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Abstract: In this study, porthole die used for extrusion of a solid heatsink profile with wall thickness
variation ratio up to 15.3 was designed using finite element (FE) simulations. To improve the flow
balance in the die, a design approach was introduced to find the appropriate die structure, which
includes the porthole and pocket geometry correction, the bearing length adjustment, and the port
bridge structure modification. Using the proposed die, the predicted velocity relative difference
(VRD) and the maximum velocity difference (∆V) of extrudate were significantly lower than those of
an initial die, which was preliminarily designed based on general design experiences. The required
extrusion force and the residual stress in the product were also reduced significantly. Then, the effects
of the port bridge structure and welding chamber height on the behavior of the metal flow in the
die were investigated. To verify the proposed die design, experimental extrusions were conducted
on a 930-ton extruder. The experiment results showed that the extruded product fulfilled the
requirements for dimensional tolerances. The design approach presented in this paper can be useful
for practical implementation of die design when extruding similar solid heatsink profiles with large
wall thickness variation.

Keywords: metal flow balance; extrusion die design; aluminum heatsink; porthole die; complex
aluminum profile

1. Introduction

Aluminum alloys are increasingly used in many industrial fields because of their advantages
namely, lightweight, high specific strength, good formability, high thermal conductivity, and corrosion
resistant. Hot extrusion is an economical process, which has been widely used to manufacture many
aluminum alloys products [1]. Among them, aluminum heatsink products can be found in many
cooling devices such as CPU coolers, radiators of light-emitting diode (LED) or high-performance
electronic systems, etc. [2].

There are two basic types of aluminum heatsink profiles, which include solid and hollow profiles.
The geometry of solid profiles is commonly complex, with long fins and variable wall thickness.
Increasing the complexity of extruded profiles makes the die design process more challenging.
A heatsink with long fins leads to the formation of a weak tongue-shaped cavity structure. Hence,
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the die can be easily deformed or damaged during the extrusion process. In addition, extruded metal
velocity commonly flows faster in the areas of the product with large wall thickness [2], which may
cause a tremendous difference in velocity on the extrudate, and therefore defects in the product’s
geometry. In general, the design of extrusion dies for heatsink products is always a great challenge for
designers to balance the metal flow and ensure product quality.

The traditional solution of the extrusion die design is based on the experiences of skillful engineers
combined with repeated die tests. In this way, based on the nose geometry of the tested extrudate, an
experienced engineer often predicts the possible causes of the die error and then performs a die repair,
including die structure modification and/or bearing lengths adjustment. By conducting this modification
process several times, a reasonable die structure can be achieved. However, this design process is
expensive and time-consuming, especially when designing the die for extrusion of high complex
profiles. As a result, the traditional design approach may significantly increase production costs.

In recent development of design technology, by using finite element (FE) analysis, a variety of
parameters related to the extrusion process such as velocity, temperature, extrusion force, die stress,
die deflection, and nose shape of the extrudate can be predicted before the actual fabrication of the
die and extrusion production [3]. Therefore, many authors have studied the effects of die structure
on the performance of the extrusion process with FE analysis. Based on a non-steady extrusion
simulation, Lee et al. [4] numerically investigated the effect of the welding chamber geometry on the
elastic deformation of the die during extrusion of condenser tube. They showed that the bottom cone
angle and welding chamber height have significant effects on the deflection of the mandrel and die
bearing. Wu et al. [5] optimized the structure of the die used for extrusion of a rectangular hollow pipe
using numerical simulation. By redesigning the porthole and bearing lengths, they achieved a more
uniform velocity distribution in the extrudate. Printer et al. [6] investigated the effects of die geometry
and process parameters on the formation of welding seam and die deformation during the extrusion
of a hollow tube based on FE analysis with HyperXtrude software. Chen et al. [7] compared the
extrusion ability of traditional porthole and pyramid dies using steady-state and transient simulations.
They pointed out that the die with a pyramid angle at the porthole entrance offers many advantages
over the traditional die such as reducing extrusion force, lessening charge welding length, decreasing
stress in the die plates, and increasing welding pressure. However, the pyramid dies caused a negative
effect on balancing metal flow and increased length of the butt scrap. Liu et al. [8] optimized the
porthole die for extrusion of a small profile with a high ratio of length to width by combining the die
modifications and FE analysis. They introduced some modification steps to optimize the die structure,
which included porthole correction, adding baffles, and fine-tuning bearing lengths. Xue et al. [9]
aimed at improving the flow balance during the extrusion of a thin-walled profile by multi-cavity die.
By combining the FE analysis and Taguchi method, they determined preferable parameters for the die
structure, such as the undercut angle of porthole entrance, the relief angle of the porthole, and the
welding chamber height. Chen et al. [10] investigated the effect of ram speed on extrusion parameters
with porthole dies. The related extrusion parameters with the pyramid die, such as velocity, extrusion
force, temperature, charge weld, and billet skin were compared to those of the traditional porthole die.
Other authors [11,12] investigated the welding seam characteristics in the extrusion of simple solid
profiles manufactured by the porthole die. Güley et al. [13] evaluated the capability of the flat-face and
porthole dies used for extrusion of simple bar profiles, in which the extruded material was AA6060
aluminum alloy recycled from chips. They pointed out that the welding quality with the porthole die
was improved significantly. The ductility of extruded products with the porthole die was 80% higher
than that with the traditional flat-face die.

