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Abstract: In aluminum casting, the temperature of liquid aluminum and the dissolved hydrogen
density are crucial factors to be controlled for the purpose of both quality control of molten metal
and cost efficiency. However, the empirical and numerical approaches to predict these parameters
are quite complex and time consuming, and it is necessary to develop an alternative method for
rapid prediction with a small number of experiments. In this study, the machine learning models
were developed to predict the temperature of liquid aluminum and the dissolved hydrogen content
in liquid aluminum. The obtained experimental data was preprocessed to be used for constructing
the machine learning models by the sliding time window method. The machine learning models of
linear regression, regression tree, Gaussian process regression (GPR), Support vector machine
(SVM), and ensembles of regression trees were compared to find the model with the highest
performance to predict the target properties. For the prediction of the temperature of liquid
aluminum and the dissolved hydrogen content in liquid aluminum, the linear regression and GPR
models were selected with the high accuracy of prediction, respectively. In comparison to the
numerical modeling, the machine learning modeling had better performance, and was more
effective for predicting the target property even with the limited data set when the characteristics
of the data were properly considered in data preprocessing.

Keywords: aluminum; casting; machine learning; temperature of liquid aluminum; dissolved
hydrogen content

1. Introduction

Quality control of molten metal is becoming increasingly crucial in the foundry industry as the
rigorous demand for the specification is requested from the customers. The final quality of the casting
products is greatly affected by the characteristics of the molten metal [1-3]. In order to control the
casting defects of aluminum products, such as porosity and shrinkage cavity, it is particularly
important to control the temperature of the liquid aluminum and the dissolved hydrogen content in
the liquid aluminum during the melting process [4-8].

The temperature of the liquid aluminum can significantly affect the quality of the final product.
If the pouring temperature is not sufficiently higher than the liquidus temperature, the fluidity of the
liquid aluminum deteriorates and the defects such as blowholes or insufficient filling are likely to
occur. If the temperature of the liquid aluminum is superheated over 800 °C, the oxidation reaction
at the melt surface is promoted with the increase of the impurities or cracks. In addition, it is essential
to control the temperature of the liquid aluminum efficiently in order to minimize the temperature
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loss [9,10]. The dissolved hydrogen content in the liquid aluminum should be also carefully
controlled to meet the high-quality inspection [11-13]. Remarkably, hydrogen gas can be dissolved
in the liquid state of aluminum, and the dissolved hydrogen in the molten aluminum remaining after
the solidification will cause the defects such as pores or microporosity. Also, the dissolved hydrogen
in excess of the solubility limit in liquid aluminum during solidification will come out of solution and
diffuse into the bifilm gap. Finally, this bifilm defect can work as crack initiators and deteriorate the
mechanical property of the casting products [14]. Therefore, it is important to control the temperature
of liquid aluminum and the dissolved hydrogen content in the liquid aluminum during the melting
process.

In earlier works, various models have been proposed to predict the temperature of the liquid
aluminum based on the empirical [15,16] and numerical [17-19] approaches. Wang et al. examined
the computational fluid dynamics(CFD)-Taguchi combined method for the design of process
parameters to optimize the aluminum melting [16]. To understand the melting behavior of the liquid
aluminum by each process parameter, Quintana et al. [17], Nieckele et al. [18], and Bulin” ski et al.
[19] proposed the numerical solutions considering the heat transfer and the flow behavior based on
the process parameters. Numerous studies on the quantification of the dissolved hydrogen content
in the liquid aluminum have also attracted much attention from researchers for a long time [11,20-
26]. Various melt treatments to control the dissolved hydrogen content in the liquid aluminum such
as gas bubbling filtration (GBF) [20,21], degassing agent [22,26], and ultrasonication [24,25,27] have
been introduced. Among these techniques, the GBF is one of the most effective processes, which has
an obvious effect on degassing of hydrogen in the liquid aluminum with minimizing the melt loss
and the dross formation. Previous studies have reported on the effect of process parameters such as
the GBF processing time, GBF rpm, and the type of impeller on the dissolved hydrogen content in
the liquid aluminum [20,21,28,29].

Both the empirical and numerical approaches to evaluate the temperature of the liquid
aluminum or the dissolved hydrogen content in the liquid aluminum can provide the understanding
of the melt property or the flow behavior, but the limitations still exist: difficulty to establish the
empirical model between the process parameters and the melt properties due to the non-linear
relationship, and the limitation in the application of the derived model when new experimental data
set is added or the boundary condition is changed.

