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Abstract: 50 billion cubic meters of brine every year creates ecological hazards to the environment.
In order to reuse brine efficiently, rubidium and cesium were recovered in this experiment. On the
other hand, the main impurities which were needed to be eliminated in brine were lithium, sodium,
potassium, calcium, and magnesium. In the procedure, seawater was distilled and evaporated first
to turn into simulated brine. Perchloric acid was then added into simulated brine to precipitate
potassium perchlorate which could reduce the influence of potassium in the extraction procedure.
After that, t-BAMBP and ammonia were separately used as extractant and stripping agent in the
extraction and stripping procedures to get rubidium hydroxide solutions and cesium hydroxide
solutions. Subsequently, they reacted with ammonium carbonate to get rubidium carbonate and
cesium carbonate. In a nutshell, this study shows the optimal parameters of pH value to precipitate
potassium perchlorate. Besides, pH value in the system, the concentration of t-BAMBP and ammonia,
organic phase/aqueous phase ratio (O/A ratio), reaction time, and reaction temperature in solvent
extraction step were investigated to get high purities of rubidium carbonate and cesium carbonate.
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1. Introduction

According to the investigation of the United Nations, more than 1 billion people in the world
currently live in the areas with scarce water resources. Moreover, this number will reach 1.8 billion by
2025 [1]. In response to the shortage of freshwater resources, seawater desalination technology has
developed rapidly since the beginning of the 20th century [2]. However, as seawater desalination is
common now, waste brine also causes considerable harm to the environment. For example, waste brine
will change the composition of seawater and affect the ecosystem. In order to reuse waste brine,
some elements such as lithium, magnesium, calcium, and chlorine are recycled from brine recently [3].
In this study, rubidium and cesium were extracted from brine through the hydrometallurgy method.
It is expected to achieve the goal of recovering valuable metals, reducing waste, and protecting
the environment.

Based on the report of the U.S. Geological Survey (USGS), the rubidium and cesium resources are
mainly from primary minerals such as carnallite, garnet, and lepidolite [4–8]. The main reservoirs
are Namibia, Zimbabwe, Afghanistan, and some other countries. Rubidium and cesium respectively
have only 90,000 tons of reserve, and the difficulty of mining makes them rarer. Although rubidium
and cesium are not common, they are valuable and useful in many areas. Therefore, it is important to
recover rubidium and cesium or its compounds from waste brine which can reduce the reliance of
primary mineral and create the economic value of brine.
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Rubidium and cesium have a wide range of using [9–12]. For industry activities, rubidium and
cesium metals are the material of television, radar, infrared filter, radiant energy receiver,
and reconnaissance telescope [13]. On the other hand, rubidium carbonate (Rb2CO3) and cesium
carbonate (Cs2CO3) can be raw materials of glasses and increase stability and durability. Additionally,
rubidium carbonate and cesium carbonate are easy to turn into other compounds such as rubidium
chloride (RbCl) and cesium nitrate (CsNO3). Rubidium chloride can be used to produce sleeping pills,
sedatives, and treatment of bipolar disorder [14–17]. Cesium nitrate can be used as a light refraction
regulator in the optical fiber industry and glass industry [18]. Due to the unlimited development of
rubidium and cesium compounds, many countries try various methods to get rubidium and cesium
and apply them in industries.

Nowadays, rubidium and cesium are mainly recovered from saline lake and ores through a solvent
extraction method with t-BAMBP extractant [19–22]. On the other hand, because impurities could
be removed efficiently through chemical precipitation and make higher purification of compounds,
it was chosen to be the procedure before solvent extraction in this experiment. During the chemical
precipitation process, perchloric acid (HClO4) was added into the brine to selectively precipitate
potassium perchlorate (KClO4). Due to the reduction of potassium, it could avoid the adverse effects
which potassium create in the follow-up processes. Moreover, t-BAMBP and ammonia were used in
the solvent extraction procedure to separate rubidium, cesium, and other impurities such as lithium,
sodium, potassium, calcium, and magnesium efficiently. To sum up, the chemical precipitation method
and solvent extraction method were used in this experiment to get high purities of rubidium and
cesium resources and made them be able to reuse in the industries.

