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Abstract: Energy conservation and emission reduction is an essential consideration in sustainable
manufacturing. However, the traditional optimization of cutting parameters mostly focuses on
machining cost, surface quality, and cutting force, ignoring the influence of cutting parameters on
energy consumption in cutting process. This paper presents a multi-objective optimization method
of cutting parameters based on grey relational analysis and response surface methodology (RSM),
which is applied to turn AISI 304 austenitic stainless steel in order to improve cutting quality and
production rate while reducing energy consumption. Firstly, Taguchi method was used to design the
turning experiments. Secondly, the multi-objective optimization problem was converted into a simple
objective optimization problem through grey relational analysis. Finally, the regression model based
on RSM for grey relational grade was developed and the optimal combination of turning parameters
(ap = 2.2 mm, f = 0.15 mm/rev, and v = 90 m/s) was determined. Compared with the initial turning
parameters, surface roughness (Ra) decreases 66.90%, material removal rate (MRR) increases 8.82%,
and specific energy consumption (SEC) simultaneously decreases 81.46%. As such, the proposed
optimization method realizes the trade-offs between cutting quality, production rate and energy
consumption, and may provide useful guides on turning parameters formulation.

Keywords: AISI 304 austenitic stainless steel; multi-objective optimization; cutting parameters;
specific energy consumption; grey relational analysis; response surface methodology (RSM)

1. Introduction

Cutting process is the main means of mechanical manufacturing, which plays an important
role in the manufacturing industry. It was found that the formulation of cutting parameters has
significant influence on cutting quality, production rate, and energy consumption [1–3]. In general,
most of the cutting parameters are determined according to engineering experience and specialized
handbooks, which cannot obtain the optimal machining effect. Consequently, the optimization of
cutting parameters for different objectives has always been a hot issue in manufacturing enterprises
and academia.

The surface integrity, machining efficiency, and cutting force are usually taken as objectives in
most of the traditional optimization of cutting parameters. For example, Kumar [4] adopted surface
roughness and material removal rate (MRR) as objectives to optimize the cutting parameters in turning
C360 copper alloy. Zhou et al. [5] obtained the Pareto optimal solution with the maximum MRR and
the minimum surface roughness in turning AISI 304 based on the genetic algorithm gradient boosting
regression tree (GA-GBRT) model they established. Their experimental results demonstrated that MRR
can be improved by increasing cutting depth and cutting speed in a small range of surface roughness
variations. In addition, the grey relational analysis is often used as a powerful tool when dealing with
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multi-objective optimization of cutting parameters. Using grey relational analysis, Li and Wang [6]
optimized the grinding parameters, which effectively reduces the workpiece surface roughness and
flatness. Kuram and Ozcelik [7] measured MRR, cutting force, and surface roughness in micro-milling
Al 7075 and used grey relational analysis to determine the optimal combination of milling parameters
with these three machining characteristics as objectives. Significant work has been carried out based
on machining science and cost consideration. However, the influence of cutting parameters on energy
consumption in cutting process is not considered in the aforementioned research.

The rapid development of the manufacturing industry has brought great convenience to
human society, while exacerbating the problem of resource shortage and environmental pollution as
well [2]. As the basic unit in machining systems, machine tool has large quantity with high energy
consumption [8]. Vijayaraghavan et al. [9] suggested that reducing the energy consumption of machine
tool can dramatically improve the environmental performance of the manufacturing industry. Thus,
many scholars have studied energy consumption characteristics of machine tool in order to improve
the energy efficiency of machine tool. Based on the investigation of the relationship between energy
consumption of machine tool and MRR, Kara and Li [10] proposed an energy consumption prediction
model suitable for turning and milling processes. On this basis, Li et al. [11] improved the energy
consumption prediction model of milling processes with taking the spindle speed into consideration.
Moreover, Zhang et al. [12] developed the specific energy consumption (SEC) model based on cutting
parameters and analyzed the influence of cutting parameters on SEC. These research projects show that
the energy consumption of machine tool can be reduced by selecting reasonable cutting parameters,
laying the foundation for energy efficiency optimization of machine tool.

Recently, the optimization of cutting parameters aiming at energy saving and emission reduction
has become a research hotspot in sustainable manufacturing. For reducing the energy consumption
of machine tool, Camposeco-Negrete [13] optimized the cutting parameters in turning of AISI 6061
T6 aluminum by using Taguchi method and ANOVA. His research also pointed out that higher feed
speed provides minimum energy consumption but will lead to higher surface roughness. It is worth
noticing that the optimal cutting parameters for one machining characteristic may worsen other
machining characteristics. Hence, the multi-objective optimization of cutting parameters based on
both technique requirements and energy-saving consideration is more reasonable in actual machining.
Zhao et al. [14] optimized the milling parameters through grey relational analysis, which can reduce
energy consumption and improve surface quality simultaneously. In order to minimize the cutting
time and energy consumption per unit of removed material, Zhou et al. [15] proposed a multi-objective
optimization model and obtained the optimal cutting parameters by genetic algorithm (GA). Similarly,
Li et al. [16] established the RSM models of energy efficiency and cutting time, and optimized milling
parameters through particle swarm optimization algorithm (PSOA). Yan and Li [17] presented an
approach for optimization of milling parameters with multiple responses such as cutting energy
consumption, surface roughness, and MRR, which integrated the weighted grey relational analysis
and RSM. Furthermore, Li et al. [18] explored the influence of cutting parameters on tool wear and
surface topography in turning AISI 304, and optimized the cutting parameters with the goal of the
maximum MRR and the minimum specific cutting energy.

