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Abstract: The microstructure and mechanical properties of cold-rolled Cu-2.7Be sheets under various
annealing processes and conditions were investigated in this research. The increased beryllium
content in the Cu-2.7Be alloy facilitates the formation of brittle secondary phases. Consequently, the
study highlights the functionality of annealed Cu-2.7Be alloys as more favorable dynodes than the
traditionally used Cu-2.0Be alloys. The mechanism of recrystallization used for the transformation
of Cu-2.7Be alloys was that of continuous static recrystallization (cSRX). Moreover, the relationship
between the orientation of the β phases and that of the surrounding Cu-matrix was determined to be
(111)α‖(110)β and (011)α‖(001)β. The β phase has a body-centered cubic (bcc) structure with a = b =

c = 0.281 nm. The β phase undergoes a morphology transformation from primitive lath-shaped β

particles to quadrangle-shaped β particles during the annealing process. Such transformations could
potentially have an effect on the mechanical properties of Cu-2.7Be sheets. There was a noticeable
decline in the yield strength of the Cu-2.7Be after annealing, and the samples annealed at 770 ◦C for
15 min achieved the elongation with deep and uniform dimples caused by suitable β particle sizes,
appropriate grain sizes, and the maximum volume fraction of

∑
3 boundaries.
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1. Introduction

Copper–beryllium alloys are extensively used as dynodes in electron multipliers and
photomultiplier tubes, due to high, stable, and durable secondary electron emission (SEE)
properties [1,2]. In 1947, Allen discussed the design and construction of a 13-stage electron multiplier
tube. The electrodes synthesized from the Cu-2.0Be alloy sheets were applied and the method of
activating these surfaces was described [3]. Furthermore, in the 1950s–1980s, the activation process
played a key role in the investigation of Cu-2.0Be dynodes [1–5]. However, materials with high
SEE properties, such as Ag-3Mg [6], Y2O3-Mo [7], MgO/Au composite film [8], H-terminated, and
Cs-terminated chemical vapor deposition (CVD) diamond [9] have been developed, whereas minimal
attention was placed on the Cu-Be dynodes. Nevertheless, due to the ultra-high thermal stability, the
Cu-Be alloys are still utilized as primary SEE materials, which can be sealed in the electron multiplier
when functioning as dynodes. Furthermore, upon thorough investigation of the SEE properties
of Cu-2.7Be alloys, Wang observed that the Cu-2.7Be alloys possessed a higher SEE property than
the traditional Cu-2.0Be alloys, thus suggesting the potential application of the former in Cu-Be

Metals 2020, 10, 241; doi:10.3390/met10020241 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://dx.doi.org/10.3390/met10020241
http://www.mdpi.com/journal/metals
https://www.mdpi.com/2075-4701/10/2/241?type=check_update&version=2


Metals 2020, 10, 241 2 of 13

dynodes [10]. However, when the Be content in the alloy exceeds 2.3 wt.%, hard and brittle secondary
phases are generated. These secondary phases result in processing problems and limit the application
of Cu-2.7Be alloys in dynodes. Consequently, it is imperative to study the evolution of the mechanical
properties and microstructure of Cu-2.7Be alloys via heat treatment when considering its applicability
or functionality in photomultipliers.

The mechanical properties of the alloy sheets are primarily influenced by factors such as
textures [11], grain size [12,13], phase composition [14,15], and heat treatment conditions [16]. The
phase transformation process of Cu-Be alloys during aging has been extensively researched and
is confirmed to be: G.P. zones → γ” ordered phase → γ′ body-centered tetragonal precipitates →
equilibrium γ phase [17–21]. However, only a few reports detail the transformation process of β phases
in the Cu-Be alloy. In this study, cold-rolled Cu-2.7Be sheets were obtained via hot-cross rolling. A
series of thermal treatments were utilized to facilitate the β phase transition at a temperature higher
than the general aging temperature, in order to avoid the hardening of Cu-2.7Be sheets. The evolution
of the microstructure of Cu-2.7Be sheets was mainly characterized by electron backscattered diffraction
(EBSD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

