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Abstract: A population balance model (PBM) is used to describe flocculation of particle tailings in
seawater at pH 8 for a range of mixing intensities. The size of the aggregates is represented by the
mean chord length, determined by the focused beam reflectance measurement (FBRM) technique.
The PBM follows the dynamics of aggregation and breakage processes underlying flocculation and
provides a good approximation to the temporal evolution of aggregate size. The structure of the
aggregates during flocculation is described by a constant or time-dependent fractal dimension. The
results revealed that the compensations between the aggregation and breakage rates lead to a correct
representation of the flocculation kinetics of the tailings of particles in seawater and, in addition, that
the representation of the flocculation kinetics in optimal conditions is equally good with a constant
or variable fractal dimension. The aggregation and breakage functions and their corresponding
parameters are sensitive to the choice of the fractal dimension of the aggregates, whether constant
or time dependent, however, under optimal conditions, a constant fractal dimension is sufficient.
The model is robust and predictive with a few parameters and can be used to find the optimal
flocculation conditions at different mixing intensities, and the optimal flocculation time can be used
for a cost-effective evaluation of the quality of the flocculant used.

Keywords: clay-based copper tailings; fractal dimension; mixing intensity; population balance model;
seawater flocculation

1. Introduction

The sustainability of the mining industry faces a challenging scenario for mineral processing,
with low grade ore deposits, water scarcity and seawater as an alternative to freshwater. One of
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the operational priorities is to close the water cycle, a process that can be successful with proper
management of the thickening stages. Generally, the concentration stages are carried out at alkaline
pH, which means that both particles and flocculant molecules (such as hydrolyzed polyacrylamide)
carry anionic charges. Although reagents may have a low affinity with the particles, it is sufficient
to form porous aggregates with low density, which facilitate the transport of the thick pulp from the
bottom of the thickener to the tailing dams. The fact that industrial water has some ionic charge can
be beneficial. There is evidence in the literature that the presence of ions in the liquor is necessary
for adequate flocculation, because ions allow the adsorption of polymeric molecules on the charged
surfaces [1–3]. There is also evidence that flocculants may exhibit different behaviors when interacting
in saline media. For example, studies have indicated that flocculated kaolinite shows decreasing
sedimentation rates in environments with high salinity [4,5], while other studies show the opposite [6].
We recently demonstrated that the increase in salinity promotes the adsorption of polyelectrolytes on
mineral surfaces but decreases the size of the polymer in solution, resulting in a competitive effect that
can benefit or impair particle agglomeration. Thus, varied behaviors are expected [7,8].

There is great interest in studying flocculation from a microscopic level because the mechanisms
involved during the aggregation of colloidal particles determine the efficiency of thickeners. Various
particle characterization techniques are available, such as laser analysis, dynamic image analysis (DIA),
and microscopy [9], however, the focused beam reflectance measurement (FBRM) has significant
advantages for flocculation, since it can be used directly in feed slurries, allowing online monitoring
of aggregate size without sampling and without dilution [10–14]. Through this technique, the effect
of shear rate has been studied in several works [15–18]. In some cases, a maximum aggregate size is
reached in a short time after the addition of the flocculant, but then fragmentation of the aggregates
and polymer depletion occurs. Interestingly, the systems studied by He et al. [19] have shown that the
maximum floc size is reached at low shear rate values and that any further increase in the intensity of
the mixture leads to fragmentation.

Several researchers have described the kinetics of growth and fragmentation of aggregates using
population balance models (PBM) [20–22] of a wide variety of systems, such as coagulation and
flocculation [23], crystallization [24], reduction in mill size [25], and polymerization [26]. A century ago,
Smoluchowski [27] was the first to formulate the PBM equations to describe the coalescence growth
phenomena. Since then, this procedure has been the basis for describing new systems with mechanisms
of aggregation of particles with increasingly richer physics, which has required modifications to the
original equations.

