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Abstract: Given the application of a multiple regression and artificial neural networks (ANNs), this
paper describes development of models for predicting surface roughness, linking an arithmetic
mean deviation of a surface roughness to a torque as an input variable, in the process of drilling
enhancement steel EN 42CrMo4, thermally treated to the hardness level of 28 HRC, using cruciform
blade twist drills made of high speed steel with hardness level of 64–68 HRC. The model was
developed using process parameters (nominal diameters of twist drills, speed, feed, and angle of
installation of work pieces) as input variables varied at three levels by Taguchi design of experiment
and measured experimental data for a torque and arithmetic mean deviation of a surface roughness
for different values of flank wear of twist drills. The comparative analysis of the models results
and the experimental data, acquired for the inputs at the moment when a wear span reaches a limit
value corresponding to a moment of the drills blunting, demonstrates that the neural network model
gives better results than the results obtained in the application of multiple linear and nonlinear
regression models.
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1. Introduction

A surface roughness appearing as a result of cutting processes has a big impact on functional
properties of their products, as well as the quality of products in use. Therefore, determining
a co-dependency between the set input and/or measurable process parameters occurring during
machining and parameters of surface roughness contributes to the managing of the process in terms of
a timely prediction of the process from the aspect of a satisfactory product quality.

A large number of experimental research projects have tried to establish a co-dependency between
surface roughness and input parameters for machining processes. The model for predicting the surface
roughness, using an arithmetic mean surface roughness deviation (Ra), was developed by applying a
multiple regression model and the models based on artificial neural networks (ANNs).

Rodrigues et al. [1] used a regression analysis for developing a model linking a speed n (rev/min),
feed f (mm/rev), and a depth of a cut a (mm) with the surface roughness using an arithmetic mean
deviation Ra (µm), by conducting a full plan of the experiment, as well as by varying referred parameters
at three levels, when turning a construction steel using tools made of high speed steel (HSS). The
corrected determination coefficient in this case was 66.1%, indicating a strong correlation between the
surface roughness and referred parameters.
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By applying the Taguchi design of experiment, Çiçek et al. [2] created an optimal combination of
machining parameters from the aspect of the surface roughness, when drilling austenitic stainless steel
AISI 316 with twist drills made of high speed steel (HSS), subjected to conventional and cryogenic
treatments, by varying feed f (mm/rev) and cutting speed vc (m/min) at two levels. Apart from
establishing an optimal combination, by means of a multiple regression analysis, they developed a
regression model linking the referred parameters with the surface roughness through an arithmetic
mean deviation Ra (µm), with the determination coefficient of 96.3%.

Based on the application of Taguchi design in an experiment when drilling OHNS material, tool
steel broadly used in tool manufacturing, with high speed steel (HSS) twist drills, and a regression
analysis, using commercially available software MINITAB 13, Kumar and Packiaraj [3] developed
models linking an arithmetic mean deviation of a surface roughness Ra (µm) and a deviation of a
hole diameter from a nominal value ∆D (mm) to a cutting speed vc (m/min), feed f (mm/rev), and a
twist drill diameter d (mm). The developed models yielded good results, and the analysis of variances
showed that feed and cutting speed have key impacts on a surface roughness and the deviation of
a hole diameter from its nominal value, which is necessary to create such a combination of these
parameters that should reduce variations affecting the quality of a hole made in OHNS material.

With the application of Taguchi design in an experiment, analysis of variance, and a regression
analysis, Ficici et al. [4] researched the impact of tool modifications (twist drill cutting edge grinding in
µm), cutting speed vc (m/min), and feed f (mm/rev) on the roughness of a hole when drilling austenitic
stainless steel AISI 304 with twist drills made of high speed steel (HSS). By conducting the experiment
and through data analysis, they found an optimal combination of the parameters, while alternative
analysis provided them with data showing that the tool modifications, cutting speed vc (m/min), and
feed f (mm/rev) affect a surface roughness in drilling process at the levels of 74.25%, 13.72%, and 6.25%,
respectively. With the development of the regression model, they connected the above parameters
to the surface roughness through an arithmetic mean deviation Ra (µm), and both by conducting the
confirmation experiment and using an optimal combination of parameters, they determined that the
prediction error is 4.34%.

Based on the results of the experiment conducted by an BBD (Box Behnken Design) experiment,
Kumari et al. [5] developed a mathematical model linking the speed n (rev/min), the velocity of an
auxiliary motion vf (mm/min), and the concentration of cooling agents (%) to an arithmetic mean
deviation of surface roughness Ra (µm), when drilling stainless steel SS 304 with twist drills made of
high speed steel (HSS), while Xiao et al. [6], by applying Taguchi design of experiment and with an
acceptable prediction error, developed a regression model for predicting surface roughness in case of
stainless steel turning.