For the extrusion of solid heatsink profiles, there are two major types of dies which are widely
used: the feeder die and the porthole die with a semi-hollow feeder plate [1]. Recently, optimal design
for feeder extrusion dies using FE analysis has been conducted by several researchers. Lee et al. [14]
studied the metal flow balance in the die and deflection of the feeder die in the extrusion of a heatsink
profile simulated by an FE model with DEFORM-3D software. They highlighted that the feeder
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structure plays a vital role in determining the velocity distribution and the die deformation. Hwang
et al. [15] optimized the structure of a feeder die for CPU cooling profile extrusion based on non-steady
FE simulations. They reported that the position of the die opening and the welding chamber height
greatly influenced the balance of flow distribution in the extrudate. Zhang et al. [16] carried out an
optimization design for a spread extrusion die by means of FE simulation combined with a response
surface and particle swarm optimization algorithms. The geometry of the feeder and the position of
the die orifice were optimized to improve the metal flow balance.

Previous studies have shown that the design optimization of the extrusion die is essential for the
extrusion of aluminum profiles. One of the most important issues in die design is to ensure a good
balance of metal flow in the die. This is because the flow balance directly affects the geometry of the
extruded product, as well as the die deformation and the extrusion temperature. In the case of complex
profiles, the problem of flow balance will become more and more critical. Researchers have made
significant efforts to create guidelines for die design, mainly based on numerical simulations. However,
studies for the optimal design of porthole dies are still insufficient. So far, studies on porthole dies
mainly focus on flow balance for hollow profiles, and welding seam performance when extruding
simple solid profiles. Moreover, the existing studies on the flow balance only consider the solid heatsink
profiles with a small variable wall thickness by employing a feeder die. However, the flow balance
solutions for a complex profile with massive wall thickness change and applying the porthole die have
not been discussed. Accordingly, there are very few design guidelines for this type of die. Finally,
experimental studies on the extrusion of heatsink profiles with large wall thickness variation have
rarely been addressed.

In this study, porthole die used for extrusion of a complex solid heatsink profile with large variable
wall thickness is designed. First, an initial die is designed based on experience, in which the flow
balancing method used includes utilizing a semi-hollow feeder plate, adding a second-step welding
chamber, and using variable bearing lengths. Later, modification steps are introduced, including
porthole correction, pocket modification, bearing lengths adjustment, and adding a bridge chamfer.
Next, the effects of the port bridge structure and the welding chamber height on the behavior of the
metal flow in the die are extensively investigated. Steady-state simulations of extrusion performed by
HyperXtrude 2019 software are used in the die design process. To verify the designed die, experimental
extrusions are conducted on a 930-ton extruder. Then, the geometric dimensions of the extruded
product are measured, and the dimensional deviations of the product geometry are evaluated.

