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Abstract: Experimental assays and mathematical models, through population balance models (PBM),
were used to characterize the particle aggregation of mining tailings flocculated in seawater. Three
systems were considered for preparation of the slurries: i) Seawater at natural pH (pH 7.4), ii) seawater
at pH 11, and iii) treated seawater at pH 11. The treated seawater had a reduced magnesium content
in order to avoid the formation of solid complexes, which damage the concentration operations.
For this, the pH of seawater was raised with lime before being used in the process—generating
solid precipitates of magnesium that were removed by vacuum filtration. The mean size of the
aggregates were represented by the mean chord length obtained with the Focused beam reflectance
measurement (FBRM) technique, and their descriptions, obtained by the PBM, showed an aggregation
and a breakage kernel had evolved. The fractal dimension and permeability were included in the
model in order to improve the representation of the irregular structure of the aggregates. Then, five
parameters were optimized: Three for the aggregation kernel and two for the breakage kernel. The
results show that raising the pH from 8 to 11 was severely detrimental to the flocculation performance.
Nevertheless, for pH 11, the aggregates slightly exceeded 100 µm, causing undesirable behaviour
during the thickening operations. Interestingly, magnesium removal provided a suitable environment
to perform the tailings flocculation at alkaline pH, making aggregates with sizes that exceeded 300
µm. Only the fractal dimension changed between pH 8 and treated seawater at pH 11—as reflected
in the permeability outcomes. The PBM fitted well with the experimental data, and the parameters
showed that the aggregation kernel was dominant at all-polymer dosages. The descriptive capacity
of the model might have been utilized as a support in practical decisions regarding the best-operating
requirements in the flocculation of copper tailings and water clarification.

Keywords: copper tailings; enhanced flocculation; water recovering; magnesium removal; population
balance model; seawater flocculation
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1. Introduction

High-salinity resources, such as seawater, are being used in the mining industry in countries such
as Australia, Chile, and Indonesia. At first, saltwater was proceeded by desalination plants, primarily
through reverse osmosis (RO). Unfortunately, RO has created the new challenge of concentrated
brine by-product, which is released into the environment; the effluent has a high temperature and
a high demand for electricity, which involves fossil fuel consumption. Therefore, the direct use of
seawater without ion removal is an attractive strategy that has recently been implemented in many
mining industries. In this matter, engineers and researchers are constantly studying certain operational
complexities. Some of these studies focus on the corrosion and incrustation of pipelines, the precipitate
complexes, and the buffer effect of seawater. An example is the concentration of Cu/Mo ores, where
a high level of pyrite is found, which drastically hinders the efficiency of the flotation process. The
depression of pyrite in freshwater lime is used to bring the operation to an alkaline pH condition
(>10.5), where the hydrophilic ferric hydroxide is formed. Nevertheless, this condition cannot function
in seawater because the formation of solid Ca/Mg complexes strongly decreases the recovery of
molybdenite [1,2] and chalcopyrite [3,4]. There is a debate as to the proper explanation of these findings
in the sulphide flotation [5–8], but the recovery of water for the sustainability of the mining industry is
more important. This is necessary due to the high cost of transporting seawater to mining sites; in
Chile, the mining site can be as much as 4000 m above sea level. An essential process in the recovery of
water is the thickening stage, where efficiency is linked to the flocculation of the suspended particles,
which promotes solid–liquid separation. The flocculants are long water-soluble polyelectrolytes that
can bridge multiple particles and form aggregates that are sedimentary because of the effects of gravity.
The conventional flocculant used in copper mining is hydrolyzed polyacrylamide (HPAM) with a high
molecular weight, which gives high settling rates, low densities, and proper rheological properties of
concentrated underflows at relatively low doses and low cost [9,10]. Several efforts have been made in
the study of HPAM behaviour in the solution [11,12] and high-saline conditions [13–15]. These studies
provide enough proof that bridging flocculation may benefit from a saline medium because ions can
act as a bridge between the anionic solid particles and anionic flocculants, commonly known as ion
binding. However, the concentrated salt can reduce the size of the reagents by an excess of charge
neutralization. These studies were performed on chloride salt solutions; seawater has a complex mix of
ions, where Ca and Mg are present, and as we know, at high-alkaline conditions, they precipitate into a
hydroxide complex. Recent studies show that kaolinite can adsorb several heavy metal ions [16,17]
and also hydroxide complexes [18]; therefore, these precipitates have a strong interaction with solid
particles and possibly, the flocculants. These results provide evidence that precipitates can affect the
flocculation mechanism and negatively affect the thickener performance. However, this might be
avoided by removing magnesium ions prior to incorporating the seawater in the operations.