Based on applying a genetic programming, Brezocnik et al. [7] developed models for predicting
surface roughness that produced good results in the comparison with the experimental ones, using a
speed, feed, depth of cut, and vibrations between the tools and the work piece as independent variables,
with the surface roughness as a dependable variable expressed in an arithmetic mean deviation, while,
by applying a regression analysis, Sekulic et al. [8] developed a model for predicting surface roughness
when milling steel X210CR12 hardness 58 HRC, which was used as a basis for the model development
with the application of a genetic algorithm (GA) and a newly developed grey wolf optimizer algorithm
(GWO) with a prediction accuracy calculated at 91.8%.

Akkuş and Asilturk [9] developed a model for predicting a surface roughness based on ANNs
when turning tempered steel AISI 4140. Testing of the subject model gave favourable results with a
mean square deviations of 0.0497795. Given the comparison of the results of the referred model with
the data of the fuzzy model and a mathematical model, developed through the same research, it can be
concluded that artificial intelligence can be successfully used for the prediction purposes.

By conducting Taguchi design of experiment and by using inputs for a cutting speed vc (m/min),
speed n (rev/min) and the depth of a cut a (mm), varied at three levels, when turning AA 6351 alloy,
Konanki and Sadineni [10] developed a model for predicting a surface roughness based on ANNs,
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via an arithmetic mean deviation Ra (µm), with an average testing error of 2.24%. The predicted
model’s values were very close to the experimental values confirming that acceptable prediction model
was developed.

Rashid and Lani [11] used a multiple regression and ANNs for developing the model of a surface
roughness when milling aluminium. By conducting the experiment, using full factorial plan and setting
multiple regression coefficients, they developed a model connecting a surface roughness expressed
in an arithmetic mean deviation of the profile roughness Ra (µm), speed n (rev/min), velocity of the
auxiliary motion vf (mm/min) and the depth of a cut a (mm) with a prediction accuracy of 86.7%. The
prediction by means of ANNs gave the best results, with a mean error of 6.42%, which proved that the
ANN predicted a surface roughness with a 93.58% accuracy.

Given the case of turning a composite material with an aluminium metal matrix, based on both,
the results of experiments obtained by CCD (Central Composite Design) and by applying regression
analysis and ANN with multiple outputs, Tamang and Chandrasekaran [12] developed models
connecting a cutting speed vc (m/min), velocity of the auxiliary motion vf (mm/min) and the depth of
cut a (mm) with both an arithmetic mean deviation of a surface roughness Ra (µm) and a machining
tool wear VB (mm). By comparing their prediction results of developed models, they got data showing
that ANNs yield a higher prediction accuracy of about 92% for a tool wear prediction and around 95%
for the predicting a surface roughness.

Given the application of a regression analysis and ANNs on the results obtained by conducting a
full design of the experiment when turning red brass, Hanief and Wani [13] developed models linking
the cutting speed vc (m/min), feed f (mm/rev) and the depth of a cut a (mm) to the arithmetic mean
deviation of a surface roughness Ra (µm). Maximal prediction errors for the obtained models were
9.9% and 9.5%, respectively, an advantage was therefore given to the model obtained through the
application of ANNs.

The referred models yield good approximations of experimental results, but they do not consider
an impact character of the size of a tool wear on the surface roughness.

Based on the experimental research of turning and drilling of soft annealed pearlite-ferrite steel,
Nedić et al. [14] established the presence of a polynomial dependency in the form of the third degree
polynomial, between an arithmetic mean deviation of a surface roughness Ra (µm) and a machining
tool wear VB (mm).

Krivokapić et al. [15] drew a conclusion that the development of a model for an indirect monitoring
of a tool wear during steel machining, and the establishment of a correlation between the surface
roughness and the provider of information about the tool wear phenomena (axial force and torque),
allows surface roughness prediction based on a tool wear data.

Mathew et al. [16] showed that a tool wear span VB (mm), when milling EN-8 medium carbon
steel, can be connected with the level of an acoustic emission expressed through a mean stress value AE
(mV), while Lin et al. [17] showed that it is possible to use ANNs for the surface roughness prediction
based on a vibration signal when milling medium carbon steel S45C.

Bhaskaran et al. [18] researched the impact of a tool wear when milling high-alloy steel AISI-D3,
with hardness of 60 HRC, on the signal of an acoustic emission and a surface roughness of the work
piece and showed that exceedances of certain limits leads to sudden increases in certain parameters of
acoustic emissions, as well as in the value of a surface roughness.

Spaić and Marinović [19], by applying ANNs, established a model for an axial drilling force F3

(N) depending on the width of a wear band VB (mm), based on experimental results obtained when
drilling high strength and hardness steel EN 42CrMo4 with twist drills made of high speed steel. The
paper showed that ANNs can be used for predicting axial cutting force as a provider of information on
cutting tools’ wear.

Xu et al. [20] showed that a tool wear VB (mm), when drilling aluminium alloys, can be predicted
by ANNs using process input parameters, such as a cut depth a (mm), speed n (rev/min), and a feed f
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(mm/rev), complemented by the values of measurable process parameters, such as an axial cutting
force F3 (N) and torque M (Nm).

