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Abstract: China produced 49.2% of the world’s total steel production in 2017. From 1990 to 2017,
the world’s total steel production increased by 850 Mt, of which 87% came from China. After 30 years
of rapid expansion, China’s steel industry is not expected to increase its production in the medium
and long term. In fact, the industry is currently in the stage of industrial restructuring, and great
changes will arise in production structure and technical level to solve pressing issues, such as
overcapacity, high energy intensity (EI), and carbon emission. These changes will directly affect the
global energy consumption and carbon emissions. Thus, a review of China’s steel industry is necessary
to introduce its current situation and development plan. Therefore, this paper presents an overview
of the Chinese steel industry, and factors involved include steel production, production structure,
energy consumption, technical level, EI, carbon emission, scrap consumption, etc. In addition,
four determinants are analyzed to explain the EI gap between China and the world’s advanced
level. In addition, comparison of steel industries between China and the world, development plans
for energy savings, and emission reduction are also included in this paper to give readers a clear
understanding of China’s steel industry.

Keywords: steel industry; industrial restructuring; energy consumption; carbon emission;
technology upgrade

1. Introduction

Steel production is an energy-, resource-, and pollution-intensive process [1,2]. China is currently
the world’s largest steel producer; indeed, the country’s steel production accounted for 49.2% of the
world’s total steel production in 2017 [3]. The energy consumption of China’s steel industry accounted
for over 20% of the national industry energy consumption in 2017, and the CO2 emissions from steel
enterprises also accounted for over 10% of the country’s total CO2 emissions [4–6]. As such, improving
the energy efficiency of steel production should be a primary concern for China, especially in times of
high energy price volatility.

The rapid development of China’s steel industry began in the 1990s. From 1990 to 2017, the world’s
total steel production increased by 850 Mt, of which 87% came from China [7]. Rapid expansion of
production capacity has had generally positive effects on the energy efficiency of the industry, and the
energy intensity (EI) of China’s steel industry decreased by 11.5% from 2006 to 2017 [8]. However,
there is still a gap between the EI of China′s steel industry and the world′s advanced level.

In 2018, the production of China’s steel industry increased to 928 Mt. After years of rapid expansion,
China’s steel industry is currently at the end of the stage of production growth. In fact, the industry
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is facing numerous pressures, such as overcapacity and resources, energy, and environmental issues.
These issues must be solved under the condition of ensuring an adequate steel supply, and this is a
challenge for the Chinese government.

There are various energy-efficiency opportunities that exist in China, and many existing research
works on the steel industry from a technical point of view are available in the literature, and the
energy saving potential of China has been assessed in scientific papers [9–15]. However, currently,
a comprehensive review of China’s steel industry is still necessary to give readers a clear understanding
of the present situation and development plan to realize the production structure adjustment and
technical level upgrade.

The work presented in this paper is a unique study for the steel industry, as an extensive review of
China’s steel industry was conducted in this study. This paper specifically discusses (1) the development
and present situation of steel production and consumption in China; (2) the implementation rate of
major energy-saving technologies, gas recovery and utilization, and secondary energy generation in
key enterprises in the country; (3) the development of the overall energy intensity (EI), specific process
EIs, and the EI gap in key steel enterprises between China and the world; and (4) the carbon emissions
of China’s steel production and its main sources.

This paper also presents an analysis of the reasons behind the EI gap between China’s and
the world’s steel industries. The factors considered include scrap ratio (SR), production structure,
energy structure, and industrial concentration. In addition, development plans for major energy
conservation in China’s steel industry are also introduced and analyzed. These plans include eliminating
backward production capacity, developing and implementing energy-saving technologies, and
adjusting production structures by increasing scrap consumption in steel production.

We hope this study could be a useful reference for global policy makers, researchers, and industrial
energy users, and be helpful for energy conservation and emission reduction work of China’s
steel industry.