A good strategy to analyze flocculation performance is by monitoring the aggregate size
distribution over time by the focused beam reflectance measurement (FBRM), which has the advantage
of being employed directly to the slurry without sampling or the need for dilution [19–22]. In
flocculated systems, a maximum floc size is achieved after a short time following flocculant addition; it
then follows a decay that emerges from the fragmentation of the aggregates and polymer depletion.
Using the FBRM has provided an excellent method to analyze flocculation parameters such as the
maximum aggregation size or fragmentation rate [23–26]. In this context, many researchers have
described the kinetics of aggregate growth and fragmentation over time by population balance models
(PBM) [27–30], which have practical applications in a wide variety of systems [31–35]. The PBM is
based on the work by Smoluchowski [27,36], which describes how aggregates evolve over time. Such
evolution depends on the mechanisms of the aggregation and the rupture of the equations. To update
the PBM to flocculation, it is necessary to improve the physical description of the aggregates by (1)
updating the collision efficiency to a time-dependent flocculant depletion [30,35], and (2) to use the
fractal dimension as an indicator of the irregular structure of the aggregates [27,36–40]. Recently, we
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have proven that, for these flocculated systems, it is possible to use a constant fractal dimension when
the shear rate is below 200 s−1.

In this work, we use PBM to describe the flocculation kinetics of tailing particles using treated
seawater with the magnesium removed in order to improve the water recovery and the performance of
the thickening stages. Then, we analyze the implications of precipitates being present for phenomena
such as collision frequency, collision efficiency, fragmentation rate, and floc permeability. The outcomes
of this work are of particular interest to mining industries that use seawater in concentration stages,
and the implementation of this plan might allow for sustainable results without the need to totally
remove seawater salts by reverse osmosis.

2. Methodology

2.1. Materials

The seawater (SW) was obtained from the San Jorge Bay in Antofagasta (Chile); to eliminate
bacterial activity, the SW was filtered at 1 µm using a UV filter system. This water had a conductivity
of 50.4 mS/cm, while its ionic composition was the following: 10.9 g/L Na+, 1.38 g/L Mg2+, 0.4 g/L Ca2+,
0.39 K+, 19.6 Cl−, and 0.15 g/L HCO3

− [41].
Kaolin was acquired from Ward’s Science, and a quantitative X-ray diffraction (XRD)

analysis showed that it contained 84 wt% kaolinite (Al2Si2O5(OH)4) and 16 wt% halloysite
(Al2Si2O5(OH)4·2H2O) (Figure 1). A D5000 X-ray diffractometer (Siemens S.A., Lac Condes, Chile)
was used and the data were processed with Total Pattern Analysis Software (TOPAS) (Siemens S.A.,
Lac Condes, Chile). Quartz was acquired from a local Chilean store, where the SiO2 content detected
by quantitative XRD was over 99 wt% (see Figure 2). Both quartz and kaolin had a density of 2.6 g/t. A
Microtrac S3500 laser diffraction particle size analyzer (Verder Scientific, Newtown, PA, USA) was
used. The analysis showed that 10% of the particles were smaller than d10 = 1.8 and 3.8 µm in the
kaolin and quartz samples, respectively.
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Figure 1. X-ray diffraction (XRD) for kaolin powder.

SNF 704, provided by SNF Chile S.A., was used as an anionic flocculant. The molecular weight
was higher than 18 × 106. An initial stock solution was prepared at a concentration of 1 g/L. Then, it
was mixed with a low RPM for 24 h before use, stored in a refrigerator, and discarded after two weeks
in order to avoid the potential ageing effect. An aliquot of this stock flocculant solution was diluted at
0.1 g/L once a day for use in testing, with unused portions, then discarded. The flocculant dosages
were determined in terms of grams of polymer per ton of dry solids (g/ton). The reagents used to
modify the pH were lime and sodium hydroxide and were of analytical grade (greater than 98%).
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Figure 2. X-ray diffraction (XRD) for quartz powder.