Given the application of a regression analysis and ANNs, when drilling steel for enhancement EN
42CrMo4 hardness 17 HRC, Vučurević et al. [21] developed models for the prediction of the surface
roughness, using a twist drill diameter d (mm), speed n (rev/min), feed f (mm/rev), installation angle
of the work piece ε (o) and an axial drill force F3 (N) as input parameters. Regarding the development
of the model establishing a connection between the machining parameters and an axial drilling force,
which is in correlation with a machining tool wear, with the surface roughness expressed in arithmetic
mean deviation Ra (µm), they came to a conclusion that it is possible to develop models for the surface
roughness prediction based on an axial drilling force that is in correlation with a tool’s wear. Based
on a comparative analysis of the results obtained from the model, they found out that application of
ANNs provides better prediction results.

Taking into consideration the aforementioned, an opportunity to develop a model of a multiple
regression and ANN model, to include process input parameters (nominal twist drill diameter, speed,
feed, and angle of installation of the work piece) and a torque as a measurable parameter of the
machining related to machining tool wear, has appeared.

The goal of this paper, based on the experimental results obtained by using the Taguchi design
of experiment, is to obtain a model which, for given values of input parameters (nominal twist drill
diameter, speed, feed, angle of installation of the work piece) and measurable parameter (torque),
will be able to predict the surface roughness.

This paper achieves the inclusion of tool wear in the models of surface roughness prediction
through torque, as a measurable parameter during the machining process, which is correlated with
tool wear, which was not the case in previous studies. The basic novelty of the paper is the ability to
monitor and predict the process from the aspect of mean arithmetic deviation of surface roughness
without stopping the process and measuring it, using an adequate model that includes torque as a
measurable parameter.

2. Materials and Methods

This research used Taguchi orthogonal matrix L9 [22,23] with nine combinations of machining
process parameters, which predicts varying of four experiment factors on three levels, as a basis
for conducting experimental research, required for an obtaining data for the purpose of developing
the model.

The varying factors of the experiment, nominal twist drill diameter (d), speed (n), feed (f ), and an
angle of the installation of the work piece (ε) as an additional factor, were determined based on the
twist drills manufacturer’s recommendations. The adopted values of the experiment factor are shown
in Table 1.

Table 1. The experiment’s factor value.

No. d (mm) n (rev/min) f (mm/rev) ε (o)

1. 3 300 0.03 0
2. 5 500 0.05 3
3. 8 800 0.10 5

Using the orthogonal matrix L9 and the adopted values of the experiment factors, design of the
experiment, given in Table 2, is formed.

The experiment was planned to be conducted using twist drills (TD) DIN 338 made of high-speed
steel EN HS6-5-2 by means of a grinding technology, hardness 64–68 HRC, in black version with a
cruciform blade (CB), manufactured by “Swisslion Industrija Alata, a.d. Trebinje”. The chemical
composition of EN HS6-5-2 steel is shown in Table 3.
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Table 2. Design of experiment.

No. of
Combination

Factors

d (mm) n (rev/min) f (mm/rev) ε [o]

1. 3 300 0.03 0
2. 3 500 0.05 3
3. 3 800 0.10 5
4. 5 300 0.05 5
5. 5 500 0.10 0
6. 5 800 0.03 3
7. 8 300 0.10 3
8. 8 500 0.03 5
9. 8 800 0.05 0

Table 3. The chemical composition of steel EN HS6-5-2 (%).

C W Mo Cr V Si Mn P S

0.82–0.9 5.5–6.75 4.5–5.5 3.8–4.4 1.75–2.2 0.2–0.45 0.15–0.4 ≤0.03 ≤0.03

The test tubes made of steel EN 42CrMo4, thermally treated to hardness 28 HRC, were provided
as the material for conducting the experiment. The chemical composition of steel EN 42CrMo4 is
shown in Table 4.

Table 4. The chemical composition of steel EN 42CrMo4 (%).

C Si Mn P S Cr Mo

0.38–0.45 0.15–0.4 0.5–0.8 ≤0.035 ≤0.035 0.9–1.2 0.15–0.3

The test tube dimensions, determined based on a planned drilling depth l = 3d, are shown in
Table 5.

Table 5. The test tube dimensions.

Twist Drills l (mm) Test Tube Diameter (mm) Test Tube Thickness (mm)

DIN 338 Ø 3.00 9 60 15
DIN 338 Ø 5.00 15 60 20
DIN 338 Ø 8.00 24 60 30

The experiment was conducted using a CNC milling machine MILL 250 (EMCO MAIER Ges.m.b.H.,
Salzburger, Austria) with the option of achieving a maximal spindle speed of 10000 rev/min, velocity of
auxiliary motion range of 0–10 m/min, the option of achieving maximal torque of 41 Nm, and EMCO
WinNC numerical control using software SIEMENS Sinumerik 810/840D.