2. Material and Methods

2.1. Materials

In this experiment, the simulated brine was got from seawater through distillation and evaporation.
The metal compositions of simulated brine are measured by inductively coupled plasma optical emission
spectrometry (ICP-OES) and the concentrations are shown in Table 1.

Table 1. Metal compositions of simulated brine

Element Li Na K Ca Mg Rb Cs

Concentration (mg/L) 182 501,30 5914 702 139,80 7.1 43.6

In the whole process, perchloric acid (HClO4) was purchased from Sigma-Aldrich (St. Louis,
MO, USA) (70%) to selectively precipitate potassium perchlorate. Sodium hydroxide (NaOH) and
sulfuric acid (H2SO4) were separately acquired from Applichem Panreac (Barcelona, Spain) (≥98%)
and Sigma-Aldrich (St. Louis, MO, USA) (≥98%). They were used in the extraction process to
adjust the pH value. Kerosene was purchased from CPC Corporation (Kaohsiung, Taiwan) to dilute
the extractant. t-BAMBP was purchased from Realkan Corporation (Beijing, China) (≥90%) for the
extraction process, and ammonia (NH4OH) was purchased from Sigma-Aldrich (St. Louis, MO, USA)
(30–33%) for the stripping process. In the final process, ammonium carbonate ((NH4)2CO3) was
acquired from Sigma-Aldrich (St. Louis, MO, USA) (≥90%) to produce rubidium carbonate and cesium
carbonate. During the analysis procedure, ICP rubidium standard solution, ICP cesium standard
solution, and ICP multi-element standard solution were acquired from High-Purity Standards, Inc.
(North Charleston, SC, USA). The nitric acid (HNO3) was purchased from Sigma-Aldrich (St. Louis,
MO, USA) (HNO3 ≥ 65%) and diluted to 1% to be the background value and thinner for ICP analysis.

2.2. Equipment

The materials and products were analyzed by X-ray fluorescence spectrometer (XRF; ZSX100s,
SPECTRO Analytical Instruments Inc., Kleve, Germany) and inductively coupled plasma optical
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emission spectrometry (ICP-OES; Varian, Vista-MPX, PerkinElmer, Waltham, MA, USA). In the
separated process, 445 mm × 730 mm × 505 mm of funnel shaker (FS-12; Shin Kwang Precision
Industry Ltd., New Taipei City, Taiwan) was used to shake 500 mL of separating funnels at 3000 rpm.
On the other hand, the thermostatic bath (XMtd-204; BaltaLab, Vidzemes priekšpilsēta, Rı̄ga, Latvia)
was used to maintain the temperature during the extraction process and stripping process. In the
procedure of producing compounds, rotary evaporators (BUCHI R-300; BÜCHI Labortechnik AG,
Flawil, Switzerland) was used to evaporate solutions under low pressure and high purity of rubidium
carbonate and cesium carbonate could be precipitated.

2.3. Experimental Procedures

2.3.1. Chemical Precipitation

Chemical precipitation procedure was used to remove potassium in this experiment. In the
process, the potassium which was in simulated brine would be selectively precipitated as potassium
perchlorate by adding perchloric acid. Removal of potassium could reduce the co-extracted effect in
the solvent extraction process. The parameter of chemical precipitation such as effect of pH value
was investigated. Precipitation rate was calculated according to Equation (1) and the flow diagram is
shown in Figure 1.

P(%) =
[M]0 − [M]

[M]0
× 100 (1)
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P is Precipitation rate, [M]0 is metal concentration of leach liquor, [M] is metal concentration of
leach liquor after precipitation.

2.3.2. Solvent Extraction–Extraction Process

In this study, t-BAMBP was diluted into kerosene and used as the extractant to separate rubidium
and cesium from other impurities such as lithium, sodium, potassium, calcium, and magnesium.
The extraction process was divided into two stages. Cesium was extracted in the first stage, and Li, Na,
K, Ca, Mg, and Rb were still in the aqueous phase. Rubidium was then extracted in the second stage,
and other impurities were in the aqueous phase as well.