Consideration of the fractal dimension as an indicator of the irregular structure of the aggregates
has been key [20,28,29]. The fractal dimension has allowed describing the decrease in aggregate
size over time due to restructuring mechanisms [30–32]. In all these cases, the fractal dimension
increases while flocculation takes place. Recently, Jeldres et al. [33] showed that the fractal dimension of
aggregates of flocculated mineral tailings in seawater decreases, while flocculation time and/or mixing
intensity increase. These results are important because they define the mechanisms involved during
the growth of aggregates, such as fragmentation, collision efficiency, permeability of structures [32,34]
and flocculant depletion [21,35].

In this work, PBM is used to describe the flocculation kinetics of quartz-kaolinite tailing particles
flocculated in seawater with a high-molecular-weight anionic polymer for a range of mixing intensities.
The effect of the shear stress on the flocculation kinetics and on the aggregation and breakage rates of
aggregates is analyzed. Optimum mixing conditions are determined to achieve the largest aggregate
size. The structure of the aggregates during flocculation is described by a constant and time-dependent
fractal dimension. Finally, an attempt is made to determine whether the representation of flocculation
kinetics requires a constant average fractal dimension or a time-varying fractal dimension.
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2. Model

The PBM equations used in this work were derived from from the work proposed by Spicer and
Pratsinis [36] for particle grouping, which combines the discretization approach of Hounslow et al. [37]
for aggregations and Kusters et al. [38] for breakage, in which the aggregate size distribution is
discretized into a number of bins or channels according to a geometric progression of the volume
distribution of the aggregates, that is, Vi+1 = 2Vi. The population balance equation is given by:

dNi
dt =

i−2∑
j=1

2 j−(i−1)Qi−1, jNi−1N j +
1
2 Qi−1, j−1Ni−1Ni−1 −

i−1∑
j=1

2 j−iQi, jNiN j −
imax1∑
j=1

Qi, jNiN j

−SiNi +
imax2∑
j=1

Γi, jS jN j

(1)

where Ni is the number concentration of aggregates in bin i. The first two term on the right-hand side of
Equation (1) describe the formation of aggregates of size i from smaller aggregates. The following two
terms describe the loss of aggregates of size i to greater aggregates. The fifth term on the right-hand
side represents the loss of aggregates of size i by fragmentation. The last term represents the gain of
aggregates of size i by fragmentation of larger aggregates. The superscript max1 and max2 stand for the
maximum number of intervals used to represent the complete aggregate size spectrum by aggregation
and fragmentation, respectively. Functions Q, S and Γ represent aggregation rate, fragmentation rate,
and breakage distribution function of aggregates, respectively. All the functions in Equation (1) are
empirical in origin and thus parameters involved need to be determined by solving Equation (1)
against experimental data. The functions are described next.

2.1. Aggregation Kernel

The function Q is the aggregation kernel defined by the product between the collision frequency
(β) and the capture efficiency (α):

Qi, j = βi, jαi, j (2)

Collision frequency β

Fluid flow can penetrate and pass through particle aggregates [39], meaning that the genuine
collision frequency is considerably lower than that predicted from rectilinear flow models. To
incorporate permeability effects, we use a parameter called ‘fluid collection efficiency’ η which is the
ratio between flow passing through an aggregate and that approaching it (undisturbed). Veerapaeni
and Wiesner [40] proposed the function in Equation (3) to account for the collision frequency which
includes permeability and fractal dimension, as:

βi, j =
1
6

(√
ηidi +

√
η jd j

)3
G (3)

where di and d j are the diameters of the aggregates of sizes i and j, respectively, G is the mean value of
shear rate, and η is derived from the Brinkman extension to Darcy’s law in function of a dimensionless
permeability ξ, that is:

ηi =
9(ξi − tanhξi)

(38ξi + 2ξi2 − 3tanhξi)
(4)

where ξi is defined as ξi = di/2
√

Ki and Ki is the permeability, for which the expression from the Li
and Logan [41] is used:

Ki =
d2

i
72

3 +
3

1−φi
−

3

√
8

1−φi
− 3

 (5)
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The porosity φ is related to fractal dimension (d f ) by the expression of Vainshtein et al. [42]:

φi = 1−C
(

di
d0

)d f−3

(6)

where C is a packing coefficient (generally assumed to be 0.65) and d0 is the primary particle diameter;
di and d0 are related by the expression by Mandelbrot [43]:

di = d0

(
2i−1

C

) 1
d f

(7)

Collision efficiency α

Several models allow estimating collision efficiency, depending on the type of aggregate and the
additive used. In this work, the three-parameter expression of Vajihinejad and Soares [35] is used
to capture the depletion of adsorbed high-molecular-weight polymer of the type used here and its
rearrangement on the surface of the particles, that is:

αi, j = (αmax − αmin)e−kdt + αmin (8)

where αmax and αmin are maximum and minimum collision efficiency, respectively, at steady state
conditions and kd is a decay constant.

2.2. Breakage Kernel

The S function in Equation (1) is the fragmentation rate and the Γ function is the breakage
distribution function; these two represent the breakage kernel. The S term is difficult to predict
since it has not been theorized; it is common to adjust it to size distribution data. For this work, a
two-parameter power law function of the aggregate mass is used [44]:

Si = s1Gs2di (9)

where s1 and s2 are the fitted parameters.
For the breakage distribution function, a binary distribution without parameters is used:

Γi, j =

 V j
Vi

f or j = i + 1
0 f or j , i + 1

(10)

2.3. Shear Rate

The shear rate required by the aggregation and breakage kernels is calculated from:

G =

(
ερsus

µsus

) 1
2

(11)

where ε is the average energy dissipation rate given by:

ε =
NpN3D5

V
(12)
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where Np is the impeller power number which for a plane disk with gentle agitation, as is our case, is
0.6 [45], N is the rotation speed, and D and V are the diameter of the impeller and the working volume
of the vessel, respectively. The density of the suspension ρsus is calculated from:

ρsus =

(
w
ρs

+
1−w
ρw

)−1

(13)

where w is the mass solid fraction of the solution and ρs and ρw are the solid and water densities,
respectively. Finally, the viscosity of the solution µsus is measured.

2.4. PBM Solution

In this work, the PBM equation (Equation (1)) is used to describe the flocculation kinetics of
synthetic copper tailings in seawater. A solver based on a numerical differentiation formula for stiff
ODEs (ode23s) is used in MATLAB environment. The numerical solution requires parameters which
are obtained by minimizing the objective function:

OF(αmax,αmin, kd, s1, s2) =
∑t f

ti

(
dagg,exp − dagg,mod

)2
(14)

where dagg,exp is the experimental diameter of the aggregates and dagg,mod is the volume-weighted mean
aggregate diameter from the model:

dmod =

∑max
i=1 Nid4

i∑max
i=1 Nid3

i

(15)

To solve Equation (14) the MATLAB function fminsearch is used; this function uses the Nelder–Mead
direct search to find the minimum of an unconstrained multivariable function.

Two criteria validate the model fit and predictions, one is the coefficient of determination (R2) that
measures the closeness of the model values to the experimental values:

R2 = 1−

∑max
i=1

(
dagg,exp,i − dagg,mod,i

)2

∑max
i=1

(
dagg,exp,i − dagg, exp

)2 (16)

The other is the goodness of fit:

GoF(%) = 100

〈
dagg, exp

〉
− std〈

dagg, exp
〉 (17)

where std stands for the standard error calculated from:

std =

(
1

n− f

∑t f

ti

(〈
dagg, exp

〉
−

〈
dagg, mod

〉) 2
) 1

2

(18)

where n is the number of data values and f is the number of parameters to be fitted. A GoF of 90%
or higher means that the proposed model is able to predict the flocculation kinetics [10]. Finally,
conservation of the total volume of particles is verified after every integration to ensure that the
simulations are maintaining the particle population.