The size of a twist drill flank wear was measured with an optical device for measuring geometrical
elements of twist drills PG 100 (GÜHRING oHG, Albstadt, Germany), with the option of digital
readout of measured values below 10 µm with precision ±2.5%, while the recording of the torque
values during the process was performed using a measuring chain for measuring axial force and
torque (KISTLER GROUP, Winterthur, Switzerland) having a measuring range of up to 100 Nm for the
torque with precision ±1.2%. The measurement of an arithmetic mean deviation value of the machined
surface roughness profile was conducted using a SURTRONIC 25 surface roughness tester (TAYLOR
HOBSON Ltd., Leicester, UK) with a measurement range of up to 300 µm with precision ±2%.

Torque (M) was measured during the entire drilling process, and the mean torque was taken as
relevant. An overview of the torque measuring equipment used is given in Figure 1.
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Figure 1. Torque measuring equipment.

The surface roughness was measured by measuring the roughness parameters according to ISO
4287 by rotating the test tube by a 90◦ and measuring it at four characteristic points, where by the
mean value of the measured values was assumed to be decisive if the measurement uncertainty
was satisfactory. The following information was used for the measurement: Gaussian filter, cut-off

0.800 mm, and evaluation length 4.00 mm. Before starting the measurement, the measuring instrument
was validated with a reference standard with a mean arithmetic deviation of surface roughness
Ra = 6.00 µm.

3. Results

According to previous research [9–11], the experiment was conducted in order to obtain a model
based on a regression analysis, as well as the model based on ANNs. The results of the research
indicate the usability of the model based on the regression analysis and the model based on ANNs in
the prediction of a surface roughness.

3.1. The Experimental Results

In the experiment conducted by drilling holes depth l = 3d with different input parameters of
the drilling process (nominal diameter, speed, feed, and angle of installation of the work piece), the
values of torque M (Nm) and arithmetic mean deviation of the surface roughness profile Ra (µm) were
acquired at the beginning of the process, at the moment of medium wear, and at the moment of tool
blunting. Table 6 shows acquired values.

Table 6. The experimental results.

No. d (mm)
n

(rev/min)
f

(mm/rev) ε [o]
VB = 0 mm VB = 0.02d VB = 0.04d

M
(Nm)

Ra
(µm)

M
(Nm)

Ra
(µm)

M
(Nm)

Ra
(µm)

1. 3 300 0.03 0 0.3 0.32 0.43 0.35 0.58 0.57
2. 3 500 0.05 3 0.23 0.7 0.28 0.83 0.33 0.97
3. 3 800 0.10 5 0.49 2.95 0.58 3.31 0.66 4.01
4. 5 300 0.05 5 0.75 0.71 0.88 0.89 1.12 1.31
5. 5 500 0.10 0 1.3 2.79 1.46 3.22 1.63 3.49
6. 5 800 0.03 3 0.45 1.62 0.46 1.99 0.5 2.65
7. 8 300 0.10 3 3 2.45 3.06 3.34 3.13 4.22
8. 8 500 0.03 5 1.01 1.96 1.2 2.55 1.4 3.14
9. 8 800 0.05 0 1.61 2.13 1.68 2.67 1.74 3.15
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A graphical representation of the results of one measurement of surface roughness, at the moment
of tool blunting for the first combination of experiment factors, is shown in Figure 2.
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Figure 2. Surface roughness measurement.

The values of the mean arithmetic deviation of surface roughness and torque are rounded to two
decimal places, taking into account the corresponding measurement uncertainty. The determined
measurement uncertainties (u) and relative measurement uncertainties (ur) for the values of mean
arithmetic deviation of surface roughness (Ra) are given in Table 7.

Table 7. Measurement uncertainties for Ra values.

No.
VB = 0 mm VB = 0.02d VB = 0.04d

Ra
(µm) u (µm) ur (%) Ra

(µm) u (µm) ur (%) Ra
(µm) u (µm) ur (%)

1. 0.32 0.01 3.13 0.35 0.003 0.86 0.57 0.01 1.75
2. 0.7 0.012 1.71 0.83 0.003 0.36 0.97 0.02 2.06
3. 2.95 0.08 2.71 3.31 0.053 1.6 4.01 0.065 1.62
4. 0.71 0.021 2.96 0.89 0.019 2.13 1.31 0.023 1.76
5. 2.79 0.031 1.11 3.22 0.033 1.02 3.49 0.069 1.98
6. 1.62 0.032 1.98 1.99 0.044 2.21 2.65 0.092 3.47
7. 2.45 0.055 2.24 3.34 0.015 0.45 4.22 0.083 1.97
8. 1.96 0.135 4.8 2.55 0.013 0.51 3.14 0.082 2.61
9. 2.13 0.092 4.32 2.67 0.053 1.99 3.15 0.046 1.46
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The relative measurement uncertainties for the torque values and the size of a twist drill flank
wear, rounded to two decimal places, are up to 5%.