2. Geometry of the Aluminum Heatsink and Initial Die Structure

The cross-section geometry and the three-dimensional (3D) model of the aluminum heatsink
product are shown in Figure 1. The product consists of 12 fins with four levels of wall thickness:
23.13 mm, 8.32 mm, 2.57 mm, and 1.51 mm, as indicated in Figure 1a. Hence, the maximum wall
thickness variation ratio is about 15.3. Moreover, in order to increase the heat transfer area, wavy
patterns are created in four surfaces of the fins, including two outer surfaces of the left and right fins
and two surfaces of the fin at the center position. The thickness of the bottom part of the radiator is
4.04 mm.

During the extrusion process, the velocity of the billet in the center region is higher than that in
the area near the container wall due to the effect of friction [2]. In addition, the velocity of metal flow
in the areas with thicker wall thickness is commonly higher than that in other regions [17]. Thus, it is a
great challenge for the die designer to achieve uniform velocity distribution in the extruded product.
With a large change in the wall thickness of the product, the solutions such as using a feeder or pocket
to support flow balancing are generally less effective. Therefore, the idea of utilizing a porthole die
with a port bridge placed at the maximum wall thickness position is considered. Accordingly, an initial
porthole die is designed on the basis of empirical experiences, as shown in Figure 2. The porthole die
consists of an upper and a lower part, with a height and a diameter of 90 and 180 mm, respectively.
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Figure 2. Design of the initial extrusion die: (a) the 2D layout of the die; (b) the 3D assembly model
with the main dimensions of the port bridge (unit: mm).

It is noted that the upper die does not contain a mandrel as the traditional hollow dies. Instead,
a port bridge of 18 mm in width is designed, as depicted in Figure 2b. The rear tip width of the
port bridge is 10 mm, and the tip angle is 50◦. As a result, the upper die consists of two portholes,
which are symmetric through the Y-axis. Hence, this upper die is also called the semi-hollow feeder
plate. The profile of porthole expands gradually toward the die center with an opening angle of 7◦.
The porthole will deliver the material into the main body area. The center of the port bridge is chosen
at the die center, which corresponds to the largest wall thickness of the extrudate. The height of the
welding chamber is chosen by experience as 10% of the container diameter, so the calculated welding
chamber height is 13 mm.

The lower die plate contains a pocket (also called a second-step welding chamber), which is placed
in front of the die opening to control the metal flow balance in the die cavity. For the case of porthole
dies and complex extrusion profiles, a second-step welding chamber is commonly used [18]. Hence,
a bow-shaped pocket profile is adopted here. Moreover, bearing with variable lengths is also utilized
to aid the balance of material flow. Finally, two run-out steps are designed so that the extrudate does
not touch the die surfaces. They also increase the die strength during the extrusion process.

Figure 3 shows the correspondent bearing regions with constant and variable lengths along the
extruded profile circumference. The bearing lengths are calculated based on the existing empirical
experiences as follows:

1. The base bearing length is approximated as twice the wall thickness of the extrudate.
2. The bearing length at the thin fin position is multiplied by a coefficient Kc = 0.75, which takes into

account the flow obstruction due to the complex geometry.
3. The bearing length at the thick fin position under the port bridge is multiplied by a coefficient

Kb = 0.52, which takes into account the flow obstruction due to the port bridge geometry. Thus,
the bearing length calculated for this region is about 24 mm.

4. The bearing length at the tip of the extrudate is approximated as 0.6 times the adjacent bearing
length [19].
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3. Construction of Finite Element Model

Figure 4a demonstrates the 3D assembly model of the components, which is built by CATIA
V5R20 software (Dassault Systèmes, Vélizy-Villacoublay, France). Figure 4b illustrates the FE models
with different mesh sizes, which will be used for steady-state extrusion simulation with the arbitrary
Lagrangian–Eulerian (ALE) algorithm by HyperXtrude 2019 software (Altair Engineering, Inc.,
Michigan, MA, USA). The entire FE models are divided into six regions, including billet, porthole,
welding chamber, pocket, bearing, and profile, as shown in Figure 4b. Rough mesh size is used for
the billet region, and fine mesh size is adopted for the bearing region, where severe deformations
occur. The tetrahedral element is assigned to the billet, porthole, welding chamber, and pocket regions.
The triangular prism element is applied to the remaining regions. The meshing process is carried out
automatically as a recommendation by the software with fine mesh level selection. The total number
of elements used for this simulation model is approximately 760,000.
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Figure 4. Finite element (FE) modeling for steady-state extrusion of aluminum heatsink profile: (a) the
3D assembly model of elements during extrusion; (b) meshing of the regions.