2. Development and Present Situation of China’s Steel Industry

2.1. Steel Production and Consumption

The rapid development of China’s steel industry began in the 1990s, and the rise of this industry
has had an important impact on the development of the global steel production (Figure 1). China
became the world’s largest steel producer in 1996 and has retained this status thus far. From 1990 to
2017, the world’s total steel production increased by 850 Mt, of which 87% came from China [7].
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In 2017, the world’s total steel production was 1689.4 Mt (Figure 2), and the top 10 steel producers
included China (831.7 Mt), Japan (104.7 Mt), India (101.4 Mt), the United States, (81.6 Mt), Russia
(71.3 Mt), South Korea (71.0 Mt), Germany (43.4 Mt), Turkey (37.5 Mt), Brazil (34.4 Mt), and Italy
(24.1 Mt) [16].
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Figure 2. Top 15 global steel producers.

As the world’s largest steel producer, China is also the world’s largest steel consumer. In 2017,
China’s steel consumption accounted for 46.4% of the world’s total steel consumption; by comparison,
European Union (EU) countries and North American Free Trade Agreement (NAFTA) countries
accounted for 10.2% and 8.9% of the world’s total steel consumption, respectively [16]. In addition,
Japan accounted for 4.1% of the world’s total steel consumption, and other Asian countries consumed
15.9% of the world’s total steel (Figure 3).
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2.2. Production Route

Iron and steel industry has a complex structure. However, only a limited number of routes are
applied worldwide, and these production routes use similar energy resources and raw materials
(Figure 4). Globally, steel is produced via two main routes, namely, the blast furnace–basic oxygen
furnace (BF–BOF) route and the electric arc furnace (EAF) route.
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Figure 4. Steel production routes [17], with permission from World Steel Association 2012.

In the BF–BOF route, iron ore is first processed into iron, also known as molten or pig iron. Then,
the molten iron is converted into steel in a converter. After refining, casting, and rolling, the steel is
delivered in the form of steel plates, section steel, or steel bars.

The EAF route uses electricity to melt scrap steel in an electric arc furnace. Additives, such as
alloys, can be added during steelmaking to adjust the required chemical composition of the steel,
and oxygen can be injected into the EAF. The downstream processing stages of this route, such as
casting, reheating, and rolling, are similar to those of the BF–BOF route.

The key difference between the BF–BOF and EAF routes is the type of raw materials consumed.
The main raw material of the BF–BOF route is iron ore (generally accounting for 70%–100% of the total
raw material); scrap, pig iron, and hot-pressed iron are also added. By comparison, the EAF route
produces steel using mainly recycled steel (generally accounting for over 70% of the total raw material
consumed) [18]. Depending on the plant configuration and availability of recycled steel, other sources
of metallic iron, such as direct reduction iron (DRI) or hot metal, can also be used in the EAF route.

In 2017, the BF–BOF and EAF routes respectively accounted for 71.6% and 28.0% of the world’s
total steel production; another 0.4% of the world’s steel production was derived from the open-hearth
route [3]. China, Japan, Russia, Korea, Germany, Brazil, and Ukraine, as some of the world’s major
steel producers, use the BF–BOF route as their main route of steel production; the EAF route is used as
the main mode of steel production in the United States, India, and Turkey (Table 1).
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Table 1. Crude steel production by process in 2017.

Country BF–BOF EAF Open-Hearth
(%) (%) (%)

China 90.7 9.3 -
Japan 75.8 24.2 -
U.S. 31.6 68.4 -

India 44.2 55.8 -
Russia 66.9 30.7 2.4

South Korea 67.1 32.9 -
Germany 70.0 30.0 -

Turkey 30.8 69.2 -
Brazil 77.6 21.0 -

Ukraine 71.8 6.8 21.5
World 71.6 28.0 0.4

2.3. Production Technology Development

Given the rapid growth of China’s steel production began in the 1990s, the country’s energy
consumption has also increased dramatically. Therefore, China attaches great importance to energy
conservation in the steel industry. Implementing energy-saving technology is an effective way to
reduce energy consumption in steel production. Over the past 30 years, China has made remarkable
progress in the development of energy-saving technologies in steel production, and the technical
indicators of China’s steel industry have considerably improved.