Recently, the machine learning (ML) models have been used as an alternative way to overcome
the limitations in the empirical and numerical models to successfully predict the material properties
[30-32]. It has become increasingly popular with advantages of being able to quickly solve the
problems compared to other models based on the empirical and numerical approaches, and has the
strong ability to deal with discrete data. In some researches, the ML models have already been
adapted for predicting the melt temperature [33,34] and the porosity [35,36] in various materials
including the aluminum alloys. However, the ML model of the temperature of the liquid aluminum
and the dissolved hydrogen content in the liquid aluminum based on the experimental data, with
consideration of the combination of process parameters, has not been sufficiently proposed.

The present study focuses on developing the machine learning models for predicting the
temperature of the liquid aluminum and the dissolved hydrogen content in the liquid aluminum
based on the experimental data. The process parameters were selected based on the main factors that
affect the target properties. Experiments were carried out under the various combinations of process
parameters and experimental data were preprocessed to be used in the machine learning models. For
the prediction of the temperature of the liquid aluminum and the dissolved hydrogen content in the
liquid aluminum, five types of machine learning models (linear regression, regression tree, Gaussian
process regression (GPR), Support vector machine (SVM), and ensembles of regression trees) were
investigated with different options. The developed machine learning models have been compared
using various statistical values through the new data set, and the performance of the developed
machine learning model is also compared to that of the numerical model.
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2. Materials and Methods

The material used in the present study was pure aluminum ingot (>99.7 wt.%), and aluminum
molten metal was produced in a high-frequency melting furnace. The main process parameters
affecting the melt temperature and the dissolved hydrogen content in the liquid aluminum were
selected, and the parameter studies were conducted under the various combination of experimental
conditions to construct the data set for developing of the machine learning models as listed in Table
1. The temperature of the liquid aluminum was measured by k-type thermocouples. The applied
electric power use during melting process was monitored using a real-time energy monitoring system
(BMT Co., Ltd., Yangsan, South Korea). In the GBF process, the argon gas was selected as an inert
gas. The dissolved hydrogen content in the liquid aluminum was measured by HYCAL (EMC Hycal
Limited, Stafford, UK), which is a real time analyzer.

Table 1. Process parameters to construct machine learning models for the temperature of the liquid
aluminum and the dissolved hydrogen content in the liquid aluminum.

Target No Features Experimental Condition
Property ) To Construct Model To Test Model
1 Electric power (kW) 15, 20, 25, 30 27
Ingot weight (kg) 4,6,7 6
T tu
St g Time for 5,10, 15, 20, 25, 10, 20, 30,
. q electric power (sec) 30, 40, 50, 60 40, 50
aluminum Initial melt
4 i R Measured value during process
temperature (°C)
1 Gas flow rate (cc/min) 2,4,6,7 6
5 Gas bubbling filtration 1510 1510
(GBF) rpm
Dissolved 700, 730, 760
1t t ° L 74
hydrogen 3 Melt temperature (°C) 770, 790, 800 0
content 4 Treatment time 05,1,15,2,25,3,5, 05,1,15,2,25,3,
in GBF (min) 7.5,10,12.5 5,75,10,12.5
Initial h
5 e yfirogen Measured value during process
density

3. Machine Learning Modeling

3.1. Data Acquisition

The temperature of liquid aluminum during the melting process is strongly influenced by the
input electric power condition, the weight of ingot, and the initial temperature of the liquid
aluminum. At different power conditions of 15, 20, 25, and 30 kW, the temperature of the liquid
aluminum was measured during the application time of electric power in the form of the time series
data. The temperature of the liquid aluminum was also measured for different ingot weights of 4, 6,
and 7 kg. The dissolved hydrogen content in the liquid aluminum is closely related to the process
parameters of the GBF treatment condition, the temperature of liquid aluminum, and the initial
hydrogen concentration. Under the fixed GBF rpm of 1510, a gas flow rate of 2, 4, 6, and 7 cc/min was
set as variables. The temperature of liquid aluminum was also considered as a variable with 700, 730,
740, 760, 770, 790, and 800 °C being the selected temperatures. The dissolved hydrogen content was
also measured during GBF treatment time in the form of the time series data. Figure 1 demonstrates
one example of the data set to be used for developing machine learning model to predict the
temperature of the liquid aluminum and the dissolved hydrogen content in the liquid aluminum.



