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Abstract: The aim of this research is to characterize the soldering alloy Zn6Al6Ag, and to study the
ultrasonic soldering of an Al2O3/metal–ceramic composite (Al/Al2O3). Zn6Al6Ag solder presents a
quasi-eutectic structure with a melting point around 425 ◦C. The solder microstructure consists of a
(Zn) + (Al) matrix, reinforced with a silver AgZn3 phase. A bond with the metal–ceramic composite
was formed due to the dissolution of Al in the liquid Zn solder. The Al2O3 particles were put into
motion, and a new composite was formed on the boundary. The Zn6Al6Ag solder also wetted the
surface of the Al2O3 ceramic. A decisive effect on bond formation was caused by zinc and aluminum,
whose oxides were combined with the oxides of ceramic material during in-air soldering. An adhesive
bond was formed. The average joint shear strength of Al2O3/metal–ceramic composite (Al/Al2O3)
was found to be 23 MPa.
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1. Introduction

Demand is growing for thermally controlled materials in microelectronics. Semiconductors
stimulated the development of sophisticated metal–ceramic composites (MMC) with high thermal
conductivity (TC) for efficient heat dissipation, and adjustable coefficient of thermal expansivity (CTE)
to minimize thermal stresses. This is of principal significance for enhancing the power efficiency,
life cycle, and reliability of electronic equipment.

Because the specific TC (TC divided by density) of Al-based composites is high, they are desirable
for applications, such as in the aviation industry, where low mass is also desirable [1,2]. Materials
used for packaging underwent immense development, owing to many key factors: an increase in the
density of packages, greater demand for reliability, growing use of large semiconductor materials with
phase arrays, and strict weight limitations for onboard components and many other systems [3].

From the viewpoint of packaging technology, it is essential that electronic devices are capable of
operating faster with smaller dimensions and with lower weight.

For this reason, along with the composite materials, new technologies for packaging with
high-temperature solders are also applied. This concerns technologies such as ball grid arrays (BGAs),
flip-chip technology (C4), chip-scale packaging (CSP), and/or multi-chip modules (MCMs) [4].

The development of high-temperature solders is a major challenge, mainly due to the ban imposed
on the use of lead and other elements that are detrimental to health and the environment. At present,
there are only a limited number of lead-free soldering alloys available that could, at least partially,
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substitute for high-lead solders [5]. The alternative alloy systems are hypo-eutectic Bi–Ag, Sb–Sn,
or Au–Sn alloys [6,7]. Other alloy systems comprise Zn–Al alloys (alloyed with Mg, Ge, Ga, Sn, and Bi).

These alloys are very attractive from the perspective viewpoint, because Zn is even less expensive
than Pb. A small addition of Mg or Ga to this alloy lowers the melting point and forms a ternary alloy
that preserves the desired solidification criteria for soldering at higher application temperatures [8–10].
Zn–Al-based alloys intended for the electronic industry offer a suitable melting range, as well as good
TC and electrical conductivity.

This is why it was selected by the authors of Reference [11] as the basis for their study. They added
the Mg and Ga elements to that alloy and, thus, developed the Zn4Al3Mg3Ga alloy. Copper and silicon
were used as substrate materials, which were metallized with a Ti/Ni/Ag layer.

Soldering was performed at 370 to 400 ◦C. The ZnAlMgGa/Cu joints attained a shear strength
between 21.8 and 29.4 MPa at soldering temperatures between 370 and 400 ◦C. This is a comparable
joint strength value to that of the Pb5Sn/Cu joint, which attained a value of 28.2 MPa.

The research in Reference [12] dealt with four Zn-based alloys (Zn6Al, Zn6Al1Ga, Zn3Al3Mg,
and Zn4Al3Ga3Mg), which could be good substitutes for a classic high-lead solder. Their microstructure
and mechanical properties were studied. The authors found that the main cause of solder embrittlement
was the thermal dependence of Ga solubility in the hexagonal lattice (hcp) of zinc, in combination
with the affinity of Ga for the surface of phases enriched by Al and Zn. This embrittlement may
be suppressed by lowering the solubility at higher temperatures. Studies [12,13] dealt with similar
issues, where Sn, In, and Ga elements were added to solder types Zn–Al–Mg and Zn–Al–Ge. However,
improvement of properties by this alloying was not proven.