2. Experimental Process

The alloy used in this work has a nominal composition of Cu-2.7Be (Be content in wt.%). The
schematic diagram illustrating the mechanism by which the Cu-2.7Be sheets are processed is shown in
Figure 1. After homogenization (800 ◦C; 20 h), ingots with 10 mm thickness were hot-cross rolled and
low anisotropy Cu-2.7Be plates were obtained. Cold rolling was subsequently conducted in order to
achieve the final thickness of Cu-2.7Be sheets (0.2 mm), as stipulated by our previous work [22,23].
In an effort to accomplish the objectives of phase transition control and static recrystallization, the
cold-rolled sheets were annealed at 650 ◦C and 770 ◦C. Subsequently, the annealed specimens (50 mm
× 50 mm) were cut using an electric spark wire-cutting machine. Rectangular tensile specimens were
also cut with a gauge length of 80 mm and a cross-sectional area of 2 mm × 1 mm using an electric
spark wire-cutting machine. The tensile specimens were machined from the quenched rolling plane
of the sample with the longitudinal axis along the original rolling direction of the sheets. Electron
backscattered scattering detection (EBSD) was conducted at a step size of 1 µm on an scanning electron
microscope (SEM) (Sirion 200, Field Electron and Ion Co., Hillsboro, Oregon State, America) equipped
with a Tsl-Oim data analysis software system that contained orientation information for each point.
The samples for EBSD scanning with dimensions of 5 mm × 5 mm × 0.5 mm were prepared by electric
spark cutting, mechanical polishing, and automatic twin-jet electropolishing using a solution of 25%
nitric acid and 75% methanol at a potential of 40 V and a temperature of −30 ◦C. Based on the EBSD
data, the grain size distribution was quantified using the commercial software package Image Pro.
The transmission electron microscope (TEM) observation and selected area electron diffraction (SAED)
were carried out using a Tecnai F20 transmission electron microscope (Field Electron and Ion Co.,
Hillsboro, Oregon State, America). The specimens were electro-polished in a similar manner as before.Metals 2020, 10, 241 3 of 13 

 

Figure 1. Schematic diagram of Cu-2.7Be sheets processing. 

3. Results and Discussion 

The process of deformed and annealed samples was studied by analyzing the measurements of 

Vickers Hardness as a function of the annealing temperature and annealing time (Figure 2). The 

load, with a weight of 4.9 N, was applied for 15 s. The hardness of the cold-rolled sample was 

established as the initial hardness for any annealing temperature. All the curves are found to consist 

of two stages, i.e., the subsequent drastic decrease in hardness induced by the preceding 

recrystallization, and the final steady stage indicating the completion of recrystallization. According 

to a previous study [24,25], the Vickers hardness exhibits a positive correlation with yield strength. 

During the process of annealing—which weakens the yield strength—the Vickers hardness of Cu-

2.7Be samples decreased significantly (Figure 2) when the annealing time exceeded 10 min. The 

main microstructure evolution of low stacking fault energy alloys, such as Cu-2.7Be alloys, is 

recrystallization during annealing. Higher temperatures promote larger migration velocity of the 

grain boundaries, thus contributing to a larger grain size [26]. For this reason, higher annealing 

temperatures can achieve lower values of Vickers hardness (Figure 2). Hence, increasing the 

annealing temperature can shorten the recrystallization period by accelerating the recrystallization 

process of the Cu-2.7Be alloys. 

 

Figure 2. Vickers hardness of Cu-2.7Be sheets annealed at 650 °C, 710 °C, 770 °C. 

According to the Euler maps (Figure 3), the grain size of the annealed Cu-2.7Be sheets was 

noticeably increased, whereas the grain shape of the annealed sample tended to be equiaxed 

because of the recrystallization. Based on the grain size distribution of annealed samples (Figure 4 

and Table 1), it is postulated that the growth rate of the grain size increased dramatically with the 

increase of annealing temperature.  

Figure 1. Schematic diagram of Cu-2.7Be sheets processing.