2.3.1. Implementation Rates of Coke Dry Quenching and Top Pressure Recovery Turbine Technologies

Coking and blast furnace (BF) are the highest energy-consuming processes in steel production.
Using coke dry quenching (CDQ) and top-pressure recovery turbine (TRT) technologies can effectively
reduce the EI of coking and BF. In 2000, the implementation rates of CQD and TRT technologies of
China’ steel industry were only 12% and 14%, respectively (Table 2). After years of development,
the implementation rates of CQD and TRT technologies increased to 90% and 99% in 2015,
respectively, and the total number of CDQ units in China now exceeds 200 sets (processing capacity
25,000 t/h). Approximately 700 TRT-equipped BFs exist in China, of which 597 are gas dry dedusting
equipment [19,20].

Table 2. Implementation rates of CDQ and TRT in China.

Year CDQ TRT

2000 12% 14%
2005 26% 74%
2010 85% 95%
2015 90% 99%

2.3.2. By-Product Gas Recovery and Utilization

By-product gas resources are the most important secondary energy resource in steel production.
A large amount of energy can be saved by recycling and utilizing by-product gas resources. The recovery
and utilization rates of China’s key steel enterprises are relatively high (Table 3), and over 98% of the BF
gas and coke oven gas produced was recycled, and converter gas recovery was 114 m3/t in 2017 [19,20].
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Table 3. Recovery and utilization of by-product gas in China’s key steel enterprises.

Year Utilization Rate of
BF Gas (%)

Utilization Rate of
Coke Oven Gas (%)

Converter Gas Recovery
(m3/t)

2016 98.26 98.16 115
2017 98.34 98.77 114

2.3.3. Power Generation from Secondary Energy

Energy consumption for steel production only accounts for 30% of the total energy consumption,
and the remaining 70% of the energy consumed is converted into various forms of waste heat and
residual energy, such as by-product gas resources, the sensible heat of slag, and the waste heat of
products [20,21]. These waste heat and residual energy resources can be used to preheat materials,
generate steam or self-contained power plants, and generate power.

In 2017, power generation from secondary energy resources in China’s key steel enterprises
accounted for approximately 41.3% of the total electricity consumption (Figure 5), of which 57.8%
originated from by-product gas, 16.2% from TRT, 11.7% from CDQ, 5.0% from sintering waste heat,
and 9.3% from other secondary energy sources [19].
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2.4. Energy Consumption

Steel enterprises use numerous energy evaluation indicators, such as comprehensive EI and
comparable EI, as well as EI indicators for coking, sintering, pelletizing, ironmaking, steelmaking, and
rolling process. In this section, the EI of China’s steel industry is comprehensively described through
an exhaustive analysis of various indicators.

2.4.1. Overall Energy Consumption

The comprehensive EI includes all forms of energy directly consumed by steel enterprises and
their auxiliary production systems and the total amount of energy actually consumed by subsidiary
production systems directly serving the production of steel enterprises [22]. The comprehensive EI is
calculated as follows:

eComprehensive =
Ei

P
, (1)

where Ei is the energy consumption of the i category energy, kgce; P is the steel production, t.
From 2006 to 2017, the comprehensive EI of China’s steel industry decreased from 645 kgce/t to

571 kgce/t (decrease by 11.5%) [19,23,24]. This reduction shows that China’s steel enterprises have
made remarkable progress in increasing their overall energy efficiency (Figure 6).
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2.4.2. EI of the Production Process

The EI of the production process reflects the energy consumption of the main production processes
in steel production. From 2006 to 2017, the EI of the production process of China’s key steel enterprises
decreased dramatically: The EI of sintering, pelletizing, coking, BF, and steel processing respectively
decreased by 12.8%, 20.1%, 19.0%, 9.6%, and 5.0%, respectively (Table 4) [19,23–25].

Table 4. The EI of production process of China’s key steel enterprises. (Unit: kgce/t).