Other authors also studied the soldering of ceramic materials with Zn-based solders. For example,
in Reference [14], the direct soldering of SiC ceramic by ultrasound assistance was studied. Ceramic
SiC substrates were soldered with Zn8.5Al1Mg solder in air at 420 ◦C. Shear strength increased with
prolonged ultrasound assistance. The highest strength (148.1 MPa) was achieved with an ultrasound
assistance of 8 s.

In Reference [15], the authors studied the soldering of sapphire (crystalline form of Al2O3) with
ultrasound assistance. Zn4Al solder was used.

A composite interlayer of SiCp/A356 was applied in order to reduce the coefficient of thermal
expansion of the soldered joint. The application of this interlayer also resulted in a significant increase
in joint shear strength to approximately 155 MPa. This represented an increase of about 250% compared
to joints that used only Zn–Al alloy.

Issues related to soldering SiC/Al composite with Zn–Al-based solders were studied by the
authors of Reference [15]. In order to assure wetting, they employed ultrasound with a 20 kHz
frequency. After ultrasound activation, the transfer of SiC particles to the molten solder was observed.
Shear strength increased with increasing soldering temperatures. The authors attributed this to an
increasing content of Al and volume proportion of reinforcing particles in the joint. Research on
application of the same composite material (SiC) was also carried out by the authors of Reference [16].
In order to improve the strength of joints, an Ni layer was deposited on the composite, ensuring better
wetting of Zn-based solder (Zn–Cd–Ag–Cu) with melting at approximately 400 ◦C.

A number of authors [17–20] showed that solder reactions with metal ceramic composites are
preferably oriented to the matrix, which was aluminum in those cases. The selection of soldering
alloy is, therefore, aimed toward materials used for Al soldering. Vacuum soldering technology may
also be suitable for the fluxless soldering of composites. This issue was studied by the authors of
References [21–25]. However, the time required for soldered joint fabrication was on the order of
several tens of minutes and, in some cases, hours. By comparison, joints can be fabricated by ultrasound
in just a few minutes (often in less than 5 min).

The research in this work is devoted to the characterization of Zn6Al6Ag solder for soldering
at high application temperatures. Microstructure, phase composition, temperature of phase
transformations, and tensile strength were all studied. This work deals with the application of
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Zn6Al6Ag solder for ultrasonic soldering of Al2O3/composite (Al/Al2O3) combinations. This study is
oriented toward an assessment of the characteristics of soldered joints by analysis performed at the
solder/substrate boundary. The strength of fabricated joints was also assessed by the shear strength
test, and then by observation of the fractured surfaces. This research brings a new understanding
to the field of the ultrasonic soldering of metal–composite combinations through the application of
Zn–Al–Ag-based solder.

2. Experimental

Zn-based solder was used in the experiments. This was a three-component solder with the
chemical composition shown in Table 1. Atomic emission spectrometry using the induction-coupled
plasma (ICP-AES) method was applied for analysis of the chemical composition of the chosen solder.
The analysis was performed on a SPECTRO VISION EOP instrument (SPECTRO Analytical Instruments
GmbH, Kleve, Germany). The specimens of alloys for ICP-AES analysis were dissolved in suitable
chemical solutions of acids and bases. The analysis proper was performed on an emission atomic
spectrometer (BAS Rudince Ltd., Blansko, Czech Republic) with a pneumatic atomizer and a Scott-type
atomizing chamber.

Table 1. Composition of Zn–Al–Ag alloys and the results of chemical analysis done using the
induction-coupled plasma atomic emission spectrometry (ICP-AES) method (wt.%).

Specimen
Charge (wt.%) ICP-AES (wt.%)

Zn Al Ag Zn Al Ag

Zn6Al6Ag 88.0 6.0 6.0 88.38 6.14 ± 0.31 5.48 ± 0.55

This solder is characterized as a solder suitable for high application temperatures intended
for the electrotechnical industry. The solder was manufactured by casting in the form of an ingot.
Weighing of single solder components was done after setting the weight ratio of the prepared alloys.
Components with high purity from 3N to 5N were used for solder fabrication. The manufacture was
performed in a horizontal tube vacuum furnace with resistance heating. The working temperature
used during manufacture was 900 ◦C, at a vacuum of 10−4 Pa. At this temperature, held for 20 min,
the homogenization of soldering alloy took place. The cooling in the vacuum furnace was slow,
occurring at the rate of 14 ◦C/min.