The material of the tooling and the porthole die is H13 tool steel. The material used for billet
is AA6063 aluminum alloy. Rigid and viscoplastic simulation models are used for the tools and the
billet, respectively. The physical and thermal parameters of these materials are the same as those
used by the HyperXtrude software library, as shown in Table 1. The continuous equation based on
the Sellar–Tegart model, which is widely used in simulations of aluminum profile extrusion [9,10],
is applied for the simulation, as described in Equation (1):

σ =
1
β

sin h−1

Z

A


1/n

(1)
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where σ indicates the flow stress of the material; β and A are the extruded material coefficients; n is the
exponent; Z is the Zener–Hollomon coefficient calculated by Equation (2):

Z =
·

εeQ/RT (2)

where
·

ε is the effective strain rate; Q, R, and T are the activation energy, gas coefficient, and absolute
temperature, respectively. The parameters of AA6063 material used in Equation (1) are as follows [19]:
β = 4 × 10−8 m2/N; Q = 1.4155 × 105 J/mol; R = 8.314 J/(mol . K); A = 5.90152 × 109 s−1; n = 5.385.

Table 1. Material properties of the billet and the tools for extrusion simulation.

Material Density
(Kg/m3)

Heat Capacity
(J/(kg ◦C))

Thermal Conductivity
(W/m.K)

Poisson’s
Ratio

Young Modulus
(GPa)

AA6063 2700 900 198 0.35 40
H13 7870 460 24.3 0.35 210

The stick friction condition is assumed between the extruded material and tools (including dies)
with a shear friction coefficient of 1 [8]. The sliding friction condition is assumed between the extruded
material and bearing region with a Coulomb coefficient of 0.3 [9]. The heat convection coefficient
between the billet and the tooling is 3000 W/m2 ◦C [9]. The parameters related to the numerical
simulation of the extrusion process are summarized in Table 2.

Table 2. The parameters used for numerical simulation.

Simulation Parameters Values

Container diameter (mm) 130
Billet length (mm) 500

Billet temperature (◦C) 500
Container temperature (◦C) 450

Die temperature (◦C) 490
Ram speed (mm/s) 3

Extrusion ratio 10.73

4. Results and Discussion

4.1. Velocity Distribution with the Initial Die Design

The flow velocity distribution during extrusion is a crucial factor that determines the success
of an extrusion process. Therefore, it is always the first factor to be considered when designing an
extrusion die. The quality of velocity distribution can be monitored through several parameters such
as the standard deviation of velocity (SDV) [18] or the velocity relative difference (VRD) [20]. In this
study, the VRD is used and calculated by Equation (3):

VRD =

∑n
i=1

|Vi−Va |
Va

n
×100% (3)

where Vi is the extrusion velocity at node i on the extrudate; Va is the average velocity calculated from
all nodes of the extrudate; n is the number of nodes considered in a cross-section of the extrudate.
A total of 3269 nodes was used for the VRD calculations.

In addition, the difference between the maximum and minimum velocities (∆V) is also used to
evaluate the flow balance. This is because geometric defects are likely to occur when significant speed
differences arise at any position of the product.

Figure 5 plots the simulated results of flow velocity distribution and the deformation trend of the
extrudate. The minimum flow velocities appear in the regions where the metal contacts with the dies
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and the tools because of the sticking friction effect. The maximum velocities occur at the die orifice
region. Nonuniform velocity distribution is generally observed, in which the metal on the left side of
the product flows faster than that on the right, especially at the thick fin region. The calculated VRD
and ∆V are 4.1% and 4.72 mm/s, respectively. Such uneven velocity distribution will result in bending
of product geometry to the right. Therefore, the initial die design needs to be adjusted.Metals 2020, 10, x FOR PEER REVIEW 7 of 19 
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4.2. Adjusting Die Structure