Year Sintering Pelletizing Coking BF Converter EAF Processing

2006 55.61 33.08 123.11 433.08 9.09 81.26 64.98
2007 55.21 30.12 121.72 426.84 6.03 81.34 63.08
2008 55.49 30.49 119.97 427.72 5.74 81.52 59.58
2009 54.52 29.96 113.97 410.55 2.78 73.44 57.66
2010 52.65 29.39 105.89 407.76 −0.16 73.98 61.69
2011 54.34 29.60 106.65 404.07 −3.21 69.00 60.93
2012 50.60 28.75 102.72 401.82 −6.08 67.53 57.31
2013 49.76 28.58 99.87 399.88 −7.81 62.38 60.32
2014 49.48 27.12 98.15 388.70 −8.73 66.06 63.30
2015 48.53 26.72 99.66 384.43 −11.89 60.38 63.44
2016 47.78 26.16 97.46 387.75 −12.24 65.90 61.78
2017 48.49 26.17 99.67 391.37 −14.26 60.22 61.73

2.4.3. Comparison of EIs between Steel Industries in China and the World

Comparable EI is used to compare the energy consumption of steel production in different
enterprises or countries; this parameter represents the sum of energy consumption in each production
process [26]. The Comparable EI is calculated as:

eComparable = (1/P)
(∑

Pi × ei + I + J + K
)
, (2)

where Pi is the production of i process, t;
ei is the average energy consumption of the i process, kgce/t product;
I, J, and K are the energy consumption for processing and transportation of fuel, energy

consumption for locomotive transportation, and changes in enterprise energy stock, respectively.
According to the International Energy Agency (IEA) and the Research Institute of Innovative

Technology for the Earth [27,28], Japan possesses the world’s most energy-efficient steel
industry. All steel mills in Japan use existing technologies with minimal potential for further
energy-conservation measures.
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China’s steel industry has achieved good results in reducing energy consumption over the last
20 years (Figure 7). However, a wide gap remains between the steel industries of China and Japan [8].
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2.5. CO2 Emissions

Traditional steel production relies heavily on fossil fuels, such as coal and coke. Therefore,
China’s steel industry has become the second largest national emitter of CO2 after the power industry.
In 2015, CO2 emitted by China’s steel enterprises accounted for over 15% of the country’s total CO2

emissions [5,6].
CO2 emission from steel enterprises is mainly caused by coal combustion. Coal accounts for

approximately 80% of the energy consumption structure in China’s steel enterprises [4]. According to
statistics, CO2 emissions from China’s iron-making system (sintering, pelletizing, coking, and blast
furnace) account for approximately 85% of the total emissions from the steel industry [29,30]. Therefore,
reducing CO2 emissions from the iron front process is imperative.

In 2015, at the Paris Climate Conference, the Chinese government proposed reducing CO2

emissions per unit GDP by 65% compared with 2005 levels by 2030 and establishing a national carbon
emissions trading market in 2017 [30]. The latter proposal will integrate eight industries, including
electricity, steel, and cement, into one system to promote overall carbon emission reduction. Therefore,
China’s steel enterprises are facing the severe situation of CO2 emission reduction.

Using scrap instead of iron ore can directly reduce the production of the iron-making system and
drastically reduce energy consumption and CO2 emissions. The EI of direct steel-making with scrap is
only 30% that of the BF–BOF route. This finding indicates that using one ton of scrap in China’s steel
production can save 350 kgce and reduce CO2 emissions by 1.4 tons [31].

At present, scrap consumption per ton of steel in China is far below the world’s average level
(specific description is in Section 3.1). In the future, China’s recyclable scrap resources will increase
substantially as the scrap consumed in previous decades gradually reaches their recycling cycle, and
increasing the use of scrap steel in steel production will become an inevitable trend.