Substrates of the following materials were used in the experiment:

• A composite substrate from Fraunhofer Ltd. (Dresden, Germany) composed of an Al matrix,
reinforced with ceramic particles of Al2O3 with an average particle size of 30 µm in the form of
square plates, with dimensions of 10 × 10 × 3 mm. The volume fraction of Al2O3 particles in the
composite was 50%;

• Al2O3 ceramic substrate from Flocculus Ltd. (Libina, Czech Republic) in the form of discs
Ø15 × 3 mm and in a shape of square plates with dimensions of 10 mm × 10 mm × 3 mm with
3N purity;

• 4N purity metallic Cu substrate in the form of discs Ø15 × 3 mm;
• Al alloy Al7075 substrate in the form of discs Ø15 × 3 mm.

Figure 1 shows the schematic orientation of soldered joint substrates. The carrying material in
this study was the metal–ceramic composite, which was also combined with other materials.
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Figure 1. Schematic representation of setup of soldered materials.

Soldering was performed on Hanuz UT2 ultrasonic equipment (HANUZ Ltd., Nove Mesto nad
Vahom, Slovak Republic) with the parameters given in Table 2. Solder activation was realized using
an encapsulated ultrasonic transducer consisting of a piezo-electric oscillation system and a titanium
sonotrode with a tip diameter of Ø3 mm. The soldering temperature was 20 ◦C above the liquid
temperature of the solder. The soldering temperature was controlled by continuous temperature
measurement on a hot NiCr/NiSi plate by a thermocouple.

Table 2. Soldering parameters.

Parameters Unit Value

Ultrasound Power W 400
Working frequency kHz 40

Amplitude µm 2
Soldering temperature ◦C 430

Time of ultrasound activation s 5

The soldering process on a hot plate in the presence of ultrasonic vibrations consisted of several
steps as follows:

• Cleaning and degreasing soldered materials;
• Laying the substrate on a hot plate;
• Heating the hot plate to 430 ◦C;
• Deposition of a small amount of solder with thickness of 600 µm on the surfaces of the substrates;
• Placing the ultrasonic device sonotrode into the molten solder for 5 s;
• After ultrasound activation, removing the surface oxides on the molten solder by use of a

stainless-steel plate;
• Bringing the prepared substrates with the solder on their surface into contact, and leaving them

for approximately 1 min.

A schematic representation of the soldering procedure is shown in Figure 2.
The metallographic preparation consisted of grinding, polishing, and etching the embedded

specimens. The specimens were inserted into a jig grinder. Grinding was performed on SiC paper
with granularities of 600, 1200, and 2400. During the grinding process, water was supplied to the
grinding paper in order to wash away grinding debris. The grinding process on each paper lasted
3 min. After grinding, the polishing process continued on polishing discs with diamond emulsions
with particle sizes of 9 µm, 6 µm, 3 µm, and 1 µm. The entire polishing process with all emulsions
lasted 4 min.
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After polishing, the etching process continued. Nital etchant with a chemical composition of
2 mL of HNO3 and 98 mL of ethanol was applied for 4 s. X-ray diffraction (XRD) analysis was used
for the identification of phase composition of the solder and composition on the fractured surfaces
after the shear strength test. The X-ray diffraction measurements were carried out using a PANalytical
Empyrean diffractometer with Bragg–Brentano geometry (Malvern Panalytical Ltd., Malvern, UK).
Characteristic CuKα1,2 (CuKα1 = 1.540598 × 10–10 m, CuKα2 = 1.544426 × 10–10 m) was emitted at
an accelerating voltage of 40 kV with a beam current of 40 mA and was collimated using fixed slits.
Diffracted radiation was collected using area-sensitive detectors operating in one-dimensional (1D)
scanning mode. XRD data were analyzed using the ICSD Inorganic Crystal Structure Database and
ICDD PDF2 powder diffraction and crystal structure database.