4.2.1. Resizing Porthole

From the simulated flow velocity of the initial die, the metal flows faster on the right-hand section
of the profile, which contains a fin with 8.32 mm in thickness. Therefore, the first step of correction
here is to reduce the size of porthole 2. In this way, an offset distance of 3 mm is applied for the
entrance and bottom edges of this porthole profile. The other geometric parameters of the initial die are
fixed. Figure 6 demonstrates the geometry of porthole 2 before and after correction. By applying this
correction, the area of porthole 2 is reduced to 1702 mm2 compared to the area of porthole 1 which is
1960 mm2. Consequently, the area ratio of porthole 1 vs. porthole 2 is about 1.15, which approximately
equals to the area ratio of the left- and right-side cross-section of the product (about 1.12).
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Figure 7 shows the simulated velocity distribution of metal flow with porthole 2 correction.
This figure indicates that VRD and ∆V are reduced to 1.76% and 2.09 mm/s, respectively. Hence, the
velocity distribution has improved. However, the velocity difference is still relatively high, which may
result in a defective extruded product. Therefore, the extrusion die still needs further modification to
improve velocity distribution as well as geometric accuracy.
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Figure 7. Velocity distribution on the extrudate with the extrusion die after correcting the porthole.

4.2.2. Modifying Pocket Profile

The second step of the welding chamber solution is highly effective for extrusion with porthole die
and complex product profiles [18,21]. However, the geometry of the welding chamber usually needs an
appropriate design. Therefore, the pocket profile of the lower die is modified here to improve the metal
flow distribution. Only the geometry of the pocket profile is further modified in this second step, while
the other geometric parameters from the previous modification step are unchanged. Figure 8 shows
the modification scheme for the pocket profile of the lower die. In general, the left profile of the pocket
is enlarged to reduce the influence of friction and the dead metal zone (DMZ), thereby increasing
extrusion speed. On the contrary, the right profile is narrowed at positions of high flow velocities.
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Figure 8. Modification scheme of the pocket profile: (a) the 2D view of pocket profile before and after
the change; (b) the 3D model of the lower die after modifying the pocket profile (unit: mm).

Figure 9 presents the simulated velocity distribution using the extrusion die with pocket profile
modification. The improvement in flow velocity distribution is clearly observed. The values of VRD
and ∆V are reduced to 0.87% and 0.89 mm/s, respectively. With the improvement in flow velocity
distribution, deformations at the bottom and left fin regions of the extrudate can be reduced.
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4.2.3. Adjusting Bearing Lengths

Adjusting bearing lengths usually takes place at the end of the design process to make some
fine-tune adjustments for the die structure, something considered by many authors [3,8]. The main
objective of adjusting bearing lengths is to precisely control the product geometry. In this modified step
3, adjusting bearing lengths is performed, while the other die parameters are kept the same as step 2.
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Figure 10 demonstrates the distribution of bearing lengths after modification. The general rule for
adjusting bearing lengths is based on the velocity distribution in the extrudate. The bearing lengths
are reduced at the slower flow velocity areas, whereas they are increased at the faster velocity zones.
Accordingly, the bearing lengths on the left side of the product profile are reduced slightly. For the
bearing regions on the right side, the bearing lengths at the bottom and the corner of the profile
are increased.
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Figure 11 shows simulated flow velocity distribution using the die with adjusted bearing lengths.
It can be seen that a fairly uniform velocity distribution is obtained. The values of VRD and ∆V are
decreased to only 0.75% and 0.78 mm/s, respectively. As a result, the product without geometric
defects can be extruded. Hence, the bearing length adjustment solution successfully enhances the
flow balancing.
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4.3. Effects of the Port Bridge Structural Parameters and the Welding Chamber Height

In the initial die, the parameters of the port bridge and the welding chamber were roughly chosen
based on practical experience. Therefore, parameters related to bridge structure such as the port
bridge width (W), chamfered bridge, rear tip width (Wt), and welding chamber height (H) (Figure 12),
are further investigated to determine the appropriate values. The other parameters in step 3 remain the
same. Moreover, the behavior of metal flow with varied die structural parameters is also examined.
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4.3.1. Effect of the Port Bridge Parameters

Two types of portholes are considered, including the ones with and without the chamfered
bridge. To investigate the effect of the port bridge’s width, W varying from 18 to 26 mm is examined.
The parameters Wt and the tip angle are set to 10 mm and 50◦, respectively. The chamfer dimension of
the port bridge is selected at 4 × 25◦, which is commonly used for the die with a container diameter of
130 mm in practical extrusion.

