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Abstract: Although the Lüders yield phenomenon has been investigated for more than 150 years,
some understanding of Lüders band formation lack substantial support from experimental evidence.
In-situ observation of Lüders band formation in hot-rolled steel experimentally clarified the following
facts: (i) When stress reaches the true upper yield stress, the Lüders band begins to nucleate.
True upper yield stress is greater than nominal upper yield stress. (ii) Gross stress concentration
promotes the Lüders band formation, and the size of the gross stress concentration region determines
the initial width of the Lüders band. (iii) The Lüders band nucleates far ahead of the gross yield point.
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1. Introduction

The transition from elastic to plastic deformation in low carbon steels and mild steel is characterized
by a material instability known as the Lüders deformation phenomenon whose macroscopic deformation
is inhomogeneous. In a uniaxial tension test, this instability shows a typical stress-strain curve as
illustrated in Figure 1 (black line). It is usually recognized that localized plastic deformation in the form
of a band, denoted as a Lüders band, starts with a sudden stress drop. Subsequently, the Lüders band
propagates through the whole gauge length of the specimen, while the global stress remains essentially
constant. The stress plateau in the stress-strain curve reflects the propagation process. The initial stress
peak and the level of the stress plateau are, respectively, the upper yield stress (σup.ys.ob) and lower
yield stress (σL.ys.ob).

Lüders band formation is the beginning of plastic instability. Two questions remain: under
what conditions and when does the Lüders band nucleate? Previous studies have given physical
interpretations of microscopic and macroscopic views. Cottrell and Bilby [1] reported that the Lüders
band formation in iron was accounted for by the pinning of dislocations by the solute interstitials
such as C and N atoms, which tend to form atmospheres around them. Onodera et al. found that
the Cottrel atmosphere did not agree with an alloy Al-4Cu-0.5Mg-0.5Mn [2]. Hahn [3] proposed
another model in which the dominant mechanism of Lüders band formation is attributed to rapid
dislocation multiplication.

On a macroscopic scale, the upper yield stress represents the stress for the unlocking, creation,
or rapid multiplication of mobile dislocations [4]. Van Rooyen recognized the upper yield stress as a
critical macroscopic parameter and suggested that, when macroscopic applied stress reaches the upper
yield stress, a Lüders band begins to form [4,5]. The upper yield stress is greater than the experimental
upper yield stress [4,5]. The Van Rooyen model well depicts the effects of grain size and strain rate
on the Lüders strain. However, the predicted strain distribution across a Lüders front is inconsistent
with the experimental result [6]. Schwab and Ruff [7] believed that the stress plateau in the nominal
stress-strain curve does not truly reflect the material behavior. The experimental upper and lower yield
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stresses (σup.ys.ob and σL.ys.ob, respectively) in Figure 1 are only observed variables, and the true upper
and lower yield stresses (σup.ys.tr and σL.ys.tr, respectively) are different from them. The stress plateau
should be replaced by the red curve, i.e., the red curve reflects the true material behavior. This model
is based on three assumptions, and one of them is that σup.ys.tr is greater than σup.ys.ob.

The Lüders band is believed to nucleate at the moment of the stress drop, i.e., the macroscopic
yield point [8,9]. Nagarajan’s work [6] indicated that Lüders band formation takes place close to the
macroscopic yield point. All existing models of Lüders band formation are built on assumptions of
a lack of experimental evidence and support. The formation time of the Lüders band needs to be
further investigated. Several experimental studies have been performed on the Lüders behavior using
digital image correlation (DIC) [10–12]. In this study, our aim is to try to answer the two questions
through in-situ observation using a digital image correlation (DIC) technique that has been proven
useful [9–13].
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Figure 1. Black lines represent a schematic diagram of the stress-strain curve with Lüders deformation.
Red lines represent the Schwab-Ruff model [7].