The differential scanning calorimetry (DSC) analysis was performed on Setaram SETSYS 18TM
equipment with a type E DSC sensor. Analysis of alloy specimens was performed in the corundum
crucibles with lids in a shielding atmosphere of Ar (6N). The rate of heating and cooling was 5 ◦C/min.
The weight of the analyzed specimens was 40–60 mg. Specimens were, prior to analysis, properly
ground and cleaned in acetone with the simultaneous assistance of ultrasound. Prior to analysis
proper, the oven space was washed with Ar (6N), and the space around the specimen was subsequently
vacuum-pumped and then filled with Ar. A constant dynamic atmosphere of Ar (6N, 2 L/h) was
maintained during the entire analysis.

The microstructure of soldering alloy and soldered joints was observed by SEM on an FEI
(Field Electron and Ion) Quanta 200 FEG microscope (Scientific and Technical Instruments, Hillsboro,
OR, USA).

The solder and soldered joints were studied with the aid of qualitative and quantitative chemical
analysis on JOEL 7600 F equipment with a Microspec WDX-3PC microanalyzer (Microspec Corporation,
Peterborough, NH, USA).

For the strength measurement of soldered joints, shear strength testing was performed on LabTest
5.250SP1-VM equipment (Labortech Ltd., Prague, Czech Republic). The strength was measured by
use of a special jig, for which a schematic representation is shown in Figure 3. The measurement was
performed until complete joint failure. The fractured surfaces obtained were assessed by observation
of the microstructure, and chemical analysis was performed on JOEL 7600 F equipment (Microspec
Corporation, Peterborough, NH, USA).
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Figure 3. Schematic representation of the jig for shear strength measurement.

3. Experimental Results

3.1. DSC/DTA Analysis

The DSC/DTA (Differential thermal analysis) analysis was performed on two specimens of
soldering alloys. Four temperature changes were observed on both specimens. Table 3 shows the
significant temperatures for ZnAl6Ag6 solder, related to a heating rate of 5 ◦C/min. The TL value
is the liquidus temperature. T1 is the temperature of segregation of the AgZn3 phase from the melt.
The T2 value is the temperature of eutectic transformation, and T3 is the temperature of eutectoid
transformation. Two values mean measurements on two samples.

Table 3. The temperatures of phase transformation under heating in accordance with DSC/DTA analysis.

Alloy Heat
TL T1 T2 T3

ZnAl6Ag6 427 406 391 285
424 405 385 280

Figure 4 shows a record from the DSC/DTA analysis, also marking significant temperatures at
which the phase transformation in the Zn–Al–Ag system for the given alloy composition took place.
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From the isoplethic cross-section shown in Figure 5, valid for 90 wt.% Zn, the sequence of phase
formation at cooling from the melt is as follows:

L TL
→ L + AgZn3

T1
→ L + AgZn3 + (AL′′) T2

→ (AgZn3) + (Al′′) + (Zn) T3
→ (AgZn3) + (Al) + (Zn) (1)
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Figure 5. Isoplethic cross-section through the ternary system of Ag–Al–Zn for 90 wt.% Zn [26].

The presence of primarily segregated Zn–Ag phase may be expected in alloy structures after
total solidification, followed by segregation of Al (Al”), and then solid solution (Zn). The phase (Al”)
with high Zn content should be decomposed into a solid solution (Al) with low Zn content under
thermodynamic equilibrium conditions below 280 ◦C.

3.2. Microstructure of Zn–Al–Ag Solder

The microstructure of Zn6Al6Ag solder is shown in Figure 6. This microstructure was observed by
SEM microscopy in BSE (Back-scattered electrons) study mode. In BSE mode, the measure of darkening
is indirectly proportional to the average atomic mass of elements present at the given point (lighter
elements are presented as darker, e.g., the solid solution (Al), while heavier elements are presented as
brighter, e.g., the solid solution (Zn) and AgZn3 phase).