3.2. The Regression Models

The development of the model of a multiple linear regression in case of presence of a statistical
sample size n, which could be used to establish a connection between a dependable variable y and
non-dependable variables x1, x2, . . . , xk, comes down to an assessment of unknown parameters of the
model with the method of the least squares and forming the following model:

ŷ = b0 + b1x1 + b2x2 + . . .+ bkxk. (1)

Since a dependable variable Ra is in function of four input parameters of the process (nominal
diameter of the twist drill—d, speed—n, feed—f, and angle of installation of the work piece—ε), and
the size of a twist drill flank wear that can be connected to the torque—M, the multiple linear regression
model (MLRM) was created, while using the experimental results for VB = 0.04d and determining the
value of parameters b0, . . . , b5 by the method of least squares, in the following way:

R̂a = b0 + b1·d + b2·n + b3· f + b4·ε+ b5·M. (2)

The model’s parameters with a standard regression error s, coefficient of determination R2,

adjusted coefficient of determination R
2
, and standard parameter error sb j (j = 1, . . . , 5) are shown in

Table 8.

Table 8. The parameters of a multiple linear regression model with a torque for twist drills (TD) drilling
with cruciform blade (CB) in test tubes hardness 28 HRC.

Model Parameter Parameter Value sbj tj=
bj

sbj

s

0.648

b0 −2.244 - -
R2

b1 0.227 0.105 2.159
b2 0.003 0.001 2.742 0.913
b3 23.973 7.333 3.269

R
2

b4 0.098 0.105 0.933
b5 0.033 0.261 1.276 0.768

Since all the values
∣∣∣t j
∣∣∣ < t for the significance level p = 0.02, the estimation of a dependable

variable Ra based on variables d, n, f, ε, and M makes sense.
Taking into account the assumption on the presence of a nonlinear relationship between the surface

roughness and machining input parameters, the multiple nonlinear regression model was formed:

R̂a = b0·db1 ·nb2 · f b3 ·εb4 ·Mb5 . (3)

In order to determine the model parameters, the nonlinear regression model is reduced by a
logarithmic transformation to a linear regression model in the form:

log R̂a = log b0 + b1· log d + b2· log n + b3· log f + b4· log ε+ b5· log M. (4)

Table 9 presents the parameters of the transformed model with a standard regression error s,

coefficient of determination R2, adjusted coefficient of determination R
2
, and standard parameter error

sb j (j = 1, . . . , 5).
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Table 9. The parameters of the transformed regression model with a torque for TD drilling with CB in
test tube hardness 28 HRC.

Model Parameter Parameter Value sbj tj=
bj

sbj

s

0.114

logb0 −2.515 - -
R2

b1 −0.433 0.218 −2.038
b2 1.253 0.218 5.758 0.95

b3 0.113 0.177 0.638
R

2
b4 0.024 0.008 2.874
b5 1.038 0.128 8.087 0.865

Since all the values
∣∣∣t j
∣∣∣ < t for the significance level p = 0.002, the estimation of a dependable

variable logRa based on variables logd, logn, logf, logε, and logM makes sense.
When forming regression models, the data given in the Table 10 was used.

Table 10. Regression models formation data.

No. d n f ε M Ra No. logd logn logf logε logM logRa

1. 3 300 0.03 0 0.58 0.57 1. 0.477 2.477 −1.52 −9 1.761 −0.245
2. 3 500 0.05 3 0.33 0.97 2. 0.477 2.699 −1.3 0.477 1.514 −0.015
3. 3 800 0.1 5 0.66 4.01 3. 0.477 2.903 −1 0.699 1.818 0.603
4. 5 300 0.05 5 1.12 1.31 4. 0.699 2.477 −1.3 0.699 2.047 0.117
5. 5 500 0.1 0 1.63 3.49 5. 0.699 2.699 −1 −9 2.212 0.543
6. 5 800 0.03 3 0.5 2.65 6. 0.699 2.903 −1.52 0.477 1.699 0.423
7. 8 300 0.1 3 3.13 4.22 7. 0.903 2.477 −1 0.477 2.495 0.625
8. 8 500 0.03 5 1.4 3.14 8. 0.903 2.699 −1.52 0.699 2.146 0.497
9. 8 800 0.05 0 1.74 3.15 9. 0.903 2.903 −1.3 −9 2.24 0.498

To determine the influence of each input factor on surface roughness, the average signal-to-noise
ratio (S/N) was calculated for each factor and level for the data obtained at the beginning of the process.
The calculated values are shown graphically in Figure 3. It can be observed that the smallest influence
on the surface roughness, expressed by the mean arithmetic deviation (Ra), the angle of installation of
the test tube (ε), and the largest influence has the feed (f ).
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3.3. The Artificial Neural Network Model

The ANN model (ANNM), with multiple inputs (nominal twist drill diameter, speed, feed, angle
of installation of the work piece, and torque) and one output (arithmetic mean deviation of surface
roughness) was developed with the application of MATLAB software package using back propagation
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ANN. In order to obtain a model that will give an error of less than 5% for each individual result in
relation to the experimental result, ANN were trained, first with a single hidden layer with a sigmoid
transfer function and a linear transfer function in the output layer, and then with two hidden layers.
The training was performed with LEARNGDM learning function.