2. Materials and Methods

A commercial hot-rolled steel SM490 was studied. Its chemical composition is 0.16C/0.44Si/1.46Mn
(in wt%), and it is composed of ferrite (average grain size 11 µm) and pearlite. Two types of
dog-bone-type specimen (Type I and Type II) were used whose specimen sizes are shown in Figure 2.
The front surface was sprayed with white and black paint to make speckles for DIC analysis. The x
axis is the tension direction. Three pieces of Type I specimen and two pieces of Type II specimen were
machined. All the tension tests were performed at room temperature and at a crosshead speed of
0.01 mm/s. The global strain (εx.g) was obtained using an extensometer attached to the back surface
whose gauge length (GL) is 30 mm. The deformation process on the front surface was recorded with a
CCD camera (maximum frame rate, 15 fps) at a constant time interval of 500 ms. The area observed by
2D-DIC for Type I specimen is 20 mm × 9 mm, and the area for Type II specimen is 30 mm × 9 mm.
Their positions are shown in Figure 2. The local strain and strain rate along the x-axis (εx.local and
.
εx.local, respectively) in these areas were determined using 2D-DIC (a software VIC-2D, produced
by the Correlated Solution, Inc.). The 2D-DIC measurement was within the global elastic region in
which applied stress ranged from zero to σup.ys.ob. The result of DIC analysis is sensitive to the DIC
parameter [14], and, thus, three conditions of DIC analysis were used in the correlation operation:
1O subset size, 9 pixels × 9 pixels (248 µm × 248 µm), step, 5 pixels (138 µm), 2O subset size, 21 pixels ×

21 pixels (579 µm × 579 µm), step, 5 pixels (138 µm), and 3O subset size, 41 pixels × 41 pixels (1.13 mm
× 1.13 mm), step, 5 pixels (138 µm).
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Figure 2. Two types of tension specimen (Type I and Type II) and speckle patterns on the front surface
of the specimen.

Van Rooyen [5] believed that the local stress can be related to the local strain in terms of a basic
stress-strain curve. Van Rooyen [4] suggested that the basic stress-strain curve can be obtained from
the experimental stress-strain curve with Lüders deformation, as shown in Figure 3. The elastic region
of the basic stress-strain curve is directly from the experimental data, and the plastic region (strain
hardening region) is given by the equation σ = kεn (σ, true stress; ε, true strain), where constants k
and n are obtained from plotting the strain hardening region in the experimental stress-strain curve.
The values of k and n are, respectively, 566 MPa and 0.060 for specimen-1 shown in Figure 4. Using Van
Rooyen’s approach, we obtained the basic stress-strain curve of the steel SM490 from the experimental
stress-strain curve. The local strain was directly obtained from the DIC analysis, and its corresponding
local stress was determined according to the basic stress-strain curve.
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Figure 4. Experimental stress-strain curve. The global nominal strain was measured using an
extensometer with a gauge length (GL) of 30 mm.

3. Results and Discussion

Three tension tests on Type I specimen were performed. The observed area partially covered the
gauge length (see Figure 2). Because the initiation site of Lüders band was beyond the observed area,
two tests failed to capture the initiation of Lüders band. Only one test succeeded in capturing the band
initiation. Its experimental global stress-strain curve is given in Figure 4. We defined the first peak
point as the macroscopic upper yield point in this study.

Images 1O to 6O shown in Figure 4 were selected. Figure 5a shows the εx.local evolution from
image 1O to image 6O, corresponding to the applied stress levels of 318 MPa (0.86σup.ys.ob), 332 MPa
(0.90σup.ys.ob), 345 MPa (0.93σup.ys.ob), 351 MPa (0.95σup.ys.ob), 364 MPa (0.99σup.ys.ob), and 369 MPa
(σup.ys.ob), respectively (see Figure 4). The DIC parameter used is a subset size of 9 pixels × 9 pixels
(248 µm × 248 µm) and step 5 pixels (138 µm). A region is enclosed by a red circle in Figure 5a. Strain
concentration has occurred at a stress level of 0.86σup.ys.ob (image 1O), and a small core (shown by
an arrow) is visible. At 0.90σup.ys.ob (image 2O), the core inclines and changes to an elliptical shape.
This shows a trace of plastic propagation. In image 3O, two cores (marked A and B) are visible. Core A
propagates along the arrow toward the lower right side, forming Band 1. Core B goes in the opposite
direction to form Band 2. At 0.95σup.ys.ob (image 4O), Band 1 was completely formed. The band has
an angle of 55◦ with respect to the tension direction. Core B continues to propagate and completely
crosses the specimen width at 0.99 σup.ys.ob (image 5O). When the applied stress reaches the σup.ys.ob,
the strain within the Lüders band, i.e., the Lüders strain, reaches its maximum (image 6O). The Lüders
band forms in a very short time. For example, the formation process of Band 1 from image 2O to image
4O took only 8 s.