Figure 13 shows the effects of W on ∆V and the required extrusion force. It can be observed
that the required extrusion force increases with increasing W. This can be explained by the fact that
increasing W will increase the dead material zone (DMZ) under the bridge and reduce the entrance
size of the porthole. Moreover, the extrusion force of the porthole die with the chamfered bridge
significantly reduces compared to the traditional porthole die, as shown in Figure 13. The reduced
amount of extrusion force estimated for W = 18 mm is about 9.7 tons. This is because the size of the
DMZ formed before the port bridge is decreased in the die with the chamfered bridge.
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Figure 13. Influence of W on ∆V and the extrusion force in two types of dies with and without
chamfered bridges.

Figure 13 also shows that increasing W leads to an increase of ∆V. However, ∆V of both dies with
and without chamfered bridges is almost the same.

Figure 14 presents the effect of W on the flatness of the profile nose (∆D). It is seen that the
behavior of ∆D with respect to W is fairly similar to that of ∆V (in Figure 13). The maximum values of
the profile nose (Dmax) are found at the 8.32 mm fin area. In the extrusion process, the velocity in the
porthole tends to be fast in its center. Increasing W will push the high-velocity zone away from the die
center, which leads to increasing the velocity mainly at the 8.32 mm fin area, and therefore Dmax.

From Figure 13, the porthole die with the chamfered bridge is recommended because it reduces
the extrusion force significantly while the velocity difference is negligible. In this way, the width
W = 18 mm is selected as the appropriate value for this die design.
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Figure 14. Effect of W on ∆D of the porthole die with the chamfered bridge.

Figure 15 illustrates the effect of Wt varying from 2 to 10 mm on ∆V, ∆D, and the maximum
exit profile temperature. It can be seen that ∆V and ∆D all have the same reduction tendency with
increasing Wt. Therefore, the flow balance is improved with increasing Wt. However, the maximum
temperature in the exit profile rises slightly. This is because when Wt increases, the size of the DMZ
under the bridge is increased (see Figure 16), resulting in a higher degree of metal deformation.
Moreover, the increase in exit temperature is also attributed to the flow obstruction caused by the
DMZ. Figure 17 depicts the velocity distribution of material estimated for Wt = 2 mm and Wt = 10 mm.
The flow velocity under the port bridge with Wt = 10 mm is significantly reduced compared to that
with Wt = 2 mm.
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In summary, bridge parameters W and Wt significantly influence the velocity distribution of metal
during extrusion. The chamfered bridge shows a little effect on the flow balance; however, it can
significantly reduce the extrusion force. From the presented results, the proper values of W and Wt for
obtaining a good flow balance are 18 and 10 mm, respectively.

4.3.2. Effect of the Welding Chamber Height

In this section, the effects of welding chamber height (H) varying from 9 and 17 mm on the
extrusion process parameters are analyzed. Figure 18 shows the behavior of ∆V, ∆D, and maximum exit
profile temperature. It can be seen that the effects of H on the extrusion process parameters are totally
different compared to the effects of W and Wt represented earlier in Figures 14 and 15. As indicated in
Figure 18, the unbalance of flow increases as H becomes very high or very small. H = 13 mm is the
best value to achieve the flow balance as both ∆V and ∆D reach their minimum values.
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Figure 18. The effects of H on the extrusion process parameters: (a) ∆V and the maximum exit
temperature profile; (b) ∆D.

Figure 18 also illustrates that the maximum exit temperature of the profile decreases with increasing
H. This is caused by the effect of the DMZ, which exists under the port bridge. For the die with a
lower value of H, the DMZ causes greater obstruction to the metal flow at the die opening compared to
that of the die with a larger H, as demonstrated in Figure 19. Moreover, reducing H also increases the
deformation of metal in front of the die orifice, as shown in Figure 20.

Metals 2020, 10, x FOR PEER REVIEW 13 of 19 

 

 

(a) 

 
(b) 

Figure 18. The effects of H on the extrusion process parameters: (a) ΔV and the maximum exit 

temperature profile; (b) ΔD. 