3. Materials and Methods

3.1. Materials

Quartz particles with a density of 2.65 g/cm3 acquired from Donde Capo (Chilean Store, Santiago,
Chile) were used, which were pulverised and screened with -#325 mesh. The SiO2 content, estimated by
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XRD analysis, was higher than 99 wt%. Kaolin particles were acquired from Ward’s Science (Rochester,
NY 14586, Rochester, United States), and the XRD analysis indicated 84% kaolinite and 16% halloysite.
Seawater from the coast of Antofagasta (Chile) was provided by the Department of Marine Resources
from the University of Antofagasta and subsequently filtered by UV for the removal of microorganisms.
The ionic composition was determined with varied chemical methods depending on the ion type.
By atomic absorption spectrometry: Na+ 10.5 g/L, Mg2+ 1.42 g/L, Ca2+ 0.38 g/L, K+ 0.40 g/L. The
composition of Cl− was determined by argentometric method and was 19.1 g/L. The concentration of
HCO3− was determined by acid–base volumetry to be 0.17 mg/L. NaOH was used as a pH modifier;
anionic SNF704 and high molecular weight were used as a flocculant.

3.2. Flocculation Kinetics

A suspension of 270 g was prepared, considering a total solids content of 8 wt%, corresponding to
a mixture of 80 wt% quartz and 20 wt% kaolin. The slurry was vigorously mixed for 30 min using a 30
mm diameter turbine-type stirrer, placed in the axial position, in a 1 L capacity, 100 mm diameter vessel.
The stirrer was placed 20 mm above the vessel bottom. Subsequently, the mixing rate was reduced to
250 rpm, and an established volume of a solution (seawater and polymer) was added, at a proportion
fixed by the required polymer dosage. The size distribution was traced using the FBRM technique,
which consists of a sensor that measures reflection pulses of a laser beam on suspended particles in
the range of 0.25–1000 µm. The main advantage of this technique is that the data is collected in-situ
and in real-time; therefore, it does not require sampling or isolation that could contribute to changes
in the size and distribution of aggregates by the eventual breakage or agglomeration. The FBRM
probe was submerged vertically in the reaction vessel, 10 mm over the stirrer and 20 mm off-axis. The
measurement began by tracking the primary particles of the tailings, and after 1 min, the flocculant
was added with subsequent growth and destruction of aggregates for 3 min. The flocculation assays
where done at pH 8, under ambient temperature and different mixing intensities.

3.3. Viscosity

The calculation of the shear rate requires the viscosity of the slurry. For this, a flocculation process
was carried out with the methodology defined in Section 3.2. Subsequently, an aliquot of 56 mL was
taken for rheological analysis. An Anton Paar MCR 102 rheometer with the RheoCompass Software
was operated in controlled-rate mode, and a sandblasted #CC39 with bob-in-cup geometry was used
to reduce wall slip effects. The gap generated between both concentric cylinders was 1.5 mm. Each
sample remained for 15 min, ensuring that the rheological properties were obtained in steady state.
The range of shear rate was preset between 10–300 s−1.

3.4. Sedimentation

After a pre-set flocculation period (10–80 s), the pulp was gently poured into closed cylinders of
300 cm3 (35 mm internal diameter) and then slowly inverted twice by hand (the whole cylinder rotation
process took 4 s). After 10 min of settling, the supernatant fluid was rescued and stirred to homogenize
the suspended solids. Then, a 50 mL aliquot was used for turbidity measurements in a Hanna HI98713
turbidimeter, which performed ten readings in 20 s, delivering the average of the point readings.