To calculate the efficiency of extraction, distribution ratio and extraction percentage were used in
this process. Distribution ratio, D, was the concentration ratio of the metal in the organic phase to the
metal in the aqueous phase at equilibrium. The distribution ratio can be written as Equation (2).

D =
[M]org

[M]aq
=

Ci −Cf

Cf
×

Vaq

Vorg
(2)
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Ci is the initial concentration of metal ions in aqueous phase, Cf is the equilibrium concentration
of metal ions in aqueous phase. Vaq and Vorg are separately the volume of aqueous phase and
organic phase.

Based on the distribution ratio, the extraction percentage can be written as Equation (3).

Eex (%) =
D

D + Vaq/Vorg
·100 (3)

D is the distribution ratio. Vaq and Vorg are separately the volume of aqueous phase and
organic phase.

In the extraction process, the parameters such as the pH value of aqueous phase, the concentration
of t-BAMBP, the O/A ratio, the reaction time, and the reaction temperature were all presented in the
form of extraction percentage.

2.3.3. Solvent Extraction–Stripping Process

Ammonia was the stripping agent in this experiment which could strip the rubidium and cesium
from the organic phase. The stripping efficiency is written as Equation (4).

Est (%) =
ΣMaq

ΣMorg
× 100 (4)

ΣMaq is the concentration of metal ion in aqueous phase after stripping, and ΣMorg is the
concentration of metal ion in organic phase before stripping.

The flow diagram of whole solvent extraction process is shown in Figure 2. After the first and the
second stages of extraction, the concentration of ammonia, the O/A ratio, and the reaction temperature
were investigated in the form of stripping percentage in the stripping process.
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3. Results and Discussion

3.1. Removal of Potassium

Because potassium would be co-extracted with rubidium and cesium in the extraction process,
the perchloric acid (HClO4) was added into simulated brine to selectively precipitate potassium
perchlorate (KClO4) at −5 ◦C and 10 min. The precipitation percentages in different pH values are
shown in Figure 3 and the final compositions of simulated brine are shown in Table 2. In this procedure,
the precipitation percentage of KClO4 was 98.5% at −5 ◦C and pH 2.
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Table 2. Final composition of simulated brine

Elements Li Na K Ca Mg Rb Cs

Concentration (mg/L) 167 491,80 91 622 135,70 6.94 42.14

3.2. First Stage of Solvent Extraction for Cs

In the first stage of solvent extraction, t-BAMBP was used to separate Cs and other metal ions.
Due to the property of t-BAMBP, only K, Rb, and Cs were able to be extracted efficiently. In this study,
the values of them in the first stage of solvent extraction were analyzed by ICP-OES and turned into
the extraction percentage.

3.2.1. Effect of pH Value of the Aqueous Phase

Because t-BAMBP is an extractant which is suitable for alkalic condition, the pH values were
adjusted to 8–14 with 0.1 M t-BAMBP and O/A ratio 1:1 at reaction time 15 min and 25 ◦C in this
experiment. Figure 4 shows that the extraction percentage of K+ and Rb+ were observed almost 0% to
5% at any pH value and the percentage of Cs+ was observed above 99% from pH 8 to pH 12. In the
condition of pH 13 and pH 14, emulsification happened and reduced the extraction percentage. Due to
these situations, the optimal pH value of the aqueous phase was set to pH 8 which has a high extraction
percentage of Cs+ and could reduce the usage of sodium hydroxide.
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3.2.2. Effect of t-BAMBP Concentration

The conditions of t-BAMBP concentration were set up from 0.001 M to 1 M at pH 8 and O/A
ratio 1:1 at reaction time 15 min and 25 ◦C in this step. Figure 5 shows that the extraction percentage
of Cs+ from 0.001 M to 0.1 M increased gradually and became stable. The reason was that a higher
concentration of the extractant enabled more Cs+ to be caught. However, the extraction percentage of
K+ and Rb+ started to increase with a higher concentration of extractant. This was because K+ and Rb+

were extracted by excess extractant and made an adverse effect on this system. Due to this condition,
the optimal parameter of t-BAMBP concentration was chosen as 0.1 M.
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3.2.3. Effect of O/A Ratio