Metals 2020, 10, 330 4 of 16

— —
O
(a) 8 760 L L L L (b) 8 028 L L L 1

g No. | Experimental condition ; No. | Experimental condition

c 1 Electric power (KW) 24 E 1 Gas flow in GBF (c¢/min) 6

é 2 Time for power (sec) 50 = 0.24 1 2 Treatment time in GBF (min) 1%.5 F

S 3 | Ingot weight (kg) 4 (= 3 GBF rpm - 1510

© 74049 1 Initial melt temperature (°C) | 700 r Q 4 MM 800

— e — c 020 5 Initial hydrogen 0219 L

3 Q - > | concentration (ml/100g) i

=] (8] —— ————

g c

5 S 0.16-

© 720 L 0

g g

-§ g 0.12

Q o

o >

£ 700 T T T T o 0.08 T T T T

& 0 10 20 30 40 50 s 0.0 25 5.0 75 10.0 12.5
[a)

Time (s) GBF time (min)
Figure 1. One data set example for (a) temperature of liquid aluminum and (b) dissolved hydrogen
concentration. GBF means gas bubbling filtration.

3.2. Data Acquisition

In this work, the machine learning approach involved the data generation process. The
generated data comes from the original data set measured by the experiments according to the sliding
time window method, which is regularization technique known to improve model performance [37-
39]. Here, the sliding time window method was implemented in both the temperature of the liquid
aluminum and the dissolved hydrogen content in the liquid aluminum.

For the temperature of the liquid aluminum, a window size (d;, i =1-9) was chosen as 5, 10, 15,
20, 25, 30, 40, 50, and 60 s. The input (X;;) and output (¥;;) data set for training, validating, and testing
were composed as follows: Xj;{Electric power, Ingot weight, d;, x14m¢j—1)} and Yij{xiimej—1y+a;}
(j=1,23,...), where x;,pm_1) represents the data of start point of the temperature of the liquid
aluminum before sliding the window, xi4m(j_1)+q;, represents the temperature of the liquid
aluminum after sliding the window of d;, m means the step size which is a constant of 3. From the
sliding time window method, the number of the training, validating, and testing data set of the
temperature of the liquid aluminum was prepared as 6067.

In the case of the dissolved hydrogen content in the liquid aluminum, a window size (d, k =
1-10) was chosen as 0.5, 1, 1.5, 2, 2.5, 3, 5, 7.5, 10, and 12.5 min. The input (Xj;) and output (Y};) data
set for training, validating, and testing were composed as follows: Xj,{Gas flow rate, GBF rpm, Melt
temperature, di, X11m@-1)} and Ye{Xiima-1+q,} (=1,2,3,...), where xq,m(_1) represents the data of
start point of the dissolved hydrogen content before sliding the window, x;4mq-1)+a, Tepresentsthe
dissolved hydrogen content after sliding the window of d;, m means the step size which is a
constant of 1. After conducting the sliding time window method, the number of training, validating,
and testing data set of the dissolved hydrogen content in the liquid aluminum was prepared as 5974.
Note that this data generation process increases the amount of input data set in number, and it is
originated from the original experimental data, not an artificial or imaginary data.

3.3. Machine Learning Model

The prepared data set was imported into MATLAB as an excel file format. The statistics and
machine learning toolbox was used in this work, which provides the functions and apps to describe,
analyze, and model data [40,41]. The toolbox provides the supervised machine learning algorithms
such as support vector machine, boosted and bagged decision tree, k-nearest neighbor, and Gaussian
mixture models etc.

In this work, the machine learning models of linear regression models, regression trees,
Gaussian process regression models, support vector machines, and ensembles of regression trees
were investigated to predict the temperature of the liquid aluminum and the dissolved hydrogen
content in the liquid aluminum.

In general, the linear regression model can be described by the form
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K
yi =B+ Z,kak(XiI'XiZJ""Xip) +é&,i=1,,n, 1)
=1

where y; is the ith response; By is the kth coefficient (f, is the constant term in the model); X;; is
the ith observation on the jth predictor variables (j=1,-:-,p); & is the ith noise term for random
error and f is a scalar-valued function of the independent variables (X;;), which might be in any
form including nonlinear functions or polynomials [42-44]. We used four different types of linear
regression models (linear, interaction linear, robust linear, and stepwise linear) to confirm which
setting produces the best result with the data. We chose the linear term for linear and robust linear
models and the interactions term for interaction linear model. For the stepwise linear model, we set
the linear, interactions and 1000 for initial terms, upper bound on terms and maximum number of
steps, respectively.