ANNs training was performed with an arithmetic mean deviation of the surface roughness as a
target function, input combinations of machining parameters, and the torque, measured for the flank
wear value of the twist drills VB = 0 mm and VB = 0.02d and calculated for the flank wear value of the
twist drills VB = 0.01d and VB = 0.03d. Training data for ANNs are given in Table 11.

Table 11. Training data for artificial neural networks (ANNs).

No.
Inputs Output

No.
Inputs Output

d n f ε M Ra d n f ε M Ra

1. 3 300 0.03 0 0.3 0.32 19. 3 300 0.03 0 0.43 0.35
2. 3 500 0.05 3 0.23 0.7 20. 3 500 0.05 3 0.28 0.83
3. 3 800 0.1 5 0.49 2.95 21. 3 800 0.1 5 0.58 3.31
4. 5 300 0.05 5 0.75 0.71 22. 5 300 0.05 5 0.88 0.89
5. 5 500 0.1 0 1.3 2.79 23. 5 500 0.1 0 1.46 3.22
6. 5 800 0.03 3 0.45 1.62 24. 5 800 0.03 3 0.46 1.99
7. 8 300 0.1 3 3 2.45 25. 8 300 0.1 3 3.06 3.34
8. 8 500 0.03 5 1.01 1.96 26. 8 500 0.03 5 1.2 2.55
9. 8 800 0.05 0 1.61 2.13 27. 8 800 0.05 0 1.68 2.67
10. 3 300 0.03 0 0.36 0.33 28. 3 300 0.03 0 0.5 0.46
11. 3 500 0.05 3 0.25 0.77 29. 3 500 0.05 3 0.3 0.9
12. 3 800 0.1 5 0.53 3.13 30. 3 800 0.1 5 0.62 3.66
13. 5 300 0.05 5 0.81 0.8 31. 5 300 0.05 5 1 1.1
14. 5 500 0.1 0 1.38 3.01 32. 5 500 0.1 0 1.55 3.36
15. 5 800 0.03 3 0.46 1.81 33. 5 800 0.03 3 0.48 2.32
16. 8 300 0.1 3 3.03 2.9 34. 8 300 0.1 3 3.1 3.78
17. 8 500 0.03 5 1.1 2.26 35. 8 500 0.03 5 1.3 2.85
18. 8 800 0.05 0 1.64 2.4 36. 8 800 0.05 0 1.71 2.91

The simulation of trained ANN was conducted using the value of the torque, acquired for the
twist drills wear values VB = 0.04d for all the combinations of input parameters; after training of each
network, a simulation was performed and verified that the neural network satisfies the error aspect for
each individual result. The data used for simulation are given in Table 12.

Table 12. ANNs simulation data.

No.
Inputs Output

d n f ε M Ra

1. 3 300 0.03 0 0.58 0.57
2. 3 500 0.05 3 0.33 0.97
3. 3 800 0.1 5 0.66 4.01
4. 5 300 0.05 5 1.12 1.31
5. 5 500 0.1 0 1.63 3.49
6. 5 800 0.03 3 0.5 2.65
7. 8 300 0.1 3 3.13 4.22
8. 8 500 0.03 5 1.4 3.14
9. 8 800 0.05 0 1.74 3.15

Training, simulation, and verification that the network results satisfy an individual error of up to
5% were first performed with an ANN with five neurons in one hidden layer (network type 5-1). Since
the mentioned network did not give the required results in terms of individual error, the number of
neurons was increased and simulation and verification of the results of such networks was performed
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(types of networks 10-1 and 15-1). As the aforementioned ANNs did not produce results in terms of
individual error, training and simulation of a network with two hidden layers was performed, whereby
the number of neurons was increased to obtain satisfactory accuracy (types of networks 10-5-1, 10-10-1,
and 15-10-1). The results obtained by simulating ANNs of different architectures with individual errors
relative to the experimental results are given in Table 13.

Table 13. Simulation results with calculated error.