3.5. Conditions

Table 1 summarizes parameters and conditions used in this study. With these conditions, shear
rate was calculated for all the cases, using Equations (11)–(13).
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Table 1. Input parameters and conditions.

imax 30 -

φ 0.054 -
c 0.65 -

Np 0.6 -
D 8.0 cm
V 0.25 L
ρs 2600 kg/m3

ρw 1000 kg/m3

µsus 0.005 kg/ms
w 0.08 -
d0 0.0005 cm

4. Results

4.1. Initial Particle Size

Solving the PBM equations requires an initial particle number concentration for each size class
and per unit of volume of suspension (N0,i), for that, a number distribution from experimental volume
distribution is obtained from:

N0,i = φ
v(d0,i)

V0,i
(19)

where v(d0,i) is the experimental volume fraction of particles with diameter d0,i, obtained from Equation
(7), and V0,i is the volume of the primary particles following the geometric progression V0,i = 2i−1V1.
Figure 1 shows the normalized volume for synthetic tailings in seawater at pH 8. v(d0,i) is obtained by
interpolating the data in Figure 1 at the required values of d0,i. The initial distribution is sensitive to
the shear rate, where the tendency is for the particles to aggregate as the intensity of mixing increases.
The initial primary particle size is set to 5 µm, which is the mean minimal size with non-zero value in
the distribution.
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Figure 1. Normalized initial volume distribution of particles of synthetic tailings in seawater at pH 8
for different mixing intensities (shear rate G).

4.2. Fractal Dimension

The fractal dimension defines the structure of the aggregates and appears in several equations
describing particle agglomeration. In this study, the fractal dimension (Figure 2) is obtained from
combined sedimentation tests with aggregate size measurements using the FBRM probe. The
experimental data of hindered settling velocity, mean particle size, and mean aggregate size were used
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to extract the fractal dimension from the settling velocity model of Heath et al. [11]. In previous work,
we found that the fractal dimension of particle tailing aggregates is very close to constant for low
values of shear rate [46], in agreement with results from Heath et al. [15,21]. The results of Figure 2
confirm that, for low shear rate, the fractal dimension is a constant independent of flocculation time.
However, when the shear rate values are high, the fractal dimension decreases monotonously over
time, indicating that fragmentation of aggregates leads to lower-dimension Euclidean structures. In
this work, the consequences of using constant fractal dimension in the determination of flocculation
kinetics and aggregation and breakage functions for all flocculation conditions are analyzed. The
results are compared with those obtained using fractal dimension as a function of time. Note that
the constant fractal dimension is defined here as the average between the lowest and highest fractal
dimensions for the same system and identical flocculation conditions.
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Figure 2. Temporal evolution of the fractal dimension during flocculation of synthetic tailing particles
in seawater at pH 8 as a function of shear stress (G).

4.3. Flocculation Kinetics Modelling

The flocculation kinetics of synthetic tailing particles in seawater are shown in Figure 3 as a
function of shear stress. While the open circles correspond to experimental data, the solid lines
correspond to the best fit with the PBM and the fractal dimension from Figure 2. Low shear requires a
long time to give life to small aggregates, while high shear in a short time leads approximately to the
same small aggregates; in the first case collisions and captures are unimportant, while in the second
case the ruptures are important. There is clearly a mixing intensity that maximizes the size of the
aggregates; however, the necessary flocculation time is critical because it defines the utility or lack of
utility of the chosen flocculant. In the case of synthetic tailing particles in seawater with the flocculant
chosen in this work, the optimum size of the aggregates is ca. 225 µm when the shear rate is 163 s−1.
The PBM captures all the complex stages of particle flocculation, that is, initial growth of aggregates by
particle bridging and subsequent size reduction as a result of fragmentation.
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Figure 3. Flocculation kinetics of synthetic tailing particles in seawater at pH 8 as a function of shear
stress (G). Open circles correspond to experimental data and solid lines to the best fit with the population
balance model (PBM). (A): Shear rate range from 89–251 s−1. (B): Shear rate range from 300–462 s−1.