3. Comparison of Steel Industries between China and the World

Over the last two decades, China’s steel industry has made remarkable achievements in reducing
its EI by improving technology levels and promoting energy-saving technologies; these efforts have
resulted in considerable reductions in the energy consumption of steel production. However, a gap still
remains between the EIs of key enterprises between China and the world’s advanced level. Therefore,
in the future, reducing energy consumption will remain a key issue for China’s steel industry. In this
section, the main reasons behind this EI gap are analyzed by comparing steel production in China and
other countries.
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3.1. Difference in Scrap Ratio

Iron ore and scrap steel are the two main raw materials for steel production. Compared with that
of iron ore, using scrap in steel production can save energy and resources by reducing the production
of iron-making systems. SR is used to define scrap consumption in steel production:

Scrap ratio =
Scrap consumption

steel production
(3)

Over the last 10 years, the SR of the global steel industry remained at 35%–40%, and is approximately
37% on average. Among the world’s major steel-producing countries, the United States has the highest
SR of 75%, which fluctuates considerably. The EU’s SR is also high at approximately 55%–60%,
South Korea’s average is approximately 50%, and Japan’s average is approximately 35% [32]. The SR
of China’s steel industry was only 11.2% in 2016. The consumption of scrap resources per ton of
steel in China is considerably lower than the global average, and this gap has a negative impact on
energy conservation because processing of iron ore into hot metal requires a large amount of energy
and resources.

A low SR leads to the dependence of China’s steel enterprises on iron ore as the main raw material.
The SR and iron–steel ratios of key steel enterprises in China from 2006 to 2016 are calculated according
to China Steel Yearbook [33]. As shown in this Figure 8, the scrap ratio of China’s key enterprises
declined from 2006 to 2016, and the corresponding iron–steel ratio showed an opposite increasing
trend. This dependence explains why the iron–steel ratio of the country’s iron-making system is higher
than that of other countries.
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Figure 8. Scrap ratio and iron–steel ratio of China’s key steel enterprises.

In 2016, China’s iron–steel ratio was 0.867; by comparison, the global average iron–steel ratio was
0.734. The global average was only 0.573 after deducting China’s iron–steel ratio [20]. The iron–steel
ratios of the United States and Germany are 0.333 and 0.646, respectively. Generally, if the iron-steel
ratio increases by 0.1, the comprehensive EI of steel production will increase by about 50 kgce/t, so the
comprehensive EI of China is about 110–250 kgce/t higher than the advanced level just because of the
high iron-steel ratio [20].

3.2. Differences in Production Structure

Energy consumption and pollutant emissions in steel enterprises are mainly concentrated in
iron-making systems (from the iron ore entering the plant to coking, sintering, pelletizing, and
ironmaking). Therefore, the energy consumption of the BF–BOF route is generally higher than that of
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the EAF route (Figure 9). Compared with the BF–BOF route, direct steelmaking with scrap via the
EAF route can save approximately 60% of the energy expenditure to produce steel and reduce CO2

emissions by 80% [34–37].
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Figure 9. Energy intensity of the BF–BOF and EAF routes.

Increasing the use of the EAF route can reduce energy consumption in steel production. However,
production through EAF is limited by the availability of scrap steel resources. The actual situation of
scrap resources varies greatly in different countries and regions around the world. Some countries
(regions) have abundant scrap resources and low prices; in this case, additional EAF steel plants
can be built and additional scrap steel can be consumed in converters. For example, in the United
States, the proportion of EAF steel accounts for over 60% of the total crude steel production. In some
developing countries with insufficient scrap resources, the BF–BOF route remains the main mode of
steel production. For example, in China, the EAF steel ratio has hovered at approximately 10% over
the last few years [7].

Insufficient scrap storage is the main reason behind the low SR in China. Scrap recycling has a
certain cycle, and China began to use a large number of steel products in 2000. Thus, a large gap in
scrap resources exists in China. Therefore, over the last 30 years, China’s steel production growth has
mainly originated from the BF–BOF route, and the production of EAF steel has been stable due to the
limitation of scrap quantity.