No.
Ra

(µm)
Ra (µm)–ANN Result ANN Error (%)

5-1 10-1 15-1 10-5-1 10-10-1 15-10-1 5-1 10-1 15-1 10-5-1 10-10-1 15-10-1

1. 0.57 0.69 0.5 0.48 0.45 0.6 0.59 21.05 12.28 15.79 21.05 5.26 3.51
2. 0.97 0.96 0.98 0.99 0.98 0.98 0.98 1.03 1.03 2.06 1.03 1.03 1.03
3. 4.01 3.99 3.96 3.93 3.7 3.75 4.03 0.5 1.25 2 7.73 6.48 0.5
4. 1.31 1.47 0.94 1.02 1.3 1.39 1.37 12.21 28.24 22.14 0.76 6.11 4.58
5. 3.49 3.4 3.51 3.5 3.49 3.37 3.42 2.58 0.57 0.29 0 3.44 2.01
6. 2.65 2.67 2.77 2.83 2.77 2.8 2.74 0.75 4.53 6.79 4.53 5.66 3.4
7. 4.22 3.83 4.22 4.21 4.2 4.22 4.14 9.24 0 0.24 0.47 0 1.9
8. 3.14 3.7 2.97 3.13 3.15 3.11 3.11 17.83 5.41 0.32 0.32 0.96 0.96
9. 3.15 3.13 3.25 3.16 3.12 3.16 3.11 0.63 3.17 0.32 0.95 0.32 1.27

Mean error (%) 7.31 6.28 5.55 4.09 3.25 2.13

Simulation results with a maximum individual error of less than 5% were obtained by a neural
network with 15 neurons in the first hidden layer and 10 neurons in the second hidden layer (network
type 15-10-1), as shown in Figure 4, which is taken as a model.

Metals 2020, 10, x FOR PEER REVIEW 11 of 15 

 

Table 13. Simulation results with calculated error. 

N

o. 

Ra 

(µm) 

Ra (µm)–ANN Result ANN Error (%) 

5-1 10-1 15-1 10-5-1 10-10-1 15-10-1 5-1 10-1 15-1 10-5-1 10-10-1 15-10-1 

1. 0.57 0.69 0.5 0.48 0.45 0.6 0.59 21.05 12.28 15.79 21.05 5.26 3.51 

2. 0.97 0.96 0.98 0.99 0.98 0.98 0.98 1.03 1.03 2.06 1.03 1.03 1.03 

3. 4.01 3.99 3.96 3.93 3.7 3.75 4.03 0.5 1.25 2 7.73 6.48 0.5 

4. 1.31 1.47 0.94 1.02 1.3 1.39 1.37 12.21 28.24 22.14 0.76 6.11 4.58 

5. 3.49 3.4 3.51 3.5 3.49 3.37 3.42 2.58 0.57 0.29 0 3.44 2.01 

6. 2.65 2.67 2.77 2.83 2.77 2.8 2.74 0.75 4.53 6.79 4.53 5.66 3.4 

7. 4.22 3.83 4.22 4.21 4.2 4.22 4.14 9.24 0 0.24 0.47 0 1.9 

8. 3.14 3.7 2.97 3.13 3.15 3.11 3.11 17.83 5.41 0.32 0.32 0.96 0.96 

9. 3.15 3.13 3.25 3.16 3.12 3.16 3.11 0.63 3.17 0.32 0.95 0.32 1.27 

Mean error (%) 7.31 6.28 5.55 4.09 3.25 2.13 

Simulation results with a maximum individual error of less than 5% were obtained by a neural 

network with 15 neurons in the first hidden layer and 10 neurons in the second hidden layer 

(network type 15-10-1), as shown in Figure 4, which is taken as a model. 

 

Figure 4. The architecture of the selected ANN. 

In addition to achieving the best simulation results, the ANN type 15-10-1 also achieved the 

best training, testing, and validation results. The results of ANN training are shown in Figure 5. 

 

Figure 5. The results of neural network training. 

Weights between inputs and hidden layer (w), hidden layers biases (b1 and b2), and output 

layer biases (b3) of the developed ANN are shown in Table 14, while weights of hidden layers (w1 

and w2) are shown in Table 15. 

Figure 4. The architecture of the selected ANN.

In addition to achieving the best simulation results, the ANN type 15-10-1 also achieved the best
training, testing, and validation results. The results of ANN training are shown in Figure 5.
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Weights between inputs and hidden layer (w), hidden layers biases (b1 and b2), and output layer
biases (b3) of the developed ANN are shown in Table 14, while weights of hidden layers (w1 and w2)
are shown in Table 15.

Table 14. Weights between inputs and hidden layer and biases of developed ANN.

Neuron w b1 b2 b3

1. −1.359 −0.523 1.027 −0.291 1.529 2.69 1.472 −0.129
2. −0.946 1.104 −1.632 0.579 0.967 2.211 −0.992
3. −1.493 1.061 −0.711 −0.588 −1.317 1.546 −0.477
4. 0.745 1.475 −0.343 1.703 1.147 −1.384 0.464
5. 0.126 0.213 −0.587 1.91 −1.391 1.184 −0.441
6. 0.117 −1.454 0.916 −1.444 −2.791 0.232 0.251
7. 0.852 −1.313 0.806 0.002 1.641 −0.153 −0.467
8. −0.614 −1.803 1.077 −0.505 −1.036 0.373 −1.165
9. 1.12 −1.133 1.096 0.954 −0.911 0.472 −1.321

10. 0.856 −0.173 0.678 −1.547 −2.08 0.484 −1.65
11. 0.014 1.257 0.069 0.88 −2.092 1.07
12. 0.106 −0.435 1.708 −1.657 0.54 1.393
13. −0.688 −0.789 −1.314 −1.262 −1.394 −1.588
14. 0.98 −1.432 −1.407 0.021 0.763 2.084
15. 0.0858 0.652 1.732 1.22 −1.126 2.466

Table 15. Weights of hidden layers of developed ANN.