Figure 6 shows the O/A ratios were set from 0.1 to 2 with 0.1 M t-BAMBP at pH 8 and at reaction
time 15 min and 25 ◦C. The result shows that the extraction percentages of Cs+ maintain above 99%
with different O/A ratios, which means that Cs+ were almost extracted. However, when the O/A
ratio was greater than 0.5, the extraction percentage of K+ and Rb+ increased gradually above 2%.
This was because K+ and Rb+ were extracted by excess extractant as well. Hence, in order to get a
high concentration of Cs+ and avoid the impurities, the O/A ratio of 0.1 was an optimal parameter in
this step.
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3.2.4. Effect of Reaction Time

The effect of reaction time was set from 3 min to 60 min with 0.1 M t-BAMBP at pH 8 and O/A ratio
1:1 at 25 ◦C. In Figure 7, the extraction percentage of Cs+ was very stable from 3 min to 60 min. K+ and
Rb+ were at equilibrium and low extraction percentage as well. It shows that the reaction of t-BAMBP
was fast and reaction time was not a significant influence in the extraction process. On account of this
condition, 3 min was chosen.Metals 2020, 10, x FOR PEER REVIEW 7 of 15 
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3.2.5. Effect of Reaction Temperature

Figure 8 shows the reaction temperature was a significant parameter in the extraction process.
The effect of reaction temperature was set from 5 ◦C to 65 ◦C with 0.1 M t-BAMBP at pH 8 and O/A
ratio 1:1 at 3 min. The percentage of extraction decreased drastically from 35 ◦C to 45 ◦C. This is
because t-BAMBP extracted metal ions with exothermic reaction and the high temperature caused the
decrease of distribution ratio. Finally, the extraction percentages of Cs+, K+, and Rb+ were respectively
99.8%, 5.2%, and 1% with the condition of pH 8 of the aqueous phase, 0.1 M t-BAMBP, O/A ratio of 0.1,
3 min reaction time, and 35 ◦C reaction temperature. Compared to other studies, this study shows
the high extraction percentage of Cs+ with lower pH value and O/A ratio at the low temperature and
Cs+ could be separated from Rb, K, and other impurities such as lithium, sodium, potassium, calcium,
and magnesium.
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3.2.6. Stripping of Cs from the Organic Phase through Ammonia

After the extraction process, 420 mg/L of cesium was in the organic phase and needed to be
stripped. In this process, NH4OH was chosen as a stripping agent and the effect of NH4OH was
presented in Figures 9–11. Because the stripping efficiencies of rubidium and potassium were low in
this procedure, only stripping efficiency of cesium was investigated. Figure 9 shows that when the
concentration of NH4OH increased, the stripping efficiency increased as well and become equilibrium
in the situation of 1 M, 2 M, and 5 M. Therefore, the optimal concentration of NH4OH was 1 M in the
procedure. Figure 10 shows that the stripping efficiency decreased drastically when O/A ratio was 4.
It means that insufficient NH4OH was unable to strip the Cs+. Due to this condition, O/A ratio 2 was
the optimal condition to get a high concentration of Cs+. Figure 11 presents the stripping efficiency with
reaction temperature. Because t-BAMBP has great extracting ability at lower temperatures, it made
NH4OH unable to strip Cs+. However, if the temperature was above 35 ◦C, NH4OH decomposed
to NH3 first which was unable to strip Cs+. Hence, the stripping temperature was chosen at a room
temperature of 25 ◦C in this step. Finally, the stripping efficiency of Cs+ was almost 99.9% in the first
stripping process.
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3.3. Second Stage of Solvent Extraction for Rb

After the first stage of solvent extraction, metals were separated into two systems. One system was
cesium, and another system was rubidium with other impurities such as lithium, sodium, potassium,
calcium, and magnesium. In the second stage of solvent extraction, t-BAMBP was also chosen as
extractant to separate rubidium with other impurities. Among the rest of the impurities, only K could
be extracted by t-BAMBP due to the property of extractant. In this case, the values of K and Rb were
presented to analyze the optimal condition.