The regression trees are one of the nonparametric supervised learning algorithms with low on
memory usage and the standard Classification And Regression Tree(CART) algorithm is used by
default. [44,45] In order to avoid overfitting, the smaller trees with fewer larger leaves can be tried
first and then the larger trees are considered. We tested three different types of regression tree model
(fine tree, medium tree, and coarse tree) with different minimum leaf sizes. In general, a fine tree with
small leaves shows higher accuracy on the training data but it might not show comparable accuracy
on an independent test set. In contrast, a coarse tree with large leaves does not give high accuracy for
the training data but its training accuracy can be applied to a representative test set of data [41]. The
regression trees which we used in this work were binary and each step in a prediction involved
checking the value of one predictor variable. The minimum leaf size was 4, 12, and 36 for fine,
medium, and coarse trees, respectively.

The Gaussian process regression (GPR) models are nonparametric kernel-based probabilistic
models which explain the response by introducing latent variables, f(x;),i =1,2,+-,n, from a
Gaussian process (GP) and explicit basis functions. A Gaussian process is a set of random variables,
having a joint Gaussian distribution, and is defined by its mean function m(x) = E(f(x)) and
covariance function, k(x,x") = E[{f(x) — m(x)}Hf(x) — m(x")}]. When f(x)~GP(0, k(x,x")), that is
f(x) are from a zero mean GP with covariance function, k(x,x"), the joint distribution of latent
variables f(x;),i = 1,2,--,n in the GPR model can be described as follows in vector form:

P(fIX)~N(f10,K (X, X)), 2)
k(x1" x1) k(x1" Xn)

k(1) - k(xn, xn)
kernel functions, which can be parameterized in terms of the kernel parameters in vector 6, thus the

where K(X,X) = ( ) The covariance function can be defined by various

covariance function can be expressed as k(x;x;|60) [46,47]. In this work, we performed the
prediction by using four different kernel functions such as rational quadratic, exponential, squared
exponential, and matern 5/2 kernels. The detailed kernel functions are listed in Table 2.

Table 2. Kernel functions for Gaussian process regression.

Kernel Name Kernel Function
. . rz \7°
Rational Quadratic k(x;,x;]0) = of (1 + W)
. 2 r
Exponential k(xi: Xj|9) = osexp (_ ;)
1
10— x)T(x; — x;
Squared Exponential k(xi, xj|9) = afzexp (— E( - ])02( - 1)>
i
V5r  5r? V5r
Matern 5/2 k(x;,x;]0) = of (1 + o + g) exp (— Tz)

The support vector machine (SVM) regression is another nonparametric technique. The SVM
finds the support vectors having a maximum margin after classifying the collected data into clusters
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by using a hyperplane [48]. The best hyperplane is the one with the largest margin between the
classes. The linear e-insensitive loss function, L., is determined based on the distance between
observed value y and the margin ¢. The error within the margin (&) of the observed value is
ignored by treating them as zero as described below [41,49].
= {? if ly = fGOl < & 5
Elly-f)|—-¢ otherwise
The SVM regression also relies on kernel functions and three different kernel functions such as
linear, Gaussian, and polynomial were considered in this work. The details of the kernel functions
are listed in Table 3. We performed the prediction with several models with linear, quadratic, cubic,
fine Gaussian, medium Gaussian, and coarse Gaussian SVM to see the performance of each model.
The kernel scales were set to VP /4, VP, 4P for fine, medium, and coarse Gaussian SVM models,
respectively, where P is the number of predictors.

Table 3. Kernel functions for Gaussian process regression.

Kernel Name Kernel Functions
Linear G(xj, %) = X[y
. 2
Gaussian G(xj, xx) = exp(—||; — x|

G(xj,xk) = (1 + xjka)q

Polynomial g
where q isintheset {2,3,::-}

The ensembles of regression trees are multi-learning algorithm techniques that complement the
individual machine learning algorithms, and the bagged tree and boosted tree are typical [50,51]. The
bagged tree makes a decision by constructing the tree by training the variables that are composed by
randomly extracting the same size from the independent variables, and the boosted tree reinforces
the learning as a whole by adjusting the weight of the weak learning [46,52]. In this work, the
minimum leaf size and number of learners were set to 8 and 30 for both methods, and the learning
rate of 0.1 was used for the boosted tree model.

The architectures of the machine learning model to predict the temperature of the liquid
aluminum and the dissolved hydrogen content in the liquid aluminum are shown in Figure 2. To
build models for predicting the final temperature of the liquid aluminum after applying the electric
power and the final dissolved hydrogen content after the GBF treatment, 5922 and 5773 sets of data
were used as the training/validation data set, respectively. The five-fold cross-validation scheme was
used to protect against overfitting for model trainings. We compared the models with different
options in each model type and selected the models with the best performance for each model type,
which are shown in Figures 3 and 6. The selected models were finally compared by using the new
data set.