  

(a) (b) 

Figure 19. Distribution of velocity in dies: (a) the die with H = 9 mm; (b) the die with H = 17 mm. Figure 19. Distribution of velocity in dies: (a) the die with H = 9 mm; (b) the die with H = 17 mm.Metals 2020, 10, x FOR PEER REVIEW 14 of 19 

 

  
(a) (b) 

Figure 20. Distribution of strain rate with different H values: (a) H = 9 mm; (b) H = 17 mm. 

From Figure 18, it can be concluded that the welding chamber height remarkably influences the 

flow balance. A welding chamber height of 13 mm is the preferable parameter for the present die. 

4.4. The Final Die Structure 

The ultimate die is obtained after the presented modification steps of die structure. Table 3 

summarizes the simulation results corresponding to the die modification steps. Steps 1–3 mainly 

aim at improving the flow balance of metal (reducing VRD, ΔV, and ΔD), which, however, increases 

the extrusion force because the extruded material experiences a higher degree of deformation. In the 

last step, by designing a chamfered bridge structure, the extrusion force is reduced to a minimum, 

whilst the other parameters VRD, ΔV, and ΔD do not change significantly. Figure 21 presents the 2D 

layout and 3D model of the proposed extrusion die.  

Figure 22 shows the velocity distribution of metal in the initial and proposed dies. It can be seen 

that the velocity distribution of the proposed die is significantly improved compared to the original 

one. The deformation of the extrudate with the proposed extrusion die is also reduced. 

Table 3. Summary of simulation results of dies corresponding to modifying steps. 

Step Modification 
Simulation results 

VRD (%) ΔV (mm/s) ΔD (mm) Extrusion force (ton) 

0 Initial die design 4.10 4.72 12.42 479.55 

1 Reducing porthole 1.76 2.09 5.76 481.88 

2 Modifying pocket 0.87 0.89 2.69 487.07 

3 Adjusting bearing lengths 0.78 0.78 2.38 487.59 

4 Chamfering port bridge 0.82 0.86 2.58 477.88 

 

  

Figure 20. Distribution of strain rate with different H values: (a) H = 9 mm; (b) H = 17 mm.

From Figure 18, it can be concluded that the welding chamber height remarkably influences the
flow balance. A welding chamber height of 13 mm is the preferable parameter for the present die.

4.4. The Final Die Structure

The ultimate die is obtained after the presented modification steps of die structure. Table 3
summarizes the simulation results corresponding to the die modification steps. Steps 1–3 mainly aim
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at improving the flow balance of metal (reducing VRD, ∆V, and ∆D), which, however, increases the
extrusion force because the extruded material experiences a higher degree of deformation. In the last
step, by designing a chamfered bridge structure, the extrusion force is reduced to a minimum, whilst
the other parameters VRD, ∆V, and ∆D do not change significantly. Figure 21 presents the 2D layout
and 3D model of the proposed extrusion die.

Table 3. Summary of simulation results of dies corresponding to modifying steps.

Step Modification
Simulation Results

VRD (%) ∆V (mm/s) ∆D (mm) Extrusion Force (ton)

0 Initial die design 4.10 4.72 12.42 479.55
1 Reducing porthole 1.76 2.09 5.76 481.88
2 Modifying pocket 0.87 0.89 2.69 487.07
3 Adjusting bearing lengths 0.78 0.78 2.38 487.59
4 Chamfering port bridge 0.82 0.86 2.58 477.88
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Figure 21. The proposed die for extrusion of the aluminum heatsink profile: (a) the 2D layout of the
proposed die; (b) the 3D assembly model of the upper and lower dies (unit: mm).

Figure 22 shows the velocity distribution of metal in the initial and proposed dies. It can be seen
that the velocity distribution of the proposed die is significantly improved compared to the original
one. The deformation of the extrudate with the proposed extrusion die is also reduced.
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Figure 22. Velocity distribution on the extrudate: (a) the initial die; (b) the proposed die.

Figure 23 displays the temperature distribution during the extrusion process of the original and
proposed dies. In general, maximum temperatures of proposed and original dies are well approximated.
Higher temperature occurs near porthole 2 due to the increase of material deformation in this region.
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can be minimized. 

Figure 23. Temperature distribution during the extrusion: (a) the initial die; (b) the proposed die.