Figure 3 shows qualitatively that the model correctly describes the experimental data for all mixing
intensities. The quantitative results of GoF and R2 summarized in Table 2 show that the quality of the
PBM is very good in all the cases analyzed and that the effect of representing the fractal dimension
of the aggregates as a constant independent of the flocculation time is a correct decision, at least to
represent the flocculation kinetics.

Table 2. Quantitative results of GoF and R2 when the PBM is used with constant fractal dimension (d f

mean) or variable (d f var) fractal dimension dependent on flocculation time.

Mixing GoF, % R2

Shear Rate (s−1), Mixing Rate df var df mean df var df mean

89 (100 rpm) 90.1 89.2 0.8895 0.8698
131 (130 rpm) 92.8 93.6 0.9449 0.9565
163 (150 rpm) 91.6 91.6 0.9177 0.9174
214 (180 rpm) 90.6 90.2 0.8963 0.8881
251 (200 rpm) 91.6 91.3 0.8956 0.8889
300 (225 rpm) 91.1 90.4 0.9267 0.9151
330 (240 rpm) 89.5 88.2 0.8898 0.8611
372 (260 rpm) 92.5 92.3 0.9055 0.9024
462 (300 rpm) 93.5 94.5 0.9038 0.9319

4.4. Aggregation, Breakage, and Permeability Modelling

The aggregation, rupture, and permeability functions of particle aggregates are the building
blocks to describe the flocculation kinetics, in the present case of synthetic tailing particles. Therefore,
it is of great interest to evaluate the quality of the PBM representation of these functions when using
the fractal dimension of the aggregates as a constant or variable dependent on the flocculation time.
Figure 4 summarizes the four results.
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Figure 4. PBM representation of collision frequency (a), collision efficiency (b), aggregate permeability
(c) and fragmentation rate (d) for the largest aggregates considering constant fractal dimension of
the aggregates (dashed lines) and time-dependent fractal dimension (solid lines) for different mixing
intensities. Aggregate size range is 200–600 µm (bin i = 15).

As expected, the collision frequency increases and the collision efficiency decreases with mixing
intensity (Figure 4a,b). The collision frequency remains constant when the fractal dimension is
considered constant and grows over time when the fractal dimension is considered dependent on the
flocculation time. The collision efficiency shows an exponential decay with flocculation time, at low
shear rate the efficiency decreases rapidly when the fractal dimension is used as a function of time,
and at high shear rate the collision efficiency is not so different if the fractal dimension is constant or
variable. The results suggest that when aggregates are more porous and irregularly structured they are
less likely to adhere once they collide.

The permeability of the aggregates increases with the intensity of the mixing and does so more
strongly when the shear rate is very high. Permeability is constant when considering a constant fractal
dimension and increases with flocculation time when considering a fractal dimension dependent on
flocculation time. The product of the collision frequency and the collision efficiency is the aggregation
rate; it is expected to be quite different when using constant or variable fractal dimension, however,
to represent the optimal mixing (163 s−1) that leads to the larger aggregates (225 µm) the results of
Figure 4a,b for collision frequency and collision efficiency, respectively, and the results of Figure 4c for
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aggregate permeability, suggest that there are no large differences if one or the other fractal dimension
is used.

The fragmentation rate is not a monotonous function of the mixing intensity for both constant
and variable fractal dimensions (Figure 4d). For low shear rate values, the rate decreases when the
mixing intensity increases, and for high shear rate values, the rate increases with the mixing intensity.
The fragmentation rate is constant when the constant fractal dimension is used and in general it is very
different from the fragmentation rate obtained with a variable fractal dimension. Under optimal mixing
conditions (163 s−1), the results of Figure 4c suggest that the fragmentation rate is better represented by
the variable fractal dimension, the use of a constant fractal dimension can lead to significant deviations.

It is well known that compensations between aggregation and breakage rates lead to a very good
representation of flocculation kinetics; the results in Figure 3 are a good demonstration. However, in
addition, this study reveals that under optimal mixing conditions the representation of flocculation
kinetics is equally good with a constant or variable fractal dimension.

