surface with significantly reduced surface roughness has been investigated (HIP P2).
By means of the reparametrised exponents a1 and a2, the HIPped validation specimen series, refer
to Table 7, as well as the validation series from [36] (T6 P1) showed sound results in terms of long
life fatigue strength estimation. Due to the diversification of measured surface roughness data, this
concept is now valid to a wider range of cast surfaces. Moreover, current research investigations apply
the introduced method also on additively manufactures surface textures.

The HIP-treated cast surfaces revealed that the surface layer pores have partly not being closed.
This is caused by the high amount of broached cavities, as depicted in Figures 8 and 9. Metallographic
analyses revealed shrinkage pores as cavities reaching depths of up to one millimetre. Therefore, when
machining the cast surface, it should be considered that surface layer pores may be broached by the
machining process and may result in similar long life fatigue strength reduction as observed for the
cast surface texture.
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To assess not only surface initiating cracks as in Cast-S specimens, but also surface layer porosity,
the neural network has been retrained by means of four input variables on four neurons. The input
variables are now the pore size

√
area, the local surface pit depth Svlocal , the equivalent notch root

radius ρ and the statistical surface roughness parameter Svrev. As this methodology may not be
available to designers, and therefore is not easily engineering feasible, the authors study also on the
simplified deduction of the interaction coefficient. The first results indicate that the application of
the mean values presented in Table 6 for the whole associated sampling series leads to sufficient
approximations.

Regarding a probabilistic Cast-S specimen fatigue assessment, the five biggest values Svi of
the surface pit depth Sv are valid for extreme value statistics. The evaluated distributions of the
probabilistic fatigue model parameters Svi and ρi depend on the selected sub-area size. As illustrated,
a too small sub area sized may not contain sufficient information about the amount and depth of
critical surface pits, but is increasingly characterising only the most critical one and would lead to
more conservative assessment. Within this study, it was found that for the investigated sand cast
surface textures, a sub-area size of 1 mm × 1 mm is valid. It should be noted that this recommended
value is a multiple of the sand grain size. Manufacturing processes resulting in finer surface structures,
such as additively manufacturing, may use 0.5 mm × 0.5 mm sub-areas instead. As the presented
surface long life fatigue assessment model uses the statistical surface roughness parameter Svrev,
the population of the data for distribution fitting should be substantial enough in order to facilitate
sound distribution conformity. Within this study, it was found that evaluating about twenty specimens,
with five Svi values each, leads to stable distribution parameters of the extremal values. As both
fatigue model parameters extremal notch valley depth and averaged notch root radius can be handled
as independent random variables, their probabilities of both distributions can be multiplicatively
combined, leading to a combined probability of occurrence P(Svi ≥ y, ρi ≤ x) and subsequently to
the probabilistic cast surface long life fatigue strength σLLF,s(P(Svi ≥ y, ρi ≤ x)). Thus, the presented
methodology provides a statistically applicable design tool to assess the cast surface effect on the local
fatigue strength.

7. Conclusions

Based on the results presented in this paper, the following conclusions can be drawn.

• The presented surface layer fatigue assessment model is valid for aluminium sand cast surfaces
in T6 and HIP treatment condition within the investigated range of Sv = 30 µm to 260 µm. Long
life fatigue strength estimation results are approximately 6% to 9% conservative.

• The HIP process does not reliably close surface layer pores within the first millimetre of surface
layer depth. Therefore, in the investigated manufacturing showcase, the machining process has
to remove at least one millimetre of the surface layer to increase the endurable long life fatigue
strength by remove surface layer porosity.

• Extremal surface roughness pits may become deeper, respectively, more critical, due to the HIP
process. However, this is not compulsory for all investigated surfaces.

• For probabilistic fatigue strength assessment, the sub-area size is meaningful. Sub-area side
lengths have to be chosen properly according to the present cast surface texture. For the
investigated sand cast aluminium surfaces, a sub-area size of 1 mm× 1 mm is valid. For statistical
characterisation, the measured cast surface texture should cover about one-hundred sub-areas
at least.

• The statistically assessed surface texture parameters, used in the cast surface fatigue strength
assessment model, Svi and ρi are independent variables and can both be statistically described
by a GEV distribution. To reliably fit the distribution, at least 20 specimens should be measured,
resulting in 100 Svi and ρi values. By means of a bivariate distribution, a probabilistic cast surface
long life fatigue strength σLLF,s(P(Svi ≥ y, ρi ≤ x)) can be subsequently calculated and used in
fatigue design applications.
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Abbreviations

The following abbreviations are used in this manuscript:

ρ Equivalent notch root radius of a sub-area Asub
ρi Notch root radii at extremal surface pit depths Svi with 1 ≤ i ≤ 5√

area Defect size of Murakami’s approach
σa Stress amplitude
σa,1e7 Experimental SN-point extrapolated to 1e7 load cycles
σLLF,0 Near defect-free long life fatigue strength
σa,Ps∗ Experimental long life fatigue strength with *% probability of survival
σLLF,∗,Ps∗ Estimated long life fatigue strength with *% probability of survival
σLLF,s(P(Svi ≥ y, ρi ≤ x)) Probabilistic cast surface long life fatigue strength
ψ Interaction coefficient
ψmean Mean value of the interaction coefficient
ψstd Standard deviation of the interaction coefficient
ψmin Minimum value of the interaction coefficient
ψmax Maximum value of the interaction coefficient
ζ Shape parameter of the GEV distribution
δ Scale parameter of the GEV distribution
µ Location parameter of the GEV distribution
A Elongation at rupture
Asub Sub-area size
a1,a2 Exponents in modified stress concentration factor
E Young‘s modulus
emin,emax, α Pore elongation and location parameters
HV10 Vickers hardness
k1,k2 Inverse slopes of the S/N-curve
Kt,mod Modified stress concentration factor
K f ,s Surface fatigue notch factor
K f ,p Fatigue strength reduction factor
K f ,m Mixed fatigue strength reduction factor
NT Transition knee point of the S/N-curve
Nrupture Load cycles at rupture
P(Svi ≥ y); P(ρi ≤ x) Probability of occurrence
P(Svi ≥ y, ρi ≤ x) Combined probability of occurrence
Rm Ultimate tensile strength
RP0.2 0.2% offset yield strength
Samean Mean value of the global arithmetical mean height Sa
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Sv Maximum pit height of the scale limited surface
Svlocal Local maximum pit height of the sub-area Asub
Svmax Maximum surface pit depth value of the investigated surface
Svi Extremal surface pit depth values of the investigated surface with 1 ≤ i ≤ 5
Svi,mean Mean value of Svi
Svrev(Svi(P = 50%)) Svi GEV distribution based value with 50% probability of occurrence
TS,1e7 Stress scatter index
CPS Core Package System
DAS Secondary dendrite arm spacing
GEV Generalised Extreme Value
HIP Hot isostatic pressing
NN Neural network
SPCC Squared Pearson correlation coefficient
R Load stress ratio
R2(A, B) Coefficient of determination of two random variables A and B
R2

mean(A, B) Mean value of R2(A, B)
SGS Surface geometrical structure
SEM Scanning electron microscopy

Appendix A

The following figures depict the bivariate distributions of the specimen series HIP P1 (Figure A1),
HIP P1(2) (Figure A2) and HIP P2 (Figure A3).
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Figure A1. HIP P1 bivariate distribution of Svi GEV distribution and ρi GEV distribution.
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Figure A2. HIP P1(2) bivariate distribution of Svi GEV distribution and ρi GEV distribution.
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Figure A3. HIP P2 bivariate distribution of Svi GEV distribution and ρi GEV distribution.
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