From 2000 to 2017, the production of China’s BF–BOF route rose by over 800%; thus, the proportion
of the EAF route in China has continuously declined (Figure 10). In 2017, China’s BF–BOF production
accounted for 90.7% of total steel production, while its EAF production accounted for only 9.3%, which
is far below the world average level (28%) [3].
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3.3. Differences in Energy Structure

According to IEA statistics, the energy consumption of the steel industry in 2017 accounted for
17% of the world’s total industrial energy consumption. In terms of total energy consumption, coal is
the main energy source (64% of the total energy consumption), followed by electricity (20% of the total
energy consumption) and natural gas (11% of the total energy consumption) [4]. Oil contributes only
1% of the energy consumption. The remaining energy consumption is provided by other types of
energy, such as biomass (Figure 11).
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Figure 11. Energy structure of the world’s steel industry.

The energy structures of different countries vary remarkably. For example, coal and natural gas
account for 76% and 2% of energy consumption in China’s steel industry, respectively [4]. By contrast,
only 24% of the energy consumption of the United States comes from coal; 47% comes from natural
gas (Figure 12). The energy structures of different steel-producing countries differ, and the industrial
conversion efficiencies of different kinds of energy vary. Thus, differences in energy structure will have
a certain impact on the energy efficiency of steel production.Metals 2020, 10, x FOR PEER REVIEW 12 of 19 
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Figure 12. Energy structures of the steel industries of China (left) and the United States (right) in 2017.

In industrial production, the energy efficiency of natural gas is higher than that of coal regardless
of their use in fuel or power generation, and the carbon emission of natural gas is lower than that of
coal. Using 1 m3 of natural gas can save 0.76–1.19 kgce and reduce carbon emissions by 3.33–5.01 g
compared with the using coal [38]. At present, the main energy source of steel production in China
is coal, and the proportion of natural gas in the energy consumption of China’s steel industry is
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drastically lower than the world average; this situation is unfavorable for energy savings and carbon
emission reduction.

3.4. Differences in Industrial Concentration

In China, EI varies among steel enterprises of different scales, and the EI of small steel enterprises is
generally higher than that of key steel enterprises, due to small size production equipment being mostly
used in small steel enterprises, which are of high production energy consumption [39]. In addition,
the management and technological advantages of large-scale steel enterprises allow them to consume
less energy than small-scale enterprises.

Over the past decade, the concentration of China’s steel industry has shown a downward trend
(Figure 13), with the concentration of the top 10 enterprises declining from 45% in 2001 to 36% in
2016. By contrast, in Japan, the concentration of the top five enterprises accounted for over 80%
of the country’s total steel production, and the large-scale production of steel industry has been
achieved [7,40,41].
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Increasing the production proportion of large-scale enterprises is a development trend in China’s
steel industry. According to “Adjustment Policy of Iron and Steel Industry” published in 2015,
the concentration of the top 10 steel enterprises in China should not be less than 60% by 2025, and three
or five super-large steel enterprise groups with strong competitiveness in the global scope should
be formed.

4. Development Directions for Energy Savings and Emission Reduction in China’s Steel Industry

After decades of rapid development, China’s steel production has entered the peak arc region,
and, in the medium and long term, overall steel production is not expected to increase. According to
relevant plans published by the Chinese government, in the future, China’s steel industry will focus on
industrial restructuring to solve problems arising from previous rapid development stage. Eliminating
backward production capacity (technological upgrading), promoting energy-saving technologies, and
restructuring production are key directions for energy savings and emission reduction.

4.1. Eliminating Dackward Production Capacity

Overcapacity, a common problem currently faced by the global steel industry, presents a very
serious challenge to China. In 2015, the excess capacity of China’s steel industry was 336.2 Mt,
accounting for 46% of the global excess capacity [42]. At the same time, China also retains backward
capacity, which affects the total energy consumption of steel production. Against this background, the
Chinese government published “Opinions on the Iron and Steel Industry to Eliminate Overcapacity
and Realize Development from Difficulties,” which demands the following: the crude steel production
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capacity should be reduced by 10–150 Mt within five years from 2016, and future development should
aim at industry merging and reorganization, industrial structure optimization, and resource utilization
efficiency improvement.

