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Abstract: The effects of arc modes on laser-arc hybrid welding for AA6082-T6 aluminum alloy were
comparatively studied. Two arc modes were employed: pulsed metal inert gas arc and cold metal
transfer arc. The results indicated that joints without porosity, undercutting, or other defects were
obtained with both laser-pulsed metal inert gas hybrid welding (LPMHW) and laser-cold metal
transfer hybrid welding (LCHW). Spatter was reduced, and even disappeared, during the LCHW
process. The sizes of equiaxed dendrites and the width of the partially melted zone in the LPMHW
joint were larger than those in the LCHW joint. The microhardness in each zone of the LPMHW joint
was lower than that of the LCHW joint. The softening region in the heat-affected zone of the LPMHW
joint was wider than that of the LCHW joint. The tensile strength of the LCHW joint was higher than
that of the LPMHW joint. For the two joints, the fractures all occurred in the softening region in the
heat-affected zone, and the fracture morphologies showed ductile fracture features. The dimples in
the fractograph of the LCHW joint were deeper than those of the LPMHW joint.
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1. Introduction

The application of lightweight materials is one of the most strategic approaches to increase the
operational speed of delivery vehicles. In the high-speed train manufacturing industry, Al-Mg-Si
(6xxx series) alloys have been widely applied as lightweight materials for many years because of their
excellent specific strength, weldability, and corrosion resistance [1,2]. Generally, aluminum alloys are
joined by arc welding, especially metal inert gas (MIG) welding. Considering the physical-chemical
characteristics of aluminum alloys, numerous results indicate that some obvious drawbacks such as:
large welding deformation, serious joint softening, and low production efficiency would appear during
the arc welding process due to the high heat input and low welding speed [3–5]. With features of high
energy density, low heat input, high welding speed, and large depth–width ratio, laser welding can
effectively solve the above problems [6–9]. However, strict accuracy in assembly is required due to the
small focused spot diameter of the laser, which significantly limits its application [10,11].

Laser-arc hybrid welding (LAHW) combines the advantages of laser welding and arc welding,
which not only can reduce or even eliminate common weld defects but can also increase the laser’s
energy utilization. Therefore, it is becoming an important welding technology for joining aluminum
alloys, especially for laser-pulsed MIG hybrid welding (LPMHW) [12–14]. Compared with laser
welding and arc welding, previous research proved that LPMHW has several advantages, such as:
higher welding speed [15], deeper weld penetration [16], narrower heat-affected zones [17], better gap
bridging ability [18], less residual stress [19], and superior mechanical properties [20]. Meanwhile,
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some research pointed out that welding deformation due to high heat input was still unignorable, and
that spatter could not be completely eliminated due to the droplet transfer mode [21,22], which was
determined by the arc characteristic of pulsed MIG welding.

A modified MIG welding technology called cold metal transfer (CMT) welding was developed
by Fronius of Austria in 2004 [23]. Different from pulsed MIG welding, the droplet is detached by
retracting the wire and transferred in a short-circuit mode during the CMT welding process, and it was
indicated that CMT welding could reduce heat input and improve weld stability [24–26]. Obviously,
integrating a CMT arc rather than a PMIG arc with a laser beam will reduce the heat input of laser-arc
hybrid welding. Recently, researchers have begun to focus on the effects of the arc modes on LAHW
characteristics. Lamas et al. [27] indicated that the CMT mode had higher welding speeds, less heat
input, and fewer undercut defects compared to other arc modes during LAHW for high strength
steel. Li et al. [28] pointed out that compared with the LPMHW process for mild steel, the plasma
was more stable and the spatter was less in the laser-CMT hybrid welding (LCHW) process. Few
reports have focused on the effects of arc mode on the characterizations of LAHW for aluminum alloys.
Zhang et al. [29] indicated that an LCHW AA6061 joint had a finer microstructure and higher tensile
strength compared with that of an LPMHW joint. With so many novel advantages, laser-CMT hybrid
welding could be a promising joining technology for high speed train aluminum body manufacturing,
and needs further understanding.

In the present work, two kinds of laser-arc hybrid welding (LAHW), including laser-pulsed MIG
hybrid welding (LPMHW) and laser-CMT hybrid welding (LCHW), were performed upon 6 mm
thick AA6082-T6 aluminum alloy butt joints using optimized welding parameters. The effects of
the arc modes on weld formation, microstructure, microhardness, and mechanical properties were
comparatively studied in detail.