3.3.1. Effect of pH Value of the Aqueous Phase

The effect of pH value of the aqueous phase in the extraction and separation of Rb+ and K+ was
shown in Figure 12. The pH values were adjusted to 8 to 14 with 0.1 M t-BAMBP and O/A ratio 1:1 at
reaction time 15 min and 25 ◦C. The extraction percentage of Rb+ and K+ increased when the pH value
raised up and declined at pH 13 and pH 14 due to the emulsification. In order to extract more Rb+,
pH 12 value was chosen in this procedure.
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3.3.2. Effect of t-BAMBP Concentration

The conditions of t-BAMBP concentration from 0.01 M to 1 M at pH 12 and O/A ratio 1:1 at reaction
time 15 min and 25 ◦C were set in this step. Figure 13 shows that the extraction percentages of Rb+

from 0.01 M to 1 M were about 50% and the percentages of K+ were about 40%. In order to get more
rubidium, 0.5 M t-BAMBP was chosen in this procedure.
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3.3.3. Effect of O/A Ratio

Figure 14 shows the O/A ratio was set from 0.1 to 2 with 0.5 M t-BAMBP at pH 12 and at reaction
time 15 min and 25 ◦C. The result shows that the extraction percentages of Rb+ maintain above 50%
with different O/A ratios. However, when the O/A ratio was greater than 0.1, the extraction percentage
of K+ increased gradually. Hence, in order to get a high concentration of Rb+ and avoid the impurities,
the O/A ratio 0.1 was an optimal parameter in this step.Metals 2020, 10, x FOR PEER REVIEW 10 of 15 
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3.3.4. Effect of Reaction Time

The effect of reaction time was set from 3 min to 60 min with 0.5 M t-BAMBP at pH 12 and O/A
ratio 0.1:1 at 25 ◦C. In Figure 15, the extraction percentage of Rb+ increased gradually from 3 min to
15 min and became stable. On the other hand, the extraction percentage of K+ was almost 30% from
3 min to 60 min. Hence, 15 min of reaction time was chosen in this process to extract rubidium.
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3.3.5. Effect of Reaction Temperature

In Figure 16, it shows that Rb+ was influenced by the reaction temperature. The effect of reaction
time was set from 5 ◦C to 65 ◦C with 0.5 M t-BAMBP at pH 12 and O/A ratio 0.1:1 at 15 min. The extraction
percentage of Rb+ was about 98% at 5 ◦C and decreased drastically after 5 ◦C. The percentage of 35 ◦C
was 56.8% and only about 10% at 45 ◦C. In order to extract more Rb+, 5 ◦C was chosen as the optimal
parameter. Finally, the extraction percentage of Rb+ and K+ and were respectively 98.3% and 41.3%
with the condition of pH 12 of the aqueous phase, 0.5 M t-BAMBP, O/A ratio of 0.1, 15 min reaction
time, and 5 ◦C reaction temperature. Compared to other studies, this study shows the almost same
extraction percentage of Rb+ with lower pH value and O/A ratio at low temperature.Metals 2020, 10, x FOR PEER REVIEW 11 of 15 
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3.3.6. Stripping of Rb from the Organic Phase through Ammonia

After the second stage of the extraction process, 70 mg/L of rubidium was in the organic phase
and needed to be stripped. In this process, NH4OH was chosen as a stripping agent as well and the
effect of NH4OH concentration was presented in Figures 17–19. Because the stripping efficiencies of
potassium was low in this procedure, only stripping efficiency of rubidium was investigated. Figure 17
shows that when the concentration of NH4OH increased from 0.1 M to 0.5 M, the stripping efficiency
of Rb+ increased as well. However, efficiency became equilibrium in the situation of 0.5 M, 1 M,
2 M, and 5 M. Therefore, the optimal concentration of NH4OH was 0.5 M in this step. Figure 18
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shows that the stripping efficiency of Rb+ was above 90% and decreased at O/A ratio 4. Due to this
condition, O/A ratio 2 was the optimal condition. Figure 19 presents the stripping efficiency with
reaction temperature. Like the situation of Cs+, the stripping efficiency of Rb+ was lower at the low
temperature and gradually rose with increase in temperature. Hence, the stripping temperature was
chosen as 35 ◦C in this procedure. Finally, the stripping efficiency of Rb+ was almost 95% in the
second stripping process. After the extraction and stripping of Cs+ and Rb+, the optimal parameters of
solvent extraction are shown in Tables 3 and 4, and the components of stripping solutions are shown in
Tables 5 and 6.
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Table 3. Optimal parameters of solvent extraction of cesium