2.2. Magnesium Removal

The removal of magnesium was carried out by increasing the pH of the seawater with 0.06 M of
lime in order to form hydroxide magnesium as a white precipitate. In parallel, bicarbonate was reacted
with Mg to form magnesium carbonate [41]. After 30 min of intense mixing, the seawater was vacuum
filtered, obtaining seawater with an ionic concentration of 10.9 g/L Na+, 0.01 g/L Mg2+, 2.35 g/L Ca2+,
0.39 K+, 19.6 Cl−, and 0.05 g/L HCO3.

2.3. Flocculant-Suspension

A suspension of 270 g was prepared at 8 wt%, with known masses of the solid phases to give
mixtures containing 80 wt% quartz and 20 wt% kaolin. The suspension was vigorously mixed for
30 min using a 30 mm-diameter turbine type stirrer within a 100 mm-diameter vessel with a 1 L
capacity. All the experiments were made by placing the stirrer 20 mm above the bottom of the vessel.
Subsequently, the mixing rate was controlled at 250 rpm, and the volume of the solution (seawater and
polymer) was added in a proportion fixed by the required polymer dosage.

2.4. Batch Settling Tests

These tests were conducted, after 30 s of flocculant-suspension mixing, by gently pouring the
slurry into closed, 300 cm3 cylinders (35 mm internal diameter), and then slowly inverting the cylinder
two times by hand (the whole cylinder rotation process took, in all cases, about 4 s). After 10 min of
settling, the supernatant fluid was rescued and stirred in order to homogenize the suspended solids.
Then, a 50 mL aliquot was used for turbidity measurements in a HANNA HI98713 turbidimeter
(Hanna Instruments, Santiago, Chile), which performed ten readings in 20 s, delivering the average at
the end of that period.

2.5. Characterization of Aggregates

The FBRM technique was used to record the chord length distribution of the aggregates. The
probe was submerged vertically in the reaction vessel, 10 mm over the stirrer and 20 mm off-axis. The
FBRM probe featured a laser that was focused through the sapphire window and scanned a circular
path at a tangential velocity of 2 m/s. The backscattered light was then received when the laser beam
intersected the path of the particle or aggregate. A chord length was determined from the duration of
any unusual increase in the backscattered light intensity and laser velocity.
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3. Modeling

The PBM equations used in this work are derived from several works [42–44] that discretize the
aggregate size into the number i of the bins. Every bin is based on the classical geometric distribution
for the aggregate volume (Vi+1) = 2Vi). The PBM equation is given by:

dNi
dt =

i−2∑
j=1

2 j−(i−1)Qi−1, jNi−1N j +
1
2 Qi−1, j−1Ni−1Ni−1 −

i−1∑
j=1

2 j−iQi, jNiN j

−

imax1∑
j=1

Qi, jNiN j − SiNi +
imax2∑
j=1

Γi, jS jN j

(1)

where Ni is the number concentration of the aggregates in bin i, whereas N1 is the number concentration
of primary particles in bin 1. Every term on the right of the equation represents a physical process:

• The first and second terms describe the aggregate formation of size i from smaller aggregates.
• The third and fourth terms describe the aggregation death of size i to higher aggregates.
• The fifth term represents the breakage formation of size i from the rupture of a greater aggregate.
• The sixth term represents the breakage death of size i by creating smaller aggregates.

The superscript max1 is the maximum number of intervals used to represent the complete
aggregate size spectrum; max2 corresponds to the largest interval from which the aggregates in the
current range are produced.

3.1. Aggregation Kernel

The Q variable is the aggregation kernel, an expression that contains the collision frequency (β)
and capture efficiency (α):

Qi, j = βi, jαi, j (2)

Collision Frequency β

It has been shown that fluid flow can penetrate through particle aggregates [45]. This means that
the actual collision frequency is considerably lower than that predicted from rectilinear flow models.
To add the permeability effects to the collision frequency, we use the parameter called “fluid collection
efficiency” η. This measures the ratio between the flow passing through the aggregate and the flow
approaching it. Veerapaeni and Wiesner [46] proposed a function to calculate the collision frequency,
which includes the permeability and fractal dimension effects:

βi, j =
1
6

(√
ηidi +

√
η jd j

)3
G (3)

where, di and d j are the diameters of the aggregates sizes of i and j, respectively, G is the shear rate, and
η is derived from the Brinkman’ extension to Darcy’s laws as a function of a dimensionless permeability
(ξ) [47]:

ηi =
9(ξi − tanhξi)