2. Materials and Experimental Details

2.1. Materials

In this work, the base material used was AA6082-T6 aluminum alloy with a thickness of 6 mm.
The tensile strength of the base material was 310 MPa. The sheets were machined to the size of 200 mm
× 150 mm × 6 mm, and a Y-shaped groove was machined as shown in Figure 1. Before welding, the
base materials were preprocessed using mechanical cleaning followed by scrubbing. The filler wire
used was ER5356 with a diameter of 1.2 mm. The chemical compositions of the base material and filler
wire are presented in Table 1.
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Figure 1. Schematic diagram of the welding groove type.

Table 1. Chemical compositions of materials (wt. %).

Materials Si Fe Cu Mn Mg Cr Zn Ti Al

AA6082-T6 0.97 0.37 0.07 0.67 1.02 0.01 0.06 0.01 Bal.
ER5356 0.10 0.40 0.10 0.15 4.8 0.1 0.1 0.13 Bal.

2.2. Welding Method and Apparatus

The LAHW experiments were conducted with an IPG YLS-6000 fiber laser (Burbach, Germany)
(maximum output power is 6.0 kW) in combination with a Fronius TPS 500i CMT welding machine
(Wels, Austria) (with two arc modes: pulsed arc mode and CMT arc mode), which were controlled
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by a KUKA 30 HA (Bavaria, Germany) high precision welding robot. The emission wavelength and
focus diameter of the laser were 1.06 µm and 0.2 mm, respectively. The Rayleigh length of the laser
beam was about 1.8 mm. The system configuration and schematic diagram of the LAHW experimental
setups are illustrated in Figure 2.
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Figure 2. (a) System configuration and (b) schematic diagram (not to scale) of the laser-arc hybrid
welding (LAHW) experimental setups.

During the LAHW process, the sheets were fixed using a clamping fixture. The copper center of
the clamping fixture had holes 1.0 mm in diameter and spaced 8 mm apart, which were used to blow
shielding gas for back protection, as shown in Figure 2a. High purity argon (99.999%) with flow rates
of 20 L/min and 15 L/min was used as a shielding gas for the arc torch and back protection, respectively.
To protect the optical fiber and improve the coupling effect of the laser and arc, the oblique angles
of the laser and arc torch from the workpiece were 80◦ and 60◦, respectively, as shown in Figure 2b.
The distance between the laser beam and wire tip was 3 mm, and the defocus distance of the laser
beam was 2 mm. After numerous welding experiments, according to weld formation quality, the other
optimized welding parameters of LPMHW and LCHW used in this work are listed in Table 2.

Table 2. The welding parameters of laser-pulsed metal inert gas hybrid welding (LPMHW) and
laser-cold metal transfer hybrid welding (LCHW).

Welding Parameters LPMHW LCHW

Laser power (kW) 2.4 2.4
Welding speed (m/min) 0.72 0.72

Wire feeding speed (m/min) 7.5 6.5
Welding current (A) 130 114
Welding voltage (U) 18.8 14.3

Defocus distance (mm) 2 2
Heat source distance (mm) 3 3

Heat input (kJ/cm) 3.03 2.55

2.3. Testing Examination

Metallographic samples were taken from the weld cross-section, then mechanically ground,
polished, and finally etched with Keller’s reagent for about 10 s. Macromorphology and microstructure
were observed by optical microscopy (OLYMPUS, BX-51M, Tokyo, Japan). The microhardness test
was performed on the weld cross-section from the weld center to the base metal using a Vicker
microhardness tester (FUTURE-TECH FM-700, Kawasaki, Japan) with a loading force of 100 g for
10 s. The tensile tests were performed at a loading rate of 2 mm/min using an electronic universal
testing machine (STAR, WDW-300E, Jinan, China) according to GB/T 228.1-2010 [30], and the geometric
dimensions of the tensile specimens are shown in Figure 3. The tensile strength was the average
of three specimens. The fracture features were observed by a scanning electron microscope (ZEISS,
SUPRA 55, Jena, Germany).
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Figure 3. Schematic diagram of specimens used for tensile testing.

3. Results and Discussion

3.1. Weld Formation

The weld cross-sections of the LPMHW and LCHW joints are presented in Figure 4. Both of
them appeared hourglass-shaped and consisted of an arc zone and a laser zone [13,29,31], as shown in
Figure 4a,b. For the sake of convenience, the typical zones and dimensions of the cross-section were
defined as follows: Pa-weld penetration of the arc zone, Pl-weld penetration of the laser zone, Wf-weld
width of the front surface, Wb-weld width of the back surface, Rf-reinforcement of the front surface,
and Rb-reinforcement of the back surface, as described in Figure 4a.
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Figure 4. Cross-sections of (a) the LPMHW joint and (b) the LCHW joint.