Extractant and
Stripping Agent

pH Value of
Aqueous Phase

Concentration
(M) O/A Ratio Reaction Time

(min)
Reaction

Temperature (◦C)

t-BAMBP 8.0 0.1 0.1 3 35
Ammonia - 1 2 - 25

Table 4. Optimal parameters of solvent extraction of rubidium

Extractant and
Stripping Agent

pH Value of
Aqueous Phase

Concentration
(M) O/A Ratio Reaction Time

(min)
Reaction

Temperature (◦C)

t-BAMBP 12.0 0.5 0.1 15 5
Ammonia - 0.5 2 - 35

Table 5. Metal compositions of the first stage of stripping (cesium hydroxide solutions)

Element Li Na K Ca Mg Rb Cs

Concentration (mg/L) N.D. 8.13 10.33 N.D. N.D. 1.39 1635

Table 6. Metal compositions of the second stage of stripping (rubidium hydroxide solutions)

Element Li Na K Ca Mg Rb Cs

Concentration (mg/L) N.D. 0.02 6.02 N.D. N.D. 293.68 N.D.

3.4. Production of Rubidium Carbonate and Cesium Carbonate

In order to get stable compounds of rubidium and cesium, ammonium carbonate was added
into rubidium hydroxide solutions and cesium hydroxide solutions to produce rubidium carbonate
solutions and cesium carbonate solutions. The reaction situations were shown in Equations (5) and (6).

(NH4)2CO3(s) + RbOH(aq)→ Rb2CO3(aq) + NH3(aq) + H2O(l) (5)

(NH4)2CO3(s)+CsOH(aq)→Cs2CO3(aq)+NH3(aq)+H2O(l) (6)

The rubidium carbonate solutions and cesium carbonate solutions were then put into rotary
evaporators and evaporated under low pressure and temperature and precipitate the purity of 98.0%
of rubidium carbonate and 98.9% of cesium carbonate. After chemical precipitation and solvent
extraction, the ICP-OES analyses are shown in Table 7.

Table 7. ICP-OES analyses of rubidium carbonate and cesium carbonate

Compounds Li Na K Ca Mg Rb Cs

Rb2CO3 N.D. 0.1% 1.9% N.D. N.D. 98.0% N.D.
Cs2CO3 N.D. 0.4% 0.5% N.D. N.D. 0.2% 98.9%

N.D.: Not-detected.

4. Conclusions

Hydrometallurgy method was used to separate rubidium and cesium effectively from the
desalination brine in this study. The recommended recovery process is shown in Figure 20. The brine was
treated by chemical precipitation and solvent extraction to recover rubidium and cesium. Perchloric acid
was added into brine to pH 2 at −5 ◦C to precipitate potassium perchlorate which could reduce the
influence of potassium in the extraction procedure. After that, t-BAMBP and ammonia were used as
extractant and a stripping agents. The results show that 0.1 M t-BAMBP was used as extractant to
separate cesium and impurities under the optimal condition of pH 8, O/A ratio 0.1, 3 min reaction time,
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and 35 ◦C reaction temperature. Then, cesium was stripped by using 1 M ammonia under O/A ratio
2 and 25 ◦C reaction temperature. On the other hand, the results show that 0.5 M t-BAMBP was used
as extractant to separate rubidium and potassium under the optimal condition of pH 12, O/A ratio
0.1, 15 min reaction time, and 5 ◦C reaction temperature. In the stripping process, 0.5 M ammonia
under O/A ratio 2 and 35 ◦C reaction temperature are the optimal parameters. Finally, the rubidium
carbonate and cesium carbonate were produced by adding ammonium carbonate. By these processes,
the purity of rubidium carbonate and cesium carbonate were 98.0% and 98.9%.Metals 2020, 10, x FOR PEER REVIEW 14 of 15 
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