(3ξi + 2ξi2 − 3tanhξi)
(4)

where ξi is defined as ξi = di/2
√

Ki and Ki is the permeability; we use the expression from the work
by Li and Logan [47]:

Ki =
d2

i
72

3 +
3

1−φi
−

3

√
8

1−φi
− 3

 (5)

The porosity φ is related to the fractal dimension (d f ) using the expression by Vainshtein et al. [48]:

φi = 1−C
(

di
d0

)d f−3

(6)
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where C is a packing coefficient (generally assumed to be 0.65) and d0 the primary particle diameter. di
and d0 are related by the expression proposed by Mandelbrot [49]:

di = d0

(
2i−1

C

) 1
d f

(7)

Collision Efficiency α

There are several expressions for collision efficiency, which depend on the type of aggregate and
the additives. In this case, we use an expression to represent the effect of high-weight polymers; this
is the polymer depletion and it rearranges on the adsorbed surface of the particles. This has been
implemented in a recent work by Vajihinejad and Soares [35], which showed an exponential decay
between two fitted parameters:

αi, j = (αmax − αmin)e−kdt + αmin (8)

where αmax is the maximum collision efficiency, αmin is the minimum collision efficiency (at steady-state
conditions), and kd is the collision efficiency decay constant (s−1).

3.2. Breakage Kernel

In regards to Equation (1), the S term is the breakage rate and Γ is the distribution breakage, which
represents the breakage kernel. The S term is difficult to predict since there is no theory and is usually
fitted to the size distribution data. In this case, we use a power-law function of the aggregate mass, as
proposed by Pandya and Spielman [50]:

Si = s1Gs2di (9)

where s1 and s2 are the fitted parameters.
To simplify the distribution breakage, we use a binary distribution, where an aggregate breaks

into two pieces of equal mass. That is:

Γi, j =


V j
Vi

for j = i + 1

0 for j , i + 1
(10)

3.3. Shear Rate

The shear rate required by the aggregation and breakage kernels is calculated from:

G =

(
ερsus

µsus

) 1
2

(11)

where ε is the average energy dissipation rate:

ε =
NpN3D5

V
(12)

where Np is the impeller power number (0.6 in our case for a plane disk with gentle agitation [51]), N is
the rotation speed, D and V are, respectively, the diameter of the impeller and the working volume of
the vessel. The density of the suspension ρsus is calculated from:

ρsus =

(
w
ρs

+
1−w
ρw

)−1

(13)
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where w is the solid mass fraction of the solution, ρs and ρw are, respectively, the solid and water
density. Finally, the viscosity of the solution µsus is measured.

3.4. Solution

To resolve the PBM in Equation (1), we use a solver based on the numerical differentiation formula
for stiff ODEs (ode23s) in MATLAB. The optimization was performed with the MATLAB function
fminsearch, which uses the Nelder–Mead direct search to find the minimum in an unconstrained
multivariable function. The objective function (OF) used to optimize the parameters is given by:

OF(αmax,αmin, kd, s1, s2) =
∑ t f

ti

(
dexp − dmod

)2
(14)

where dexp is the experimental diameter of the particles, and dmod is the model diameter obtained by:

dmod =

∑max
i=1 Nid4

i∑max
i=1 Nid3

i

(15)

Two criteria validate the model’s fit and predictions: One is the coefficient of determination (R2),
which measures the closeness of the model values to the experimental values. That is:

R2 = 1−

∑max
i=1

(
dagg,exp,i − dagg,mod,i

)2

∑max
i=1

(
dagg,exp,i − dagg,exp

)2 (16)

and the other is the quality of the fit:

GoF(%) = 100
dagg,exp − std

dagg,exp
(17)

std stands for the standard error calculated from:

std =

(
1

n− f

∑ t f
ti

(
dagg,exp − dagg,mod

)2
) 1

2

(18)

where n is the number of data values and f is the number of parameters to be fitted. A GoF of 90% or
higher means that the proposed model can predict the flocculation kinetics. Finally, conservation of
the total volume of particles is verified after every integration in order to ensure that the simulations
maintain the particle population.