Figure 24 highlights the distribution of residual stress in the extrudate of the initial and proposed
dies. The maximum residual stress in the extrudate with the proposed die is smaller compared to
the original die (12.83 MPa vs. 16.19 MPa). High residual stresses are mainly concentrated at the
intersection regions between fins with a large wall thickness and the main body of the heatsink, which
are caused by the differences in velocity and temperature of the respective regions.
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4.5. Extrusion Experiment

To verify the proposed die design, the real porthole die is fabricated according to the geometry
parameters of the proposed die. After that, the extrusion experiment is conducted on a 930-ton
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extruder. Figure 25a shows the experimental extrusion process. Figure 25b presents the final extruded
product. It can be seen that a defect-free product was produced. The geometry of the product is
generally consistent with the simulation results. To check the geometric dimensions of the extruded
product, measurements were carried out using electronic calipers. The deviations in the wall thickness
of the product are within the allowable limits of ±0.15 mm, and dimensional errors of the length
and width of the product are less than 0.25 mm. Hence, the extrudate meets the requirement for
dimensional tolerance.Metals 2020, 10, x FOR PEER REVIEW 17 of 19 
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It is worth noting that the proposed die successfully extrudes for the first time without the need
for die modifications. Therefore, the proposed design approach is very useful and reliable. It is also
noted here that the effects of die deformation on the dimensional tolerance of the extruded product
were assumed negligible. This is because the extrusion process used a porthole die, which reduced the
direct impact from the billet to the die orifice. Therefore, the deformation of this die will be smaller
than the traditional flat-face dies. Secondly, the extrusion ratio is quite low (=10.73), resulting in a
small required extrusion force, and therefore small die deflection. Lastly, the die contains two run-out
steps, which support the die opening and increase the die strength. The run-out steps also ensure that
the extrudate does not touch the die surface. Hence, die deformation can be minimized.

5. Conclusions

In this study, an appropriate die for extrusion of a complex heatsink aluminum profile with large
variable wall thickness was designed. The die design was implemented by combining the existing
design experiences and steady-state extrusion simulation with the ALE algorithm. The effects of the
structural parameters of the port bridge and the welding chamber height on the metal flow were
examined. Experiments were conducted to verify the proposed die. The conclusions are obtained as
follows:

1. The following steps are proposed to obtain suitable porthole extrusion die: (1) resizing the
porthole and pocket profiles; (2) adjusting the bearing lengths; (3) modifying the port bridge
structure. The simulation results indicate that using the proposed die, the quality of flow
balance of metal in the die was improved considerably. Comparing to the initial die, the velocity
distribution measures of the proposed solution such as VRD and ∆V are reduced from 4.1% and
4.72 mm/s to 0.82% and 0.86 mm/s, respectively; the required extrusion force and residual stresses
in the extrudate are also reduced from 479.55 tons and 16.19 MPa to 477.88 tons and 12.83 MPa,
respectively. The maximum exit temperature of the extrudate increases slightly as compared to
the initial die.
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2. The entrance of a porthole with a chamfered bridge significantly reduces the required extrusion
force. However, it has a negligible influence on the velocity distribution of flow in the
extruded product.

3. The die parameters including the width of the port bridge (W), the rear tip width of the port
bridge (Wt), and the welding chamber height (H) all influence the metal flow velocity due to
the braking effect of the dead metal zone (DMZ) formed under the port bridge. Moreover,
these parameters have different effects on velocity distribution on the extrudate. In particular,
the velocity distribution becomes more uniform with increasing Wt from 2 to 10 mm. On the other
hand, increasing W from 18 to 20 mm results in uneven velocity distribution in the extrudate.
Very high (above 17 mm) or very small (below 9 mm) values of welding chamber height H all
have a negative effect on the balance of metal flow.

4. In conclusion, appropriate porthole extrusion die is the key to success of the extrusion of heatsink
products with significant wall thickness variation. The main concern in designing this die type is
to determine the position and structure of the port bridge, which plays a vital role in balancing
the metal flow on the extrudate, especially at the location where the wall thickness is very thick.
Although the proposed die is highly suitable for metal flow balance, this die type commonly
generates longitudinal weld seams in the extrudates. Moreover, it may cause poor surface quality
of the products after anodizing, and higher extrusion force when compared to the flat-face die.
Hence, design optimization of porthole dies needs to be extended further.
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