4.5. Optimized Parameters

The optimization of the PBM model is performed against experimental flocculation data resulting
in five parameters: the maximum and minimum collision efficiency (αmax, αmin), the collision efficiency
decay constant (kd), and two breakage rate kernel parameters (s1 and s2). Of great interest is the effect
of mixing intensity and the fractal dimension, constant or variable, on these parameters. The three
parameters that describe the collision efficiency versus shear rate are presented in Figure 5, for the two
conditions of fractal dimension. In general, αmax and αmin decrease with the shear rate, αmin = 0 for
the whole range of shear rate, except for at the lowest rate, and kd increases with the shear rate. The
effect of the fractal dimension either constant or variable is small except at very high shear rate for αmax

and kd. αmin is not affected by the choice of fractal dimension. For the optimal mixing conditions (163
s−1), the three parameters of the collision efficiency can be estimated considering a constant fractal
dimension. Finally, the two parameters of the breakage rate (s1, s2) change erratically with the shear
rate but are not affected by the choice of the fractal dimension, whether constant or variable. For
the optimal mixing conditions, the breakage rate parameters can be determined assuming a constant
fractal dimension.
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Figure 5. Experimental (symbols) vs. calculated (continuous lines) time evolution of the mean diameter
of aggregates of tailing particles as a function of pH in seawater. Constant pH condition at 8.

4.6. Prediction Capability

To test the predictive capacity of PBM with the parameters determined in the preceding sections,
new experiments were carried out to determine the kinetics of flocculation of tailing particles in
seawater at 185 and 250 rpm. Pulps with the same composition and percentage of solids were
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considered as in the trials in Section 4.3. The size of primary particles was again 5 µm. Also, the same
flocculant and the same operating conditions were used, that is, temperature, flocculant dose, agitation
time, and pH. Figure 5 shows the experimental and modeling results. The parameters for PBM were
interpolated from Figure 2 for the fractal dimension, Figure 6 for the aggregation kernel and Figure 7
for the breakage rate for each pH. The adjustments are generally good, with GoF of 87.17 for 185 rpm
and 92.02 for 250 rpm, which demonstrates the predictive capacity of PBM. Unlike what was found in
our previous paper [46] where pH has little influence in kinetics, the shear rate has marked nonlinear
dependence on the results of kinetics. Therefore, modeling was possible with good prediction for
intervals of 30 s–1.
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Figure 6. Optimum aggregation parameters vs. shear rate for constant and variable fractal dimension,
(a) maximum and minimum collision efficiencies and (b) collision efficiency decay constant kd.
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5. Conclusions

PBM equations were used to describe the aggregation kinetics of synthetic copper tailings in
seawater with a high molecular weight polyacrylamide at pH 8 and a range of mixing intensities. It is
common to consider that the fractal dimension of the aggregates is constant throughout the flocculation
process, however in this work we found that when the mixing intensity is high, >100 s–1, the fractal
dimension of the aggregates decreases monotonously over time, indicating that fragmentation of
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aggregates leads to lower-dimension Euclidean structures. This study revealed that compensations
between aggregation and breakage rates lead to a very good representation of the flocculation kinetics
of the particle tailings in seawater, and in addition, that the representation of flocculation kinetics
under optimal conditions is equally good with a constant or variable fractal dimension. The mixing
intensity of 163 s–1 was found to maximize the size of the tailing aggregates, that is, ca. 225 µm at ca. 20
s. The aggregation and breakage functions and corresponding parameters are sensitive to the choice of
the fractal dimension of the aggregates, whether constant or time-dependent; however, under optimal
conditions, a constant average of the fractal dimension is sufficient. The predictive capacity of the
model can be used to find the optimal flocculation conditions based on a few experimental flocculation
data at different mixing intensities, and the optimal flocculation time can be used to make decisions
regarding the effectiveness of the flocculant used.
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