Neuron w1 w2

1. −0.342 0.544 1.297 −0.304 0.448 0.364 −0.414 −0.518 −0.311 −0.73 −0.432
2. 0.436 −0.53 0.883 −0.449 −0.008 −0.379 0.377 0.209 −0.301 0.351 −1.186
3. −0.941 −1.084 0.783 1.075 −0.289 0.625 0.109 0.249 0.404 0.212 1.403
4. 0.73 −0.2 0.227 0.179 1.533 0.567 −0.46 0.354 0.501 0.0447 1.153
5. 0.512 0.349 −0.94 0.029 0.686 −0.236 −0.228 −0.612 0.318 0.108 1.571
6. 0.72 −0.287 −0.828 −0.998 −1.612 −0.023 −0.899 −0.098 −0.634 0.656 −1.128
7. −0.505 0.585 −0.372 −0.192 0.109 −0.036 0.309 0.791 −0.374 0.007 0.561
8. 0.418 0.286 0.264 0.792 −1.014 −0.865 0.298 −0.241 0.328 −0.433 0.788
9. 0.303 0.999 −0.095 0.103 −0.403 −0.525 0.113 0.287 0.182 −0.759 0.396
10. −0.137 0.184 −0.262 −1.337 −1.115 0.151 −0.866 −0.25 −0.003 −0.516 −1.302
11. −0.298 −0.031 −0.699 0.851 0.233 0.818 0.138 −0.312 −0.259 −0.307
12. 0.242 −0.261 −0.241 0.205 −0.871 −0.47 0.81 0.464 0.727 −0.772
13. −0.059 0.322 0.017 −0.391 −0.215 −0.029 −0.114 −0.436 0.735 0.48
14. −0.001 0.896 −0.345 −0.091 −0.144 −0.663 0.164 −0.404 0.15 0.111
15. −0.372 0.918 0.812 0.582 −0.139 −0.153 −0.581 0.432 0.229 0.475

4. The Discussion

The comparative results of the experiment, regression models and ANN model are shown in
Table 16.

Based on the comparative analysis of the experimental results and the multiple linear regression
model, it can be observed that an error of the model ranges from 1.18% to 63.16%, while a mean error
of the multiple linear regression model with torque is 22.99%.

According to the comparative analysis of the experimental results and the multiple nonlinear
regression model, it can be observed that an error in the model ranges from 3.51% to 28.57%, while a
mean error of the multiple nonlinear regression model with torque is 13.03%.

If the experimental results are compared with the results of the model based on ANN s, it can be
noticed that the error in the model is in range from 0.5% to 4.58%, while a mean error of the model
based on ANN s with torque is 2.13%.
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Table 16. The comparative analysis of experimental results and models with torque for TD drilling
with CB in test tubes hardness 28 HRC.

No. Ra (µm) Ra (µm)–Model Results Model Error (%)

MLRM MNRM ANNM MLRM MNRM ANNM

1. 0.57 0.21 0.55 0.59 63.16 3.51 3.51
2. 0.97 1.48 1.05 0.98 52.58 8.25 1.03
3. 4.01 3.85 4.24 4.03 3.99 5.74 0.5
4. 1.31 1.82 1.58 1.37 38.93 20.61 4.58
5. 3.49 3.27 2.8 3.42 6.3 19.77 2.01
6. 2.65 2.37 2.18 2.74 10.57 17.74 3.4
7. 4.22 4.17 3.99 4.14 1.18 5.45 1.9
8. 3.14 2.69 2.9 3.11 14.33 7.64 0.96
9. 3.15 3.65 4.05 3.11 15.87 28.57 1.27

Mean error of the model (%) 22.99 13.03 2.13

A graphical comparative representation of the experimental results (EXP) and the results of the
developed models is shown in Figure 6.
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5. Conclusions

The subject research showed that it is possible to develop models establishing a connection
between input parameters of the drilling process (nominal twist drill diameter, speed, feed, angle of
installation of the work piece) and a torque, as a measurable parameter and a provider of information
about a tool wear during the process, with the surface roughness by using an arithmetic mean deviation
of the roughness profile.

By comparing experimental results of an arithmetic mean deviation of a surface roughness at the
moment of tool wear with the results of the multiple regression model and the ANN model, it was
concluded that the ANN model provided the best results.

With regard to the results presented in this paper, first of all, the results of the model based on
ANN s including torque as a parameter connected to processing tools wear, this research contributes
to the possibility of the surface roughness prediction, taking into account the impact of the size of
tool wear on the size of a mean arithmetic deviation of a surface’s roughness, through torque as a
measurable parameter, which was not the case in the previous practice.
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