The measured results of the cross-section dimensions for the LPMHW and LCHW joints are listed
in Table 3. The results indicate that joints without porosity, undercutting, or other apparent welding
defects could be obtained with both the LPMHW and LCHW. Pa and Wf of the LPMHW joint were
higher than that of the LCHW joint; on the contrary, Pl and Wb of the LPMHW joint were lower than
that of the LCHW joint. The main reason was that the PMIG arc needed a higher heat input. Although
the LPMHW had a higher wire feeding speed, the Rf of the LPMHW joint was lower than that of the
LCHW joint with the same welding speed. This indicated that the CMT arc reduced the arc pressure
on the weld pool, which was the other reason for the Pl of the LPMHW joint being higher than that of
the LCHW joint [29]. The Rb of the LPMHW and LCHW joints were roughly the same because of the
excellent fluidity of the liquid aluminum alloy.

Table 3. Measured results of the cross-section dimensions for the LPMHW and LCHW joints.

Dimensions LPMHW LCHW

Weld penetration of the arc zone (Pa/mm) 3.5 3.1
Weld penetration of the laser zone (Pl/mm) 2.5 2.9
Weld width of the front surface (Wf/mm) 10.8 10.0
Weld width of the back surface (Wb/mm) 4.5 3.8

Reinforcement of the front surface (Rf/mm) 0.7 1.0
Reinforcement of the back surface (Rb/mm) 2.1 2.2
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Spatter was observed on the LPMHW specimen surface, while there was almost no spatter to be
found on the LCHW specimen surface, as shown in Figure 5a,c. The effects of droplets on the keyhole
directly influence the formation of spatter during the LAHW process [32]. The droplet transfer modes
were a spray transfer mode and a short-circuiting transfer mode, respectively, as shown in Figure 5b,d.
The interactions between the keyhole and the droplet were different during the LPMHW and LCHW
processes, which led to the different quantities of spatter. In the case of short-circuiting transition,
as well as the droplets being detached with the assistance of filler wire retraction, the effects of the
droplets on the keyhole were substantially weakened, which made the weld pool more stable [25].
Therefore, compared with the LPMHW process, spatter was reduced, and even disappeared, during
the LCHW process.
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3.2. Microstructure Characteristics

The major focus of this part was the microstructure comparison in the arc zone of the LPMHW and
LCHW joints, and the microstructural characteristics were as shown in Figure 6. The metallographic
observation results showed that the LPMHW and LCHW joints had similar characteristics; five distinct
zones existed from the weld center to the base material: an equiaxed zone, a columnar zone, a partially
melted zone, an over-aged zone, and the base material, as shown in Figure 6a.

Equiaxed dendrites were observed in the center of the arc zone for both the LPMHW and LCHW
joints. In general, the equiaxed grains formed in the two joints were fine and uniform. Meanwhile, the
comparison of results between Figure 6b,c indicated that the sizes of the equiaxed dendrites in the
LPMHW joint were slightly larger than those in the LCHW joint. The main reason for this difference
was that the heat input of the pulsed arc was slightly higher than that of the CMT arc during the welding
process. Near the fusion line, parallel dendrites were preferentially elongated in the direction of the
thermal gradient, and the heat-affected zone consisted of a partially melted zone and an over-aged
zone, as shown in Figure 6d,e. However, there were two significant differences between the LPMHW
and LCHW joints: firstly, the width of the partially melted zone in the LPMHW joint (about 97.2 µm)
was larger than that in the LCHW joint (about 74.3 µm); secondly, the over-aged zone in the LCHW
joint was not as obvious as that in the LPMHW joint. The different microstructures resulted from the
different cooling rates and heat inputs [33,34]. A lower heat input during CMT arc mode was the main
reason for these differences.
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3.3. Microhardness Distribution

According to BS EN ISO 9015-2:2016 [35], the microhardness test positions were 1 mm and
5 mm away from the top surface of the joint, respectively. The microhardness distributions in the
different areas of the LPMHW and LCHW joints are shown in Figure 7. For both of the two joints, the
microhardness distribution presented inhomogeneity. The base material had the highest microhardness
value, and the microhardness of the weld seam and the heat-affected zone decreased in different
degrees. There were two main reasons for the microhardness decrease in the weld seam: firstly, the
microhardness of the filler wire was lower than that of the base material; secondly, the alloying elements
were burned and lost during the welding process [1,36]. That the grain size became larger and the
precipitates became fewer were the causes of the microhardness decrease in the heat-affected zone [37].
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Overall, the microhardness values of each zone for the LPMHW joint were lower than that of the
LCHW joint, and the microhardness values of the arc zone were also lower than that of the laser zone.
By comparison, the width of the heat-affected zone of the LPMHW joint was larger than that of the
LCHW joint. It was found that there were two softening regions in the affected zone of the two joints:
one was in the partially melted zone because of the loss of strengthening alloying elements in this
area [37,38], and the other was at a distance away from the fusion line due to the strengthening phases
(β”) being dissolved and substantially decreased in this area [39]. Furthermore, the second softening
region was more prominent in the arc zone, and was also wider for the LPMHW joint compared
with that of the LCHW joint. All of the above phenomena were due to higher heat input during the
LPMHW process.