To determine the chemical composition of the individual components of soldering alloys,
local chemical EDX (Energy-dispersive X-ray spectroscopy) microanalysis was performed. The points
where the analysis was executed are marked by the numerals in Figure 7 and Table 4, while the results
of phase composition are shown in the table under the figure. Spectrum 1 shows the light-gray phase
containing the ε phase with 78 wt. % Zn and 22 wt. % Ag without the presence of Al. In accordance
with the phase diagram for Ag–Zn (Figure 5), this phase is stable over a wide range of concentrations.
The phase may be designated as Ag0.26Zn0.74 or AgZn3. Spectrum 2 shows a medium-gray matrix. It is
formed of a zinc solid solution, with dissolved Ag in amounts from 1.3 to 4.5 wt.%, which correspond
to the binary diagram (Ag–Zn). Spectrum 3 shows a dark-gray zone, containing the solid solution (Al”)
with high Zn content. This phase was formed by a eutectic reaction at a temperature of approximately
380 ◦C. The Ag presence is minimal here. Spectrum 4 shows a zone formed of eutectic with high Al
content (around 31 wt.%) and Zn (around 71 wt.%). Ag content occurred here at the level of 2 wt.%.
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Table 4. The phase composition results of Zn-Al-Ag solder.

Spectrum. Zn (wt.%) Al (wt.%) Ag (wt.%) Solder Component

Spectrum 1 78.2 - 21.8 phase AgZn3
Spectrum 2 98.7 - 1.3 solid solution (Zn)
Spectrum 3 77.2 20.9 1.9 solid solution (Al”)
Spectrum 4 63.6 35.5 0.9 Zn–Al eutectic
Spectrum 5 41.6 58.1 0.3 solid solution (Al”)

Spectrum 5 shows a dark zone detected in eutectic, which proved the presence of solid solution
(Al) with considerably lower Zn content than in Spectrum 3.

To confirm and clearly identify phases in the soldering alloy, XRD analysis was performed.
The diffraction record of Zn6Al6Ag solder is shown in Figure 8. The record identified Zn that occurred
in the form of a βZn solid solution in solder bulk. The analysis also identified the presence of Al and
AgZn3 intermetallic phases. The XRD record proves that a wide proportion of this phase was found in
solder bulk.
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3.3. Analysis of Soldered Joint on the Boundary of MMC/Zn6Al6Ag Joint

The microstructure of the boundary of the MMC/Zn6Al6Ag soldered joint is shown in Figure 9.
In soldering the composite materials of Al/Al2O3 with Zn6Al6Ag, a significant dissolution of aluminum
from the composite occurred and, thus, a transition zone over a span of up to 75 µm also formed.
Movement of the Al2O3 particles also took place in this zone. The volume fraction of ceramic particles
in the new composite transition zone were reduced approximately by half.
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Figure 9. Microstructure of boundary in the metal–ceramic composite (MMC)/Zn6Al6Ag joint.

The bond between the ceramic composite and Zn6Al6Ag solder was formed as follows: the surface
oxides on the MMC substrate were firstly disrupted under the molten layer of Zn solder under fluxless
soldering in air. Subsequently, dissolution of the aluminum surface of the MMC substrate took
place due to the action of molten Zn solder. Through the dissolution of the aluminum matrix of the
substrate, the Al2O3 particles, which were initially in the MMC substrate, were also put into motion.
The transition zone or solubility band was, thus, formed.
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EDX point microanalysis was performed in the transition zone. The results of the point analysis
are shown in Figure 10 and Table 5. Measurement was performed at individual points (spectra).
From the results of the analysis given in Table 5 under Figure 10, it is obvious that mainly the solid
solution (Al) Spectra 1 and 3 occurred in the transition zone.
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Figure 10. EDX point analysis of bond in the boundary of MMC/Zn6Al6Ag joint, the zone with a
new composite.

Table 5. The phase composition of MMC/Zn6Al6Ag joint boundary.

Spectrum Zn (wt.%) Al (wt.%) Ag (wt.%) Solder Component

Spectrum 1 47.93 44.80 7.26 phase (Al)
Spectrum 2 76.28 5.07 18.65 Phase ε–AgZn3
Spectrum 3 48.23 48.23 3.54 phase (Al)

High-wt.% Al was recorded in both measured spectra, but not in Spectrum 2. From the
measurement performed at the point labeled Spectrum 2, the presence of silver was identified in the
form of ε–AgZn3 phase. The results of point analysis suggest that the initial grains of the Al/Al2O3

composite were wetted with the new alloy formed of Zn and Ag elements and dissolved Al. The map
of individual elements, partially in the transition zone and partially in the solder, is documented in
Figure 11.