4. Results

4.1. Input Parameters and Distribution

Three cases were studied: Seawater at pH 8 (SW pH 8), seawater at pH 11 (SW pH 11), and treated
seawater at pH 11 (T-SW pH 11), with Mg removed. Solving the PBM equations requires a set of input
parameters (Table 1). With these parameters, the shear rate can be calculated from Equations (11)–(13)
and the rest are used for the PBM equation definitions. A particle number concentration is needed
for each size class and for each unit of volume of suspension N0,i. For that, a number distribution is
obtained from experimental results through N0,i = φv(d0,i)/V0,i, where v(d0,i) is the volume fraction
of particles with diameter d0,i, obtained from Equation (7), φ is the solid volume fraction and V0,i is
the volume of the primary particles following the geometric progression V0,i = 2i−1V1. To obtain the
v(d0,i), a volume distribution is needed. Figure 3A shows an experimental volume fraction distribution
provided from the FRPM probe for three case studies before the flocculant is added; in this case,
all distributions are similar. To calculate the fractal dimension from the settings test, we follow the
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procedure by Heath et al. [20]. The fractal dimension results are shown in Figure 3B. The fractal
dimension is higher when the flocculant dose increases. At pH 11, the fractal dimension decreases
abruptly because the solid magnesium precipitates would produce open structures. Nevertheless, the
treated seawater overcomes this phenomenon, giving similar structures to those of the pH 8 system.

Table 1. Input parameters and conditions.

imax 30

φ 0.054

c 0.65

Np 0.6

D 8.0 cm

V 0.25 l

ρs 2600 kg/m3

ρw 1000 kg/m3

µsus 0.005 kg/(ms)

w 0.08

d0 0.0005 cmMetals 2020, 10, x FOR PEER REVIEW 8 of 16 
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4.2. Flocculation Kinetics and Modeling

The results of the experimental data are plotted in Figure 4 for the three cases studied in this work.
We see that the flocculant doses increase the size of the aggregates, which is similar to other work, as
shown in Reference [35]. For SW pH 8, the aggregate increases to a maximum value of 300 µm for the
flocculant dose of 28 g/ton. Smaller values are obtained when the flocculant dose decreases. If we
increase the pH to 11 (SW pH 11), we see results similar to those in Figure 4B, where the aggregate falls
to a smaller value of ~100 µm for all the flocculant doses in this work. This behaviour is primarily
related to the formation of hydroxide complexes that hinder aggregate formation. Later, we see the
results of Mg removal from the seawater before being added to the slurry at pH 11 (T-SW pH 11). In
this case, we have a higher maximum aggregation than when Mg is present as a hydroxide. From this,
we can clearly see that Mg hydroxide presence hinders the aggregation process drastically. Then, the
PBM modeling in the figures are included in the results as continuous lines. As we see from Table 2,
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there is a good agreement for the cases where the mean aggregate diameter is higher, but there are
limitations associated with the model for the examples that are small in size.
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Figure 4. Flocculation kinetics of synthetic tailings in seawater as a function of flocculant doses (mixing
rate 150 rpm). Solid circles correspond to experimental data and solid lines to the best fit with the
population balance model (PBM). (A) Seawater (SW) pH 8. (B) SW pH 11. (C) Treated (T)-SW pH 11.

Table 2. Quantitative results of GoF and R2 when the PBM model is used.

System Flocculant Dose, g/ton GoF, % R2

SW pH 8
13 86.1 0.675
21 92.9 0.915
28 93.8 0.939

SW pH 11
13 89.9 0.629
21 89.6 0.706
28 91.7 0.794

T-SW pH 11
13 91.4 0.838
21 95.3 0.961
28 94.9 0.956
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4.3. Optimized Parameters

The model fitted five parameters: The maximum and minimum collision efficiency (αmax, αmin),
the collision efficiency decay constant (kd), and two breakage rate kernel parameters (s1 and s2). The
first three parameters are related to the aggregation kernel and are shown in Figure 5. The αmax show
a steady increase when the flocculant dose increases. This reflects the activity of the flocculant to
aggregate more significant quantities of solids at higher doses. Interestingly, the αmin has small values
compared to the αmax, and all remain below 0.02, meaning that, at steady state (where αmin becomes
significant), the breakage kernel must also be small. kd, as we found in previous results, must follow
the inverse tendency of the amax, amin because the higher the aggregates, the greater the probability
of flocculant depletion. In this case, the fitted parameters also show that behaviour. Finally, if we
compare the three trials, we see that the parameters of the SW at pH 8 are similar of the T-SW at pH 11,
which implies that the removal of the Mg could keep the aggregation performance similar to that of
pH 8. Finally, the two parameters for the breakage kernel are plotted in Figure 6. As discussed above,
if the s1 is small, the amin is also small. This trend must be followed in order to satisfy steady-state
conditions in the aggregation process. The s2 parameters show values between 1 and 2, but as the s1