China strictly enforces the energy conservation law and defines backward production capacity in
accordance with process energy consumption. Steel production capacity that fails to meet mandatory
standards, such as “Energy Consumption Limit for Products of Major Processing Units in Crude Steel
Production”, should be reformed and upgraded within six months (Table 5). The steel production
involved in this effort is estimated to range from 10 Mt and 150 Mt; this amount will effectively improve
the energy efficiency of China’s steel industry.

Table 5. Energy consumption requirements for new and reformed steel enterprises [43].

Types of Enterprises Coking Sintering Blast Furnace Converter Common
Steel EAF

Special
Steel EAF

New construction and
transformation

enterprises

≤122 (Top
loading) ≤50 ≤370 ≤−25 ≤90 ≤159

≤127 (Tamping)

Existing enterprises
≤150 (Top
loading) ≤55

≤435
≤−10 ≤92 ≤171

≤155 (Tamping) ≤485 (Vanadic
titanomagnetite)

China’s steel industry eliminated backward production capacity by 65 Mt in 2016 and by 55 Mt in
2017. The productivity utilization rate has increased from approximately 70% in 2015 to over 85% in
2017 [44], as shown in Table 6.

Table 6. Effect of the elimination of backward productivity.

Parameter 2014 2015 2016 2017

Capacity (Mt) 1151 1134 1069 1019
Capacity reduction (Mt) 31.1 17.1 65 50

Capacity utilization rate (%) 71.5 70.9 75.6 86.65

4.2. Research and Promotion of Energy-Saving and Emission-Reduction Technologies

The promotion and application of energy-saving and secondary energy-recovery technologies
in steel production has always been the focus of the energy-saving work of China’s steel industry.
After years of development, some major energy-saving technologies have been widely implemented
in China. These technologies include sintering waste heat recovery, TRT power generation capacity,
and converter gas recovery.

In the future, the progress of research and development of energy-saving technologies will further
decrease the EI of steel production in China. Several domestic steel industry researchers have begun to
actively pay attention to research on topics such as high-temperature and pressure dry quenching,
heat recovery from coke oven riser waste, coal humidification, heat recycling from sintering waste
gas waste, heat recovery from slag washing water waste, heat recovery from converter flue gas waste,
comprehensive utilization of pure dry dust removal, and high-parameter gas-generating units [44]
(Table 7).
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Table 7. Major technological progress and their energy-saving effect in the future.

No. Technology Energy Saving Effect Development Plan Coal Saving (Mtce)

1 High temperature and
pressure CDQ 40kgce/t coke

add more than 30 new equipments,
involving 57 Mt of coke production

capacity
2.28

2 Waste heat recovery of
coke oven riser

90 kg steam (0.6 MPa)/t
coke (equivalent to

9 kgce/t)

add more than 30 new waste heat
recovery equipments, involving 57 Mt of

coke production capacity
0.51

3 Coal moisture control 6 kgce/t coke
add more than 10 new equipments,
involving 20 Mt of coke production

capacity
0.12

4 Recycling of waste
heat from sintering 4 kgce/t sinter about 40 new units, involving 80 Mt of

sintering production capacity 0.32

5 Waste heat recovery of
slag washing water

40 ktce/heating cycle
(1 million m2 of heating

area)

add more than 7000 m2 heating area, of
which 2300 m2 have been added in 2016

2.80

6

Comprehensive
utilization of waste
heat from converter
flue gas- pure dry

dedusting

8 kgce/t steel applied to 200 converters, involving
300 Mt of steel production 2.40

7 High parameter gas
power generator unit

thermal efficiency
increased by over 5%,

40 ktce compared with
medium temperature and

medium pressure unit
(enterprises with steel

production of 10 Mt/year)

applied to 135/65/54 MW high parameter
gas generator units in 30 enterprises (steel

production over 5 Mt/year), involving
250 Mt of steel production

1.00

Total 9.43

4.3. Production Structure Transformation

A large amount of scrap steel resources accumulated by China is expected to reach their recycling
cycle in recent years. Under these conditions, utilization of scrap steel could be expected to increase
over the next few years.