It is also obvious here that Zn and Al occurred in the transition zone, with non-uniformly
distributed Ag. Zn mainly contributed to the formation of a bond between the ceramic composite and
Zn solder, but the presence of silver in the transition zone of the bond was also confirmed.



Metals 2020, 10, 343 11 of 17

Metals 2020, 10, x FOR PEER REVIEW 10 of 16 

 

Table 5. The phase composition of MMC/Zn6Al6Ag joint boundary. 

Spectrum Zn (wt.%) Al (wt.%) Ag (wt.%) Solder Component 
Spectrum 1 47.93 44.80 7.26 phase (Al) 
Spectrum 2 76.28 5.07 18.65 Phase ε–AgZn3 
Spectrum 3 48.23 48.23 3.54 phase (Al) 

High-wt.% Al was recorded in both measured spectra, but not in Spectrum 2. From the 
measurement performed at the point labeled Spectrum 2, the presence of silver was identified in the 
form of ε–AgZn3 phase. The results of point analysis suggest that the initial grains of the Al/Al2O3 
composite were wetted with the new alloy formed of Zn and Ag elements and dissolved Al. The map 
of individual elements, partially in the transition zone and partially in the solder, is documented in 
Figure 11.  

 

 

  

 
Figure 11. Planar distribution of elements in the boundary of MMC/Zn6Al6Ag soldered joint.

3.4. Analysis of Soldered Bond in the Boundary of Al2O3/Zn6Al6Ag Joint

The microstructure of the transition zone in the Al2O3/Zn6Al6Ag joint is documented in Figure 12.
The microstructure shows the surface of the Al2O3 ceramic substrate, which was coarsened by
ultrasound assistance. The penetration of solder into the depressions and voids in the ceramic is clearly
visible, as well as the wetting of ceramic material with Zn6Al6Ag solder.
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Figure 12. Microstructure of transition zone in Al2O3/Zn6Al6Ag joint.

The bond with ceramic material was formed as follows: firstly, the surface of the ceramic was
disrupted by ultrasound assistance during the soldering process. Portions of zinc and aluminum
were oxidized during soldering in air. The oxidized zinc particles were distributed to the boundary
with ceramic material, owing to ultrasonic activation. The zinc particles combined with oxides on the
surface of the ceramic material, which resulted in wetting and solder penetration into depressions and
voids on the substrate surface.

The point EDX analysis of a depression in the Al2O3 substrate with a width of 5 µm is documented
in Figure 13 and Table 6. It shows that mainly Zn and Al, as well as partially Ag in the form of
oxides, contributed to bond formation at the surface of the Al2O3 ceramic. The points of measurement
(Figure 13) in the depressions in Al2O3 ceramic are marked as Spectra 1 to 3. The Zn content was
observed from 69.18 to 80.14 wt.%, and the aluminum content was observed from 11.77 to 27.77 wt.%.Metals 2020, 10, x FOR PEER REVIEW 12 of 16 
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Table 6. The phase composition of Al2O3/Zn6Al6Ag joint boundary.

Spectrum. Zn (wt.%) Al (wt.%) Ag (wt.%) O (wt.%)

Spectrum 1 72.17 9.90 7.04 10.89
Spectrum 2 73.76 10.83 5.75 9.66
Spectrum 3 64.95 25.20 2.80 7.04
Spectrum 4 69.02 14.64 2.84 13.51
Spectrum 5 62.02 25.69 4.23 8.06
Spectrum 6 57.42 14.80 11.51 16.27

3.5. Measurement of Shear Strength in Soldered Joints

The research in this study was primarily oriented toward soldering the substrate made of MMC
composite with Al2O3. Owing to a comparison of the results, a measurement of shear strength was
also performed with the MMC/Al7075 (AlZn5.5MgCu) combination, followed by the MMC/Cu and
Al2O3/Al2O3 combinations. The measurement was performed on four specimens of each material.
The results for the average shear strength of joints are documented in Figure 14.
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The lowest average shear strength of 23 MPa was obtained with the MMC/Al2O3 combination.
In the case of the Al2O3/Al2O3 combination, a higher average shear strength of 44 MPa was observed.
Considerably higher shear strength values of 127.5 and 139.5 MPa, respectively, were observed with
the MMC/7075 and MMC/Cu soldered joints.