parameter is small, its contribution is neglected from the global behavior. From this, we see that high
dosage increments contribute to the aggregate kernel rather than the breakage kernel.
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Figure 5. Optimum aggregation parameters vs. shear rate for constant and variable fractal dimension:
(A) Maximum and (B) minimum collision efficiency and (C) collision efficiency decay constant kd.
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Figure 6. Optimum breakage parameters vs. shear rate for constant and variable fractal dimension: (A)
S1 and (B) collision efficiency decay constant kd.

4.4. Aggregation, Breakage, and Permeability Modeling

Once we have the optimized parameters, we can compute the physical parameters: Collision
efficiency, collision frequency, breakage rate, and permeability with the mean aggregate size from the
results in Figure 4. Collision frequencies are shown in Figure 7. We see that high doses of flocculant
increase the collision frequency. This can be accounted for by the polymer concentration, which has an
extended configuration that increases the likelihood of collisions. For SW pH 11, the small aggregates
generated by the appearance of magnesium complexes lead to a low value in the collision frequency.
This does not present significant changes with varied flocculant doses. Calculations for collision
efficiency are presented in Figure 8 and follow the same trend as the collision frequency, where SW pH
11 has no significant values. In this case, only below 20 s is the parameter relevant to the kinetics, and
drops to zero values after 20 s. Breakage rates are shown in Figure 9, which shows that, at SW pH 8,
we see that low doses generate higher values because less flocculant cannot maintain the aggregates.
We see similar behaviour in SW pH 11 and T-SW pH 11; this is accounted for because of the fractal
dimensions. For SW at pH 11, the fractal dimension is low, and the diameter increase coincided with
an increased breakage rate. For T-SW at pH 11, the fractal dimension is high, decreasing the aggregate
diameter and decreasing the breakage rate, even if the aggregates are big. Finally, permeability results
were plotted in Figure 10; we can see that very porous aggregates are found for SW pH 8 and a dose of
21 g/ton. This can be accounted for by the fractal dimension and the large mean size of the aggregates.
For SW at pH 11, we see that permeability is lower even if the fractal dimension is small, because the
size of the aggregate is small in these cases. Interestingly, the permeability value for T-SW pH 11 is low,
as compared to other cases, even if the aggregate sizes are similar to those in SW pH 8. This is because
the fractal dimension is high and creates dense aggregates that have little permeability.
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Figure 7. Collision frequency for the experimental data for (A) SW pH 8, (B) SW pH 11, and (C) T-SW
pH 11.
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Figure 8. Collision efficiency for the experimental data for (A) SW pH 8, (B) SW pH 11, and (C) T-SW
pH 11.
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Figure 9. Breakage rate for the experimental data for (A) SW pH 8, (B) SW pH 11, and (C) T-SW pH 11.
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Figure 10. Permeability for the experimental data for (A) SW pH 8, (B) SW pH 11, and (C) T-SW pH 11.

5. Conclusions

Experiments and modeling, through a population balance model (PBM), are used to characterize
the particle aggregation of flocculated tailings on untreated and treated seawater (SW) at different
flocculant doses. It was found that the Mg hydroxide complex presence could hinder the aggregate
kinetics drastically over time; this generates small aggregates between 50–100 microns at pH 11. If
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the Mg is removed before the flocculation takes place, we can obtain larger aggregates, from 100–200
microns, at the same pH. The results of T-SW pH 11 are in good agreement with the SW pH 8
achievements, which may imply that pH is no longer a restrictive parameter for the aggregation
process. The modeling of the aggregation was done with PBM, where fitted parameters can represent
the flocculation aggregation kinetics. In this case, the effect of flocculant dose can neglect the impact
of the breakage kernel, and the aggregation kernel dominates the flocculation. Additionally, it is
found that, without Mg ions, the pH has little effect on both the flocculation kinetics and PBM fitted
parameters. Only the fractal dimension shows us the main difference between SW pH 8 and T-SW pH
11, where it is reflected in its permeability. As we can see, experiments and modeling show us that the
Mg removal is the main component that hinders particle aggregation, and without its presence, the
process can operate similarly at neutral pH and high pH.
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