Metals 2020, 10, 241 3 of 13

3. Results and Discussion

The process of deformed and annealed samples was studied by analyzing the measurements of
Vickers Hardness as a function of the annealing temperature and annealing time (Figure 2). The load,
with a weight of 4.9 N, was applied for 15 s. The hardness of the cold-rolled sample was established
as the initial hardness for any annealing temperature. All the curves are found to consist of two
stages, i.e., the subsequent drastic decrease in hardness induced by the preceding recrystallization,
and the final steady stage indicating the completion of recrystallization. According to a previous
study [24,25], the Vickers hardness exhibits a positive correlation with yield strength. During the
process of annealing—which weakens the yield strength—the Vickers hardness of Cu-2.7Be samples
decreased significantly (Figure 2) when the annealing time exceeded 10 min. The main microstructure
evolution of low stacking fault energy alloys, such as Cu-2.7Be alloys, is recrystallization during
annealing. Higher temperatures promote larger migration velocity of the grain boundaries, thus
contributing to a larger grain size [26]. For this reason, higher annealing temperatures can achieve
lower values of Vickers hardness (Figure 2). Hence, increasing the annealing temperature can shorten
the recrystallization period by accelerating the recrystallization process of the Cu-2.7Be alloys.
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Figure 2. Vickers hardness of Cu-2.7Be sheets annealed at 650 ◦C, 710 ◦C, 770 ◦C.

According to the Euler maps (Figure 3), the grain size of the annealed Cu-2.7Be sheets was
noticeably increased, whereas the grain shape of the annealed sample tended to be equiaxed because
of the recrystallization. Based on the grain size distribution of annealed samples (Figure 4 and Table 1),
it is postulated that the growth rate of the grain size increased dramatically with the increase of
annealing temperature.

Table 1. The average grain size of Cu-2.7Be alloy at different annealing temperature and time calculated
through Figure 4.

Sample Average Grain Size (µm)

650 ◦C/15 min 5.01
650 ◦C/60 min 9.38
770 ◦C/15 min 11.89
770 ◦C/60 min 25.37
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Figure 4. Normalized cumulative frequency vs. grain size (including twin boundaries) of annealed
Cu-2.7Be sheets.

Figure 5 illustrates the inverse pole figures in the ND direction. The most abundant crystallographic
orientations with intensified (111) planes occurred for the cold-rolled sample, as observed in Figure 5a.
The change in the inverse pole figures depicts the evolution of texture during the annealing process.
The inverse pole figure of the 650 ◦C/15 min sample (Figure 5b) demonstrated that the intensity of the
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(111) plane is weaker than that of the cold-rolled sample. As the annealing temperature and time were
increased, the intensity of the (111) plane declined. Based on the aforementioned trend, the lowest
intensity of the (111) plane was characteristic of the 770 ◦C/1 h sample (Figure 5e). The most densely
packed crystallographic plane in a face center cubic (FCC) system is the (111) plane. The (111) < 110
> slip system is activated during the cold rolling process, thereby resulting in a strong (111) plane
intensity, as seen in Figure 5a. The new recrystallized grains gradually replace the deformed grains
thus causing the intensity of the (111) plane to decline (Figure 5b–e).
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Figure 5. Inverse pole figures of cold-rolled and annealed Cu-2.7Be sheets along the normal direction
(ND): (a) Cold rolled, (b) 650 ◦C/15 min, (c) 650 ◦C/1 h, (d) 770 ◦C/15 min, (e) 770 ◦C/1 h.

The recrystallization maps and the distribution of recrystallized fraction maps in Figure 6
illustrate that the fractions of the recrystallization grains increased along with the increase of
annealing temperature and time. The newly formed recrystallization grains replaced the position
of the previously deformed grains. Additionally, the recrystallization level of annealed samples
corresponds to the variation trends of the (111) plane intensity in Figure 5. With the increase of
recrystallization volume fraction (Figure 6), there is a decrease in the (111) plane intensity (Figure 5).
The misorientation distribution in Figure 7 shows that the low angle grain boundaries (LAGBs) in
cold rolled samples transformed into high angle grain boundaries (HAGBs) mostly after annealing.
Based on the SAED results shown in Figure 8b,d, the 60◦ < 111 > twin boundaries—known as the∑

3 boundaries—constitute the vast majority of the boundary frictions in the annealed samples. The
friction of the

∑
3 boundaries increased significantly with increasing annealing temperature and time,

thus guaranteeing good plasticity.
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650 ◦C/15 min samples.

Based on the microstructures observed through TEM, there is a mass of dislocation cells within
the high-density dislocation intersection areas as shown in Figure 9a. The cell walls are high-density
dislocation walls. The motions and interactions of these dislocations are driven by thermodynamic
factors and accelerate the transformation from dislocation walls to sub-grain boundaries, as shown in
Figure 9b,c. The aforementioned transformation phenomenon that occurs is a typical continuous static
recrystallization (cSRX) process [27]. As the grain boundary migration continued, recrystallized nuclei
composed entirely of high angel grain boundaries were formed as the misorientation distribution
shown in Figure 7b–e.
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Figure 9. The TEM micrograph of (a) the cold-rolled sample and (b), (c) CSRXed region samples
observed under 650 ◦C/5 s.