The strain rate fields corresponding to each image in Figure 5a are given in Figure 5b. Although
strain concentration has occurred in Figure 5a images 1O– 4O, and a Lüders band has even formed in
image 4O, serious concentration does not appear in the strain rate field (see Figure 5b, images 1O– 4O).
Subsequently, in images 5O and 6O, a strain rate band appears. The strain rate within the band along
the specimen width is inhomogeneous. The center has a lower strain rate, and both sides near the
end of the specimen have a higher strain rate. As we know, plastic strain concentration first occurs in
the center (cores A and B), and then the plastic flow crosses from there to both ends of the specimen.
The increasing strain rate distribution within the band shows the propagation process, like a river
flowing from a higher place to a lower place. The flow speed increases gradually. The strain rate of
bulk material was directly derived from the evolution of global strain with time. Its value within the
elastic region is of the order of 10−5 s−1, and the maximum strain rate within the Lüders band is of the
order of 10−3 s−1. This shows that the Lüders band deforms at a very fast speed (100 times the speed in
bulk material).
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size is lower than that of a small subset size (see the region in the red circle). The DIC parameter of 
subset size 9 pixels × 9 pixels and step 5 is rational.  

Figure 5. (a) Evolution of the strain field. (b) Evolution of the strain rate field. Global stress:
1O 0.86σup.ys.ob (318 MPa), 2O 0.90σup.ys.ob (332 MPa), 3O 0.93σup.ys.ob (345 MPa), 4O 0.95σup.ys.ob

(351 MPa), 5O 0.99σup.ys.ob (364 MPa), 6O σup.ys.ob (369 MPa). Time interval: 1O to 2O, 4 s, 2O to 3O, 5.5 s,
3O to 4O, 2.5 s, 4O to 5O, 1 s, 5O to 6O, 0.5s. DIC parameters: subset size, 9 pixels × 9 pixels (248 µm ×

248 µm), step, 5 pixels (138 µm).

The images 1O– 6O in Figure 4 were also dealt with the following DIC parameters: (1) subset size
21 pixels × 21 pixels (579 µm × 579 µm) and step 5 pixels (138 µm), and (2) subset size 41 pixels ×
41 pixels (1.13 mm × 1.13 mm) and step 5 pixels (138 µm). The corresponding evolution of local strain
field is shown in Figure 6. Compared with Figure 5, it can be seen that the sensitivity of a large subset
size is lower than that of a small subset size (see the region in the red circle). The DIC parameter of
subset size 9 pixels × 9 pixels and step 5 is rational.
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× 579 µm), step, 5 pixels (138 µm), and (b) subset size, 41 pixels × 41 pixels (1.13 mm × 1.13 mm),
step 5 pixels (138 µm). Each image corresponds to the image in Figure 5.

Two tension tests on Type II specimen were carried out. Their experimental global stress-strain
curves are given in Figures 7a and 8a, respectively. In Figure 7a, stress fluctuation on the yield plateau
is great. The nominal upper yield stress (point 4O) is not the largest on the yield plateau. The εx.local

field and
.
εx.local field evolution from image 1O to image 4O is shown in Figure 7b. A Lüders band begins

to form at the shoulder of the specimen at the stress level of 0.927σup.ys.ob (Figure 7b—image 2O).
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In Figure 8a, the stress-strain curve is similar to that shown in Figure 1. The εx.local field and
.
εx.local