The large differences in the shear strength of MMC/Al2O3, MMC/Al7075, and MMC/Cu joints
may be explained by the different mechanisms of bond formation. In the case of MMC and Al7075
materials, the bond is formed by the dissolution of Zn in solder.

Similarly, in the case of copper substrate, the bond is formed by dissolution of the Cu substrate in
Zn solder during the formation of the new intermetallic phases. However, in the case of soldering
Al2O3 ceramics, no new phase is formed at the ceramic/solder boundary, and diffusion does not take
place; therefore, the bond is simply of adhesive character.

Moreover, in soldering the Al2O3/Al2O3 combination, the CTE was the same, and that is why no
significant residual stresses were formed, which resulted in higher shear strength compared with the
MMC/Al2O3 combination.
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3.6. Analysis of Fractured Surfaces

The fractured surfaces of joints were analyzed for more precise identification. Figure 15a shows
the documented fractured surface at the boundary of the Al2O3/Zn6Al6Ag joint. We can see that
the fractured surface of the Al2O3 substrate remained partially covered with solder. An analysis
of the planar distribution of Zn, Al, Ag, and O elements on the fractured surface was performed,
as documented in Figure 15b–e. The ceramic substrate represents mainly Al and O elements. The solder
is best depicted by Zn and Ag elements.
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Figure 15. Planar analysis of elements on the fractured surface of Al2O3/Zn6Al6Ag joint: (a) fracture
morphology; elements (b) O, (c) Al, (d) Zn, and (e) Ag.

XRD analysis was performed at the boundary of the Al2O3/Zn6Al6Ag joint. Two majority phases
were identified as solid solution (Al) and solid solution (Zn), as well as Al2O3 oxide, which was
probably part of the substrate. Several components of the solder oxidized during soldering in air
and, therefore, the presence of the AgAlO oxide phase was also confirmed. The record from the XRD
analysis is documented in Figure 16.
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4. Conclusions

The aim of this research was to study the Zn6Al6Ag soldering alloy and its application for
ultrasonic soldering of an Al2O3/composite (Al/Al2O3) combination. It was determined whether the
proposed composition would be suitable for soldering ofAl2O3 ceramic and a metal–ceramic substrate
(Al/Al2O3) under the defined conditions. The following results were obtained:

• DSC analysis was used to determine the melting point of the solder. The DSC curve contained
two main peaks with four thermal effects in the Zn–Al–Ag system. The first and smaller peak
corresponded to the eutectoid reaction at a characteristic temperature of 275 ◦C. The second and
larger peak corresponded to a eutectic reaction at the characteristic temperature of 385 ◦C. Next,
the reaction at a temperature of 405 ◦C corresponded to segregation of the AgZn3 phase. The last
reaction characterized the melting point of solder at a temperature of 427 ◦C.

• The microstructure of Zn6Al6Ag solder consisted of solid solution (Al), solid solution (Zn),
and ε–AgZn3 phase, which was proven by EDX and XRD analyses.

• The bond between the ceramic composite and Zn6Al6Ag solder was formed as follows: firstly,
the surface oxides on the MMC substrate were disrupted under the molten layer of zinc solder.
Subsequently, the dissolution of the aluminum surface of the MMC substrate took place, owing to
the activity of the molten Zn solder. On dissolution of the aluminum matrix of the substrate in the
zinc solder, the Al2O3 particles, which were initially in the MMC substrate, were also put into
motion. A transition zone was, thus, formed (a band formed of a new composite).

• The bond of Al2O3 with Zn6Al6Ag solder was formed as follows: in soldering with ultrasound
assistance, the surface of the ceramic was firstly disrupted. Portions of Zn and Al were oxidized
during soldering in air. Owing to ultrasound activation, the oxidized Zn and Al particles were
distributed to the boundary of the ceramic material. The Zn, Al, and Ag particles combined with
the oxides on the surfaces of ceramic materials, resulting in wetting and penetration of solder into
the recesses on the substrate surfaces.

• In the case of the MMC/Al2O3 combination, the average shear strength attained was 23 MPa.
In the case of soldering Al2O3 ceramics, no new phase at the ceramic/solder boundary was formed,
and diffusion did not take place; therefore, the bond was merely of an adhesive character.
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