It is acknowledged that the high deformation induced by the cold rolling could introduce
high-density defects such as dislocations, as shown in Figures 9a and 10a. Moreover, a large number of
secondary particles within 5–6 nm were found and indicated by the red circles shown in Figure 10b.
From the SAED results shown in Figure 10c, these fine particles are the γ phase.
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Figure 10. TEM micrograph of (a), (b) secondary particles in the cold-rolled samples, and (c) the SAED
of the red dashed circle.

Figure 11a–d are the TEM, HRTEM images, and SAED of the Cu-2.7Be samples annealed at 650 ◦C
for 2 min. When the annealing temperature was above 618 ◦C, the eutectoid reaction (α + γ→β)
occurred, which resulted in the disappearance of the γ phase (Figure 10) and the production of the
β phase. In Figure 11a, the lath-shaped β particles can be identified. In Figure 11b,c, the orientation
relationship between β phases and the surrounding Cu-matrix is expressed as (111)α‖(110)β and
(011)α‖(001)β. The β phase has a bcc) structure with a = b = c = 0.281 nm. The red arrows indicate that
β particles obtain coherent relations with the matrix, as seen in Figure 11d.
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Figure 11. Microstructure of the β phase in Cu-2.7Be samples annealed at 650 ◦C for 2 min: (a) TEM
image; (b) the SAED of white circle area in (a); (c) schematic representation of (b); (d) high resolution
transmission electron microscopy (HRTEM) image of (a), the inset show the Fast Fourier Transform
(FFT) of rectangular region.

The TEM images of the β phases as a function of increasing annealing temperature and time are
shown in Figure 12a–h. When compared with the lath-shaped β particles in Figure 11a, the shape of
the β phases in Figure 12a–c exhibit an irregular polygon shape when the annealing temperature was
650 ◦C. The quadrangle-shaped β phases can be obtained when the annealing time is increased to 1 has
shown in Figure 12d. Interestingly, at the annealing temperature of 770 ◦C, the morphologies of the β

phases are all quadrangle-shaped and are similar to the morphologies in Figure 12d. Furthermore, the
size of the β phases in Figure 12e–h increased as the annealing time increased.
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Figure 12. TEM micrograph of β phases in Cu-2.7Be sheets annealed at (a) 650 ◦C/15 min,
(b) 650 ◦C/30 min, (c) 650 ◦C/45 min, (d) 650 ◦C/1 h (e) 770 ◦C/15 min, (f) 770 ◦C/30 min, (g) 770 ◦C/45 min
and (h) 770 ◦C/1 h respectively.

In Figure 13, the yield strength decreases gradually with the increase of annealing time at 650 ◦C
in Figure 13a,c, and a similar pattern can be found in Figure 13b,d. The 650 ◦C/15 min sample obtained
the highest yield strength, while the 770 ◦C/60 min sample got the lowest yield strength. Grain
boundaries including twin boundaries can obstruct the motion of dislocations, which suggests that the
contribution to the yield strength (σy) depends on the grain size. Therefore, the Hall-Petch equation is
as followed [28]:

σy= σ0+k/
√

d (1)

where d is the mean grain size, k is the Hall-Petch coefficient, and σ0 is the yield strength of the crystal.
Based on the data of Table 1 and Figure 13, the least square fitting between σy and d−1/2 was made
and the results were shown in Figure 14. The fitting goodness, R2, was about 0.85. The deviation of
experimental results in Figure 14 could attribute to the secondary particles in Cu-2.7Be sheets. The
Orowan mechanism which is also called the by-passing mechanism is usually believed to be the main
strengthening mechanism when particles are hard to be deformed with the matrix. For the by-passing
mechanism [21,29]:

σp= M
0.4Gb

2π(1− v)1/2

ln(2r/b)
λ

(2)
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where σp is the increase of yield strength caused by Orawan mechanism, M is proportional constant
which is 3.06 for the fcc polycrystalline matrix, G is the shear modulus of Cu matrix, b is the Burgers
vector, ν is the Poissons ratio, r is the mean radii of the particles and λ is the cutting distance of
dislocations which can be determined by [29]:

λ = 2r
(√

π

4f
−1

)
(3)
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Figure 14. Least-squares fitting results between yield strength and d−1/2.