(@)

Power

| Electric power \

Weight of ingot

Time .
Final temperature
of liquid aluminum

Initial melt temperature

(b) ([ ®rem -,
GBF < | Gasflow rate »
(

y| Time B — Final dissolved hydrogen

content in liquid aluminum
Melt temperature

Initial dissolved hydrogen content ——————>

Figure 2. The architectures of the machine learning model to predict the (a) temperature in liquid
aluminum and (b) dissolved hydrogen content in liquid aluminum.
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4. Results and Discussion

4.1. Melt Temperature of the Liquid Aluminum

Figure 3 shows the scatter plots of the predicted values versus the experimental data of the
temperature for the liquid aluminum with the machine learning models with the highest accuracy in
each model type. The performance of the models seems to be similar as the coefficients of
determination were close to 1 for all models; this means that the given data set of the temperature of
the liquid aluminum was linear in nature.
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Figure 3. Scatter plots of predicted values versus experimental values of temperature of liquid
aluminum for different machine learning (ML) models of (a) linear regression, (b) regression tree, (c)
Gaussian process regression (GPR), (d) support vector machine (SVM), and (e) ensemble regression
trees.

The statistical comparison between the original experiments and the predicted values by five
different machine learning models revealed that most of characteristics of the original data were
captured by the developed models. For example, the mean, median, minimum, maximum, and
standard deviation from experimental data were 744.5, 743.1, 704,9, 787.1, and 19.2, respectively, and
those for the predicted values by linear regression model were 744.9, 743.2, 705.6, 787.5, and 19.5,
respectively. The statistics comparisons of other models are listed in Table 4. In Table 5, the evaluation
of the performance of the five different regression models developed in this work are compared. The
root mean square error for GPR model was the smallest and followed by the linear regression model.
Since the original data and the predicted values had a strong linear correlation for the melt
temperature of the liquid aluminum data set, the linear regression model can be a proper model to
predict if the accuracy is sufficient, which is known as one of the simplest machine learning models
[53,54].

Table 4. Comparison between the statistics of the predicted values using different machine learning
models with that of the experimental data of the temperature of the liquid aluminum.

Li R . Gaussian Support
. . inear egression .
Statistics ] 8 process Vector Ensembles Experimental
Regression Tree . .
regression Machine
Mean 7449 744.8 744.1 743.3 741.6 744.5
Median 743.2 744.1 742.7 742.4 742 743.1
Min 705.6 702.2 703.7 713.1 712.5 704.9

Max 787.5 790.2 787.4 773.9 765.8 787.1
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Standard

o 19.5 19.6 20.2 14.2 16.8 19.2
Deviation

Table 5. Evaluation of the performance of five regression models used to predict the value of the
temperature of the liquid aluminum.

. . Gaussian Support
. Linear Regression
Metric . process Vector Ensembles
Regression Tree . .

regression Machine

Root Mean Squared Error 0.5284 2.1979 0.1609 1.5926 4.4455
Coefficient of Determination 0.9997 0.995 1 0.9978 0.98

Mean Squared Error 0.2792 4.8306 0.0259 2.5365 19.763
Mean Absolute Error 0.392 1.3105 0.1092 1.3536 2.745

Figure 4 shows the probability distribution function (PDF) and cumulative distribution function
(CDF) plots of new experiments and the prediction of the temperature of the liquid aluminum by the
developed models. The PDF curves were fitted using the normal distribution option. The new
experimental data in Figure 4 were obtained with 6 kg of aluminum ingot and 27 kW of electric power
conditions under various times for electric power with 145 sets of data, which were not used for the
development of machine learning model. The estimated parameters of the experimental data set from
the normal distribution are listed in Table 6. In Figure 5, the comparison of measured values by
experiments versus predicted values by linear regression model is shown with good agreement
between the measurement and the predicted values with R? of 0.9994.

(@ o003 (b) o003 (©) o003 (d) oos
Original Linear regression Regression tree GPR
3 3 3 3
2 002 & 002 & 002 2 002
[} o o [}
3 3 3 3
g g g g
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0.00 0.00 : + + r 0.00 + - + r 0.00 + - + - 1
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e 003 f) oo 1.0
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2 08
oy 3 g’
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Predicted value (°C) Predicted value (°C) Temperature of liquid aluminum (°C)

Figure 4. Data distribution of temperature of liquid aluminum from (a) new experiment for prediction
and predicted value by different machine learning (ML) models of (b) linear regression, (c) regression
tree, (d) GPR, (e) SVM and (f) ensemble regression trees. The colored area in each graph of (a—f) (red,
or blue) describes corresponding probability density function for the data distribution. (g) The
corresponding cumulative density function for predicted values from each ML model compared to
the histogram of the experimental value of temperature of liquid aluminum.