field evolution from image 1O to image 4O is shown in Figure 8b. It can be seen that the formation of a
Lüders band takes place at the stress level of 0.849σup.ys.ob (Figure 8b—image 2O). The initiation site is
indicated by the arrow at image 2O. The observation (Figures 5, 7 and 8) shows that, at the upper yield
point, the Lüders band has grown large enough, passing through the specimen width. In Figure 5b,
the strain rate field is not sensitive to identify the band. However, in Figures 7b and 8b, the strain rate
field is more sensitive than the strain field in identifying a band. The reason for it is unclear. It is better
to identify a band using both strain and strain rate fields.
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Figure 8. (a) Image position in the stress-strain curve. (b) Strain field and strain rate field of image 1O to
image 4O. 1O Global stress level 0.821σup.ys.ob, 2O global stress level 0.849σup.ys.ob, 3O global stress level
0.884σup.ys.ob, and 4O global stress level σup.ys.ob. Time interval: 1O to 2O, 0.5 s, 2O to 3O, 0.5 s, 3O to 4O,
12.5 s. DIC parameters: subset size, 9 pixels × 9 pixels (246 µm × 246 µm), step, 5 pixels (137 µm).

The scatter among the three experimental stress-strain curves, especially in the region of Lüders
yield plateau, is great (see Figures 4, 7a and 8a). The yield tooth is visible only in Figure 8a. Yuzbekova
et al. [15] suggested that the stress serration on the yield plateau is related to the nucleation and
propagation of a deformation band. If the Lüders band is developed progressively instead of being
formed abruptly, the yield tooth will not show up. The steel SM490 is a commercial steel produced
by hot-rolling. It is composed of multiple phases (ferrite and pearlite). The ferrite grain size is not
uniform, and the pearlite prefers to distribute along the rolling direction. Moreover, precipitates and
inclusions are present. The role of the strong heterogeneity in the microstructure on the stress serration
should be investigated in the future.

Strain concentration is related to the formation of a Lüders band. Since the initiation of a
Lüders band is similar in Figures 5, 7 and 8, we only focus on Figure 5 in the following discussion.
To quantitatively analyze the strain concentration, we plotted a line parallel to the x-axis (CD line)
passing through a strain concentration core in the strain field of Figure 5a— 5O and extracted the
εx.local along this line. The solid line in Figure 9 represents its εx.local distribution. Numbers 1O– 6O in
Figure 9 correspond, respectively, to the images 1O– 6O in Figure 5. A peak appears around position
x = −14.6 mm, and the peak value increases, as applied stress increases. The dashed horizontal line
shows a strain level of 50% of the peak value.
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Figure 9. Local strain distribution along the CD line in Figure 5. The dashed line represents half of the
peak value. 1O to 6O correspond, respectively, to each image in Figure 5.

Applied force simultaneously makes the bulk material and local regions produce global strain
(εx.g) and local strain (εx.local), respectively. We define a factor, the ratio of the maximum local strain to
global strain, fε = εx.local.max/εx.g, to evaluate the extent of the strain concentration, where εx.local.max

is the maximum local strain (peak value in Figure 9). The evolution of fε as a function of normalized
applied stress (σx.g/σup.ys.ob) is shown in Figure 10a.
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Figure 10. The dependence of (a) the strain concentration factor, (b) the stress concentration factor, and
(c) the size of the stress concentration region on the normalized applied stress.

The critical strain (εcri) is calculated using σup.ys.ob/E (Young’s modulus E = 210 GPa), beyond
which the bulk material enters the plastic region. For the steel used, the εcri is equal to 0.00176, which is
used to determine the boundary between elastic and plastic regions. Figure 10a shows that the global
applied stress level of 0.70σup.ys.ob is an elastic-to-plastic threshold value, below which both the bulk
material and the local region completely and elastically deform and above which some plastic local
regions gradually appear. Within the applied stress range of 0.3–0.9σup.ys.ob, fε slightly decreases with
applied stress, i.e., the extent of the strain concentration slightly decreases. The solid black circle in
Figure 10a is a turning point, and when applied stress exceeds that point, fε significantly increases in a
short period of time. In-situ observation in Figure 5 shows that only strain concentration occurs before
the stress level of 0.90σup.ys.ob. At 0.90σup.ys.ob, a Lüders band begins to form, which is followed by
rapid propagation. The suddenly increased local strain in Figure 10a is attributed to the formation and
propagation of the Lüders band.