According to estimations of recyclable period of steel products in China, during the 13th Five-Year
Plan period, in addition to scrap vehicles, many bridges, houses and military equipment have reached
the scrap period. This phenomenon will further increase China’s scrap stock. The amount of recyclable
scrap steel is expected to reach approximately 200 Mt in 2020, 272.2 Mt in 2025, and 346 Mt in 2030 [37]
(Figure 14). Therefore, increasing the scrap ratio is an inevitable trend in the development of China’s
iron and steel industry.
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The 13th Five-Year Plan is anticipated to be a major turning point for the scrap industry. Efforts to
rationally utilize scrap steel resources, increase the proportion of EAF steel, and realize structural and
energy savings will have tremendous potential for growth and development.

China’s crude steel production has been in the downward zone of the peak arc, and steel
production is not expected to increase in the medium and long term. Pig iron production shows the
same characteristics, and, given the gradual increase in scrap resources, the average decline rate of
pig iron production over the long run will be higher than that of crude steel. At present, over 65% of
China’s total iron production is produced by imported iron ore [33]. From a long-term perspective,
the demand for iron ore will continue to decline [44] (Figure 15).
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At present, 70% of energy consumption and 85% of CO2 emissions of China’s steel industry are
concentrated in converting iron ore into molten iron [29,30]. The SR of China’s steel industry hovering
between 10% and 15% over the last decade, and it will be not less than 25% in 2025 according to the
development plan of China′s steel industry. This will make a significant contribution to reducing the
energy consumption of China′s steel industry.

5. Results and Discussion

5.1. Conclusions

This paper presents a comprehensive overview of the development and current situation of
China’s steel industry, including steel production, steel consumption, production structure development,
energy-saving technology development, overall energy consumption, process energy consumption,
and carbon emissions. The future development of the energy-saving work of China’s steel industry is
also analyzed.

At present, China’s steel production is not expected to increase in the medium and long term.
Pig iron production shows the same characteristics, and the demand for coke and iron ore will
also continue to decline. Over the next few years, China can reduce its energy consumption
and carbon emissions by eliminating backward production capacity (technological upgrading),
implementing energy-saving technologies, increasing scrap consumption, and reducing the production
of iron-making systems.
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5.2. Policy Implications

5.2.1. Scientifically and Rationally Elimination of Backward Production Capacity

Scientific and reasonable methods should be used to achieve the capacity removal of China’s steel
industry. First, uneconomical and low value-added production capacity should be reduced. Second,
illegal and irregular steel enterprises should be investigated and punished in accordance with the law.
Third, industry regulations should be conscientiously implemented to eliminate backward production
capacity. These regulations include “Standard Conditions for Iron and Steel Industry” (revised in 2015)
and “Standardized Enterprise Management Measures for Iron and Steel Industry.”

5.2.2. Improvement of the Production Technology Level

Special funds should be allocated to support the research and development of key energy-saving
technologies. Energy savings and emission reduction in the steel industry should be treated as key
aspects of national technological transformation. The government should increase their support for
key special projects related to energy saving and emission reduction. For example, technology research
should focus on key issues, such as insufficient power self-generation, low power generation efficiency,
taxes and fees of power network, and the poor utilization of low-temperature waste heat in summer.

5.2.3. Normalization of the Scrap Steel Market

The consumption of scrap resources in steel production will dramatically increase as the availability
of recyclable scrap in China increases. At present, China’s scrap industry has four main problems:
(1) the capacity of scrap processing only accounts for 30% of the social scrap volume; this value is far
from the demand of the steel industry; (2) the quality of equipment available for scrap processing
is low, and dismantling lines for automobiles has not yet been extensively established; (3) reliable
statistical data for the classification of scrap resources and technical standards for the scrap processing
products industry are lacking; and (4) the taxation of scrap import and distribution enterprises is not
conducive to scrap recycling. Therefore, management of the scrap steel industry should be improved,
and scientific processing and classified sales should be implemented to meet the needs of various users
and provide strong support for the transformation of the production structure of the steel industry.
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