Table 6. The estimated parameters from the normal distribution. u is the mean of the melt
temperature and o is the square root of the unbiased estimator of the variance.

Gaussian Support
Estimated Linear Regression PP .
. process Vector Ensembles Experimental
Parameters Regression Tree . )
regression Machine
u 7449 744.7 744.1 743.3 741.6 744.5

o 19.5 19.6 20.2 14.2 16.8 19.2
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Figure 5. The comparison between measured values by experiment versus predicted values by linear

regression model for temperature of liquid aluminum.

4.2. Dissolved Hydrogen Content in the Liquid Aluminum

(a)

The sets of scatter plots between the predicted values from the machine learning models with
the highest accuracy in each model type and the experimental data of the dissolved hydrogen content
in the liquid aluminum are shown in Figure 6.
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Figure 6. Scatter plots of predicted values versus experimental values of dissolved hydrogen content
in liquid aluminum for different ML models of (a) linear regression, (b) regression tree, (c) GPR, (d)
SVM, and (e) ensemble regression trees.

The statistical comparisons between the original experiments and the predicted values by five
different machine learning models are presented in Table 7 and show that the predictions from the
GPR model are in the best agreement with the experimental data. The mean, median, minimum,
maximum, and standard deviation from experimental data are 0.1194, 0.115, 0.1, 0.22, and 0.0143,
respectively, and those for the predicted values by the GPR model are 0.1194, 0.1149, 0.0999, 0.2175,
and 0.0142, respectively. The coefficients of determination are over 0.93 except the linear regression
model with the value of 0.8548, as shown in Table 8.
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Table 7. Comparison between the statistics of predicted values using different machine learning
models with that of the experimental data of the hydrogen content in the liquid aluminum.

. . Gaussian Support
.. Linear Regression .
Statistics ] process Vector Ensembles Experimental
Regression Tree . .
regression Machine
Mean 0.1194 0.1194 0.1194 0.1192 0.1193 0.1194
Median 0.1146 0.1148 0.1149 0.115 0.1154 0.115
Min 0.0864 0.1 0.0999 0.0998 0.1 0.1
Max 0.1843 0.2075 0.2175 0.1872 0.1884 0.22
Standard Deviation 0.0132 0.0142 0.0142 0.0134 0.0127 0.0143

Table 8. Evaluation of the performance of five regression models used to predict the value of the
dissolved hydrogen content in the liquid aluminum.

Gaussian Support

... Linear Regression
Statistic R process Vector Ensembles
Regression Tree . .
regression Machine

Root Mean Squared Error 0.0055 0.0029 0.0013 0.0029 0.0044

Coefficient of Determination 0.8548 0.9851 0.9979 0.9781 0.9396
Mean Squared Error 3.00 x 10°° 8.38 x 10°¢ 1.77x10°  8.62x10° 1.94 x 105

Mean Absolute Error 0.0032 0.0014 0.0007 0.0011 0.0026

Figure 7 shows the probability distribution function (PDF) and the cumulative distribution
function (CDF) plots of new experiments and the prediction of the dissolved hydrogen content in the
liquid aluminum by the developed models. The PDF curves were fitted by using the lognormal
distribution option, and the estimated parameters of the experimental data set from the normal
distribution are listed in Table 9. The new experimental data in Figure 7 were obtained with 740 °C
of the temperature of the liquid aluminum and 6 cc/min of gas flow rate conditions under various
treatment times in GBF with 201 sets of data, which were not used for the development of machine
learning model. The PDF plot for the predicted values by the GPR model closely follow the actual
measurements over a wide range of the hydrogen content, showing the left-shift shape of the fitting
curve and covering high content region over 0.14 mL/100 g. The CDF in Figure 7g also shows that the
curve by GPR model closely captured the original data curve, indicating that the GPR model was the
most accurate model to predict the dissolved hydrogen content in the liquid aluminum compared to
the other models considered in this work. Figure 8 shows the comparison of measured values versus
the predicted values by the GPR model with good agreement each other overall range of data set.