Strain concentration is directly related to stress concentration. We define the stress concentration
factor, fσ, by σx.local.max/σx.g (where σx.local.max is the maximum local stress and σx.g the global stress)
and convert fε into fσ. Figure 10b shows the evolution of fσ against normalized applied stress. The bulk
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material is in an elastic state below σup.ys.ob, while the stress concentration region is in an elastic state
only below 0.70σup.ys.ob. In the elastic region, stress (σ) and strain (ε) have a linear relation, as σ = Eε.
We assume that the stress concentration region has the same Young’s modulus as the bulk material.
Therefore, fσ is equal to fε in the range of 0–0.70σup.ys.ob. In the plastic region, the relationship between
σ and ε is expressed by σ = kε n (k and n are constants and n is smaller than one) [16], and, thus, fσ is
not equal to fε. Figure 4 shows that the strain-hardening capacity of the steel used is weak. The local
stress in the plastic stress concentration region is obtained by means of the basic stress-strain curve
introduced in the Materials and Methods section. Figure 10b indicates that the fσ decreases with the
applied stress.

The Lüders band nucleates at the stress concentration site. In the following, we will investigate
the correlation of the Lüders band width with the size of the stress concentration region. As shown
in Figure 9, there is no distinct boundary between the concentration region and its adjacent region.
Therefore, it is difficult to determine the size of the stress concentration region. It is convenient to
use full width at half maximum (FWHM) as a measure of size, which is schematically shown in
Figure 9— 1O. The size of the stress concentration region (FWHM) against normalized applied stress
is given in Figure 10c. The FWHM varies within 1.33–2.04 mm. Around the σup.ys.ob, the FWHM
ranges from 1.92 to 2.04 mm. Band 1 formed completely at 0.95σup.ys.ob, and the band front has a
clear boundary with the matrix (see Figure 5a— 4O). We plot a horizontal line, which intersects with
the two band fronts, and measure the distance between the two intersection points to give the initial
band width. The measured band width is 2.06 mm, which agrees with the FWHM at 0.95σup.ys.ob.
This indicates that the initial Lüders band width is dependent on the size of the stress concentration
region. Previous studies showed that the band width generally ranges from 1 to 15 mm [17].

We briefly summarize previous studies on Lüders band formation as follows.

i Band nucleation criterion [5,7]. True upper yield stress (σup.ys.tr) is a critical value. When stress
reaches it, a band starts to nucleate. The σup.ys.tr is not the nominal upper yield stress (σup.ys.ob)
obtained from the experimental nominal stress-strain curve, and it is difficult to be measured
directly by experiment. σup.ys.tr is greater than σup.ys.ob.

ii Band nucleation site [5,8,13]. A band nucleates at the stress concentration site. The initial band is
generally at the shoulder of the specimen where great stress concentration occurs.

iii Time point of band nucleation [6,8,9]. A band nucleates at the nominal upper yield stress point or
close to it.

The solid black circle in Figure 10b indicates the starting point of band nucleation, and, thus, the
local stress at this point is the σup.ys.tr (394 MPa). Figure 5 shows that macroscopic stress concentration
regions provide sites for easy Lüders band formation. The Lüders band nucleates at fσ = 1.07
(orfε = 1.21). The importance of plastic strain to the nucleation of the Lüders band was recognized in
the 1950s [18,19]. Vreeland et al. [18] observed a pre-yield phenomenon prior to the onset of yielding
and found the plastic micro-strain to be of the order of 30 µε. The plastic strain on a macroscale is
regarded to be a prerequisite of Lüders band generation [19]. The plastic strain at the onset of band
nucleation in this study was 365 µε, which is much greater than Vreeland’s data. Vreeland likely
underestimated the real plastic strain because of the imprecision measurement technique at that time.
At the nominal upper yield stress point, the yield band on a well-polished surface is wide enough to be
visible even with the naked eye. If the measurement has enough precision, one will find that a yield
band was formed prior to the nominal upper yield stress point. Our observation shows that a band
nucleates ahead of the nominal upper yield stress point.

4. Conclusions

We performed in-situ observation of a Lüders band formation process. Based on these experimental
results, we reached the following conclusions.
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(1) The extent of the stress concentration decreases with the increase in applied stress.
(2) The local stress at which an initial Lüders band begins to form is greater than the nominal upper

yield stress.
(3) Global stress concentration promotes the Lüders band formation.
(4) The size of the global stress concentration region determines the initial Lüders band width.
(5) The Lüders band nucleates far ahead of the global yield point.
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