3.4. Mechanical Properties

The tensile properties of the LPMHW and LCHW joints are listed in Table 4. It can be found that
the average tensile strength of the LCHW joints reached up to 262.5 MPa and was higher than that
of the LPMHW joints (255.1 MPa), and these strengths were 84.7% and 82.4% of the base material
(310 MPa) used in this work, respectively.

Table 4. Mechanical properties of the LPMHW and LCHW joints.

Welding
Method

Specimen
Number

Tensile Strength (MPa) Joint
Efficiency

(%)

Elongation (%)
Fracture Location

Single Average Single Average

LPMHW
LPMHW-1# 260.1

255.1 82.4
9.4

8.6
Heat-affected zone

LPMHW-2# 251.3 8.1 Heat-affected zone
LPMHW-3# 254.0 8.3 Heat-affected zone

LCHW
LCHW-1# 259.4

262.5 84.7
9.8

9.4
Heat-affected zone

LCHW-2# 264.7 8.9 Heat-affected zone
LCHW-3# 263.5 9.6 Heat-affected zone

Fracture locations, macroscopic features, and microscopic fractures of the LPMHW and LCHW
joints are shown in Figure 8. The fractures of the tensile specimens for the LPMHW and LCHW joints
all occurred in the softening regions of the heat-affected zone, and the fracture propagation paths were
almost parallel to the fusion line, as shown in Figure 8a,c. This result indicated that the softening region
in the heat-affected zone was the weakest area. More serious softening was caused in the heat-affected
zone of the LPMHW joint, as shown in Figure 7a; therefore, the average tensile strength of the LPMHW
joint was slightly lower than that of the LCHW joint. The fracture morphologies indicated that the
LPMHW and LCHW joints had similar fracture characteristics. For these two joints, the fractures were
all characterized by dimples with a few second phase particles at the bottom of the dimples, as shown
in Figure 8b,d. The fracture surfaces of the two joints showed a typical dimple fracture appearance
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revealing a ductile failure mode [21,31], but the dimples in the fractograph of the LCHW joint were
deeper than those of the LPMHW joint.
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Figure 8. (a) Fracture location and (b) microscopic fracture of the LPMHW joint, (c) fracture location
and (d) microscopic fracture of the LCHW joint.

4. Conclusions

In the present work, a comparative study on the weld formation, microstructure, microhardness,
and mechanical properties of laser-pulsed metal inert gas hybrid welding (LPMHW) and laser-cold
metal transfer mode hybrid welding (LCHW) for 6 mm thick AA6082-T6 aluminum alloy was carried
out in detail. The main conclusions can be summarized as follows:

(1) Joints without porosity, undercutting, or other welding defects could be obtained by both
LPMHW and LCHW. Compared with the LPMHW process, the effects of the droplets on the keyhole
were substantially weakened, which reduced, and even eliminated, spatter during the LCHW process.

(2) The microstructures of the LPMHW and LCHW joints both consisted of an equiaxed zone, a
columnar zone, a partially melted zone, an over-aged zone, and the base material. Due to lower heat
input during the LCHW process, the sizes of the equiaxed dendrites and the width of the partially
melted zone in the LPMHW joint were slightly larger than that in the LCHW joint, and the over-aged
zone in the LCHW joint was not as obvious as that in the LPMHW joint.

(3) The microhardness of each zone for the LPMHW joint was lower than that of the LCHW joint,
and the microhardness of the arc zone was also lower than that of the laser zone for the two joints. By
comparison, the heat-affected zone width of the LPMHW joint was larger than that of the LCHW joint.
Two softening regions were identified in the partially melted zone and the heat-affected zone, and
the latter was more prominent in the arc zone. The softening region in the heat-affected zone of the
LPMHW joint was also wider than that of the LCHW joint.

(4) The average tensile strengths of the LPMHW and LCHW joints reached 255.1 MPa and 262.5
MPa, which were 82.4% and 84.7% of the base material. For the two joints, the fractures all occurred in
the softening region of the heat-affected zone, and the fracture propagation paths were almost parallel
to the fusion line. The fracture morphologies showed ductile fracture features, but the dimples in the
fractograph of the LCHW joint were deeper than those of the LPMHW joint.

Author Contributions: X.H. and Z.Y. performed the experiments, analyzed the results, and wrote this manuscript.
X.H., Z.Y., and C.S., conceived and designed the experiments. Y.M. and Z.X. participated in the experiments and
discussion. All authors have read and agreed to the published version of the manuscript.
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