(a) 100 (b) 100 (C) 10 (d) 100
Original Linear regression Regression tree GPR
80 80 80 80
> > > >
o o o o
$ 60 $ 60 $ 60 $ 60 .
> = | > =]
g 40 g 40 / g 40 g 40
[ [y [y [
20 M 20 20 20
0 = 0 L 0 | 0 ! = —
0.08 0.10 0.12 0.14 0.16 0.18 008 0.10 0.12 0.14 0.16 0.18 008 010 0.12 0.14 0.16 0.18 008 010 0.12 0.14 0.16 0.18
Dissovled hydrogen content (ml/100g) Predicted value (ml/100g) Predicted value (ml/100g) Predicted value (ml/100g)
e 100 f) 100 10
( ) sSVM ( ) Ensemble (g)é'
v
.. 80 .. 80 2 08
) o 3
§ 60 § 60 o 06
=] =] 2 ——Original
T 40 T 40 2 04 Linear regression
o i = ——Regression tree
£ GPR
20 20 E o2 o
° } ° O 00 ——Ensemble
0.08 0.10 0.12 0.14 0.16 0.18 008 010 0.12 0.14 0.16 0.18 " 010 0.12 0.14 0.16 0.18 0.20
Predicted value (ml/100g) Predicted value (ml/100g) Dissolved hydrogen content (ml/100g)

Figure 7. Data distribution of dissolved hydrogen content in liquid aluminum temperature from (a)
experimental results and predicted value by different ML models of (b) linear regression, (c)
regression tree, (d) GPR, (e) SVM, and (f) ensemble regression trees. The colored area in each graph
of (a—f) (red, or green) describes corresponding probability density function for the data distribution.
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(g) The corresponding cumulative density function for predicted values from each ML model
compared to the histogram of the experimental values of the dissolved hydrogen content in liquid

aluminum.

Table 9. The estimated parameters from the lognormal distribution. u is the mean of logarithmic
values of the dissolved hydrogen content in liquid aluminum and o is the standard deviation of

logarithmic values.

Estimated Linear ) .
. Regression Tree =~ GPR ~ SVM  Ensembles Experimental
Parameters Regression
u -2.154 -2.147 -2.140 -2.131 -2.154 -2.197
o 0.0720 0.0968 0.0923  0.0741 0.0911 0.1005
(@ o b)) 5
=) o
o 0.20 © 0.20
= o— Measured value = o— Measured value
£ —o— Predicted value £ —o— Predicted value
5 5
£ 0151 £ 0151 g
9] 9] i
o o 8o B \
c c 4 a A \ 2 af
[0} [0} \- /A A8 DEu;\:\D,Drﬂ AVERN-,
2 4 VAR WA e GV N R TATE AV AV
5 0.10- £ oqody % Bad TR Y YT v L
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= =2
3 0.05 ; ; . , ; . 9 005 , . .
é’ 0 30 60 90 120 150 180 210 g 60 70 80 90 100
Data set Data set

Figure 8. (a) The comparison of measured values by experiment versus predicted values by GPR
model for dissolved hydrogen content in the liquid aluminum, and (b) the magnified graph in the

selected range.

4.3. Comparison of ML Model to Numerical Model

Based on the experimental results, a numerical model to predict final target properties of the
temperature of the liquid aluminum and the dissolved hydrogen content in the liquid aluminum was
investigated. Here, the numerical model was proposed using the raw data form without the data
generation process used in constructing the machine learning model.

The temperature of the liquid aluminum had a linear relationship with the application time of
electric power as shown in Figure 1a. The linear function was a form of y = Ax + B, where A is the
slope and B is the intercept of y. The slope (A) and intercept (B) of linear relationship between the
temperature of the liquid aluminum (y) and the application time of the electric power (x) depend on
the experimental conditions. The slope and intercept are identified under all the experimental
conditions, and one example is shown in Figure 9a under the electric power of 25 kW with the ingot
weight of 4 kg. In particular, the most influential factors affecting the slope of this linear relationship
were found to be the electric power and the ingot weight. Generally, the larger the weight of ingot,
the higher level of electric power was required for melting of ingot. Therefore, the values of slope
were plotted as a function of electric power/ingot weight (z, kW/kg) as shown in Figure 9b, and it
was also fitted with the linear function: A = 7.326z — 1.156. The intercept values (B) of linear
relationship between the temperature of the liquid aluminum and the application time of electric
power show fairly similar values of 697.014 to 701.921, therefore B is assumed to be 700.141 from
the average of the obtained intercept values. Finally, the numerical model to predict the temperature
of liquid aluminum is suggested as: y = (7.326z — 1.156)x + 700.141, where z is the electric
power/ingot weight. Using the test data set described in Figure 5, the temperature of the liquid
aluminum was predicted based on the suggested numerical model, as shown in Figure 9. By
comparing with the results predicted by the linear regression model from the ML approach, the
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numerical model showed a comparable performance of R? of 0.9961 with a simple assumption and
approach, but the performance of numerical model was still lower than that of ML model.