In Equation (3), f is the volume fraction of the precipitates. Given M = 3.06, G = 5 × 104 MPa,
b = 0.255 nm, ν = 0.3, f = 0.0256 [21,29]. Based on the TEM observations in Figure 12, given r =

20–100 nm for β particles, the calculation results of σp is 165–43.65 MPa, which indicated that the
strength contribution of secondary precipitations decreased with the increase of particle size. Thus,
the experimental results can not agree with the Hall-Petch equation very well. Furthermore, the
650 ◦C/15 min sample obtained the highest yield strength due to the smallest particle size and average
grain size, and the contribution of particle strengthening will be weakened as the increase of β particle
size caused by the enhancement of annealing time.
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The ductility of Cu-2.7Be sheets annealed at 650 ◦C increased with the increase of annealing
time. However, the 770 ◦C/15 min sample possessed the maximum elongation after fracture and the
remaining samples annealed at 770 ◦C were of similar ductility. Two factors could be considered: the∑

3 boundaries and the size and morphology of β phases. The vast majority of boundary friction in the
annealed samples was located at the

∑
3 boundaries (Figure 6). The samples annealed at 770 ◦C yielded

more
∑

3 boundaries than the samples annealed at 650 ◦C. This indicated that the samples annealed
at 770 ◦C possessed better plastic potential than those annealed at 650 ◦C. The morphology of β in
the 650 ◦C/15 min sample is that of an irregular polygon, which could generate stress concentration
and lead to elongation reduction. With the increase of annealing time at 650 ◦C, quadrangle-shaped
β and more

∑
3 boundaries can be obtained, which could give rise to the elongation increase in the

650 ◦C annealing samples. The situation is different when the annealing temperature was 770 ◦C.
The morphology of the β phases is similar (quadrangle-shaped), hence, the major distinction is the
size of β phases. The β size of the 770 ◦C/15 min sample is the minimum size generated by the
770 ◦C annealing samples and is beneficial to the improvement in elongation. From the EBSD results,
more

∑
3 boundaries were obtained at 770 ◦C, these allowed further elongation improvement of the

770 ◦C/15 min samples than the other 650 ◦C annealing samples, and resulted in the optimum plasticity
of the 770 ◦C/15 min samples.

Figure 15 shows the SEM morphology of the annealing samples fracture surface. According to the
mechanisms of the micro-crack initiation [30], it is highly likely that the initiation and propagation
of cracks are closely related to the microstructure. The dislocation pile-up can lead to the stress
concentration and the nucleation of micro-cracks at the grain boundary. Many equiaxed dimples
appeared on the surface of the 650 ◦C/15 min samples. As the annealing time increased, deeper
equiaxed dimples were observed in Figure 15b,c. It means that the formation of large size dimples is
related to the brittle β particles and the larger average grain size. Irregular polygon β particles could
cause shallower dimples compared with quadrangle-shaped β particles. Therefore, the elongation
increased with annealing time when the annealing temperature was 650 ◦C. Large β particles and
grain size could cause oversized deep dimples and lead to the reduction of elongation, which is shown
in Figure 15e,f. Suitable β particle size and grain size can induce deep and uniform dimples and lead
to better elongation, as illustrated in Figure 15d. Consequently, the 770 ◦C/15 min samples obtained
the highest elongation.
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4. Conclusions

In summary, the grain size of annealed Cu-2.7Be sheets was noticeably increased, and the grain
shape of the annealed sample tended to be equiaxed due to static recrystallization. The growth
rate of grain size increased significantly, along with the increase of annealing temperature. The vast
majority of boundary friction was located at the

∑
3 boundaries in the annealed samples. Moreover, the

friction at the
∑

3 boundaries increased dramatically as the annealing temperature and time increased.
The static recrystallization mechanism of Cu-2.7Be sheets was that of cSRX, and the orientation
relationship between β phases and the surrounding Cu-matrix was determined to be (111)α‖(110)β and
(011)α‖(001)β. The β phase has a bcc structure with a = b = c = 0.281 nm. During the heat treatment
process of Cu-2.7Be sheets, lath-shaped β particles were formed primitively and then transformed
into quadrangle-shaped β particles. The yield strength of Cu-2.7Be sheets declined significantly after
annealing, and the 770 ◦C/15 min samples obtained the best elongation for its deep and uniform
dimples caused by suitable β particle size and grain size.
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