(@) & (b)
. 840 60
- Electric power: 25kW 3 -
g Ingot weight: 4kg 50 Pis
= 8004 O Measured value -
§ — — Fitted: y=Ax+B 40 %
5 g & =
'S 760 o 30+ .~ Yy=7.3262-1.156
=g y=42.938x+701.313 (2} ,°;
‘G 20 @
o 7204
=
‘é 104
[0
g 6804 — - - - - : . 0 : ; , -
o 00 05 10 15 20 25 30 35 3 4 5 6 7 8
Application time of electric power, x (min) Electric power/Ingot weight, z (kW/kg)

(©)

900

o— Measured value
—o— Predicted value

o ©

in B0 oam’
A

600 T T T T
0 30 60 90 120 150

Data set

Temperature of liquid aluminum (°C)

Figure 9. (a) Linear fitting of measured value (one example of experimental results: electric power 25
kW, ingot weight 4 kg), and (b) numerical approach via electric power/ingot weight. (c) The
comparison of measured value by experiment versus predicted values by empirical model of melt
temperature for validation.

The dissolved hydrogen content in the liquid aluminum has the characteristics in which it
converges over time as shown in Figure 1b. For this data type, it can be fitted well with a function of
y = C X exp(—x/D) + E, where y is the dissolved hydrogen content, x is the GBF time, C, D, and
E are the fitted parameters. Using all of the experimental data sets, the fitted parameters were
obtained, and one example of a fitting result is described in Figure 10a. The temperature of the liquid
aluminum and the gas flow rate are considered to the most influential factors affecting final dissolved
hydrogen content. Therefore, C, D,and E are plotted as functions of melt temperature and gas flow
rate as shown in Figure 10b—d. In this case, it is hard to find the numerical relationship between the
fitted parameters of C, D, E and experimental condition at this state due to the limited number of
data set and simple assumption. In addition, the parameter of the dissolved hydrogen content is
complicatedly influenced by the experimental conditions compared to the temperature of the liquid
aluminum, which shows relatively simple linear relationship depending on the experimental
parameters. Therefore, it can be said that the machine learning model is more effective in predicting
the data set with a non-linear type. Also, the prediction model using the machine learning approach
can be obtained with the high level of performance through the data generation process considering
the data characteristic, even in hard case of constructing the numerical model.
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(a)

0.25
Melt temperature: 760°C
Gas flow rate: 6cc/min
0.20 O Measured data

— —Fitted: y = C*exp(-x/D) + E

y=0.10982*exp(-x/106.8116)+0.10864

0 200 400 600 800 1000
GBF time, x (sec)

Dissolved hydrogen content, y (ml/100g)

Figure 10. (a) Numerical fitting of measured value (one example of experimental results: temperature
of liquid aluminum 760 °C, gas flow rate 6 cc/min). Fitted parameters of (b) C, (c) D, and (d) E
depending on temperature of liquid aluminum and gas flow rate.

5. Conclusions

In this study, the temperature of the liquid aluminum and the dissolved hydrogen content in the
liquid aluminum were predicted with a machine learning approach. The temperature of the liquid
aluminum and the dissolved hydrogen content in the liquid aluminum were the time series data set,
so the limited number of the experimental data was preprocessed to be used to develop the machine
learning models based on sliding time window method. Five types of machine learning models,
including linear regression, regression tree, GPR, SVM, and ensembles of regression trees, were
constructed for predicting the target properties. In order to confirm model performance, the
constructed machine learning models based on training/validation data set were tested with new
experimental data sets. In the case of the temperature of the liquid aluminum, five kinds of machine
learning models showed the comparable model performance, and the linear regression can be used
with high accuracy. To predict the dissolved hydrogen content, the GPR model showed the highest
level of accuracy of prediction. For comparison, the numerical model was also investigated. The
temperature of liquid aluminum had linear relationship between the experimental parameters of
electric power and ingot weight, and it can be predicted by simple numerical approach using the
linear function. However, the performance of the numerical model to predict temperature of the
liquid aluminum was still lower than that of developed machine learning model of linear regression.
The numerical model to predict the dissolved hydrogen content can be hardly obtained due to the
limited data set and the highly non-linear characteristic of data set between the dissolved hydrogen
content and the GBF process conditions. In order to apply prediction of melt property with a machine
learning approach in real industry, more data acquisition considering various processing parameters
will be still required. Nevertheless, from this work, it can be suggested that the machine learning
model can be effective for predicting the target properties with high accuracy, even with the limited
data set, when the data preprocessing takes into account the characteristics of the data properly.
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