Based on the above literature, it is noted that the optimization of cutting parameters has
changed from single objective optimization to multi-objective optimization considering both technique
requirements and environmental performance. Although recent work has made valuable contributions
towards energy conservation and emission reduction, the optimization of cutting parameters for
sustainable manufacturing requires more comprehensive study, especially for some difficult-to-machine
materials. Therefore, the objectives of this paper are to: (1) Investigate the multi-objective optimization
framework of turning parameters for sustainable manufacturing; (2) propose the multi-objective
optimization method based on grey relational analysis and RSM; (3) verify the optimization method
with wet turning experiments of AISI 304 austenitic stainless steel.
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2. Multi-Objective Optimization Framework of Turning Parameters

Lathes account for about 20–35% of the total number of cutting machine tool. They are mainly
used for machining various rotating surfaces, such as internal cylindrical surfaces, external cylindrical
surfaces, and conical surfaces. The traditional turning process improves production rate as much as
possible on the premise of guaranteeing the cutting quality. However, the energy consumption of
machine tool and the adverse effects on the environment are ignored.

In a specific machining system, the selection of cutting parameters becomes the basis of process
optimization. For the turning process oriented to sustainable manufacturing, the optimization
objectives should be expanded to cutting quality, production rate, and energy consumption. Surface
roughness, MRR, and SEC are featured as evaluation criteria of machining characteristics. Therefore,
the multi-objective optimization framework of turning parameters can be outlined in Figure 1 and the
optimization problem can be described as Equation (1).

minRa(ap, f , v)
maxMRR(ap, f , v)
minSEC(ap, f , v)


apmin ≤ ap ≤ apmax

fmin ≤ f ≤ f max
vmin ≤ v ≤ vmax

(1)

where Ra is surface roughness, MRR is material removal rate, SEC is specific energy consumption of
machine tool, ap is cutting depth, f is feed speed, and v is cutting speed.
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2.1. Cutting Quality

The surface quality usually has a great influence on mechanical performance of parts [19]. It has
been proved that the scrapping of many mechanical products is caused by the surface defects of
parts. Surface roughness is therefore considered as a vital technical requirement in cutting process.
Moreover, it was found that surface roughness is closely related to cutting conditions, especially cutting
parameters [20].

2.2. Production Rate

MRR, as one of the criteria for evaluating production rate, is widely used for cutting process
optimization. While the traditional selection of cutting parameters is conservative, which is not
conducive to the realization of efficient machining. The value of MRR when turning external cylindrical
surface can be calculated using Equation (2).

MRR =
π[( d

2 )
2
− ( d

2 − ap)
2
]n f

60
(2)

where d is workpiece diameter in mm, n is spindle speed in rev/min, f is feed speed in mm/rev, and ap

is cutting depth in mm.
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2.3. Energy Consumption

In general, the cutting stage is the most energy-consuming work process of machine tool. In this
stage, the energy consuming components include machine control unit (MCU), spindle motor, feed-axis
motors, cooling pump motor, and lighting device. The energy consumption can be obtained by
monitoring the power consumption of machine tool [21].

SEC expresses the required energy consumption when cutting unit volume material and can
be computed by Equation (3). Moreover, the advantage of SEC is that as long as the specific
energy consumption is achieved, the machine tool energy consumption in machining can be
predicted accurately.

SEC =
E
Q

=
P·t

MRR·t
=

P
MRR

(3)

where E is machine tool energy consumption in J, Q is material removal volume in mm3, P is total
power of machine tool in cutting stage in W, MRR is material removal rate in mm3/s, and t is cutting
time in s.

3. Optimization Example

3.1. Experimental Details

3.1.1. Workpiece Material and Cutting Tool

AISI 304 austenitic stainless steel is used widely in machinery, aerospace, and medical
device industry because of its good overall performance. However, it also belongs to one of the
difficult-to-machine materials due to its high toughness, serious work hardening, and bad thermal
conductivity. AISI 304 was chosen as workpiece material, and its chemical composition and physical
properties are shown in Tables 1 and 2. In addition, the workpiece diameter is 55 mm and cutting
length is 120 mm. The experiments were carried out with hard alloy external turning inserts CNMG
120408–PG SC2035.

Table 1. Chemical composition of AISI 304 austenitic stainless steel.

Composition C Mn Si P S Ni Cr Mo Cu Fe

wt% 0.065 1.78 0.3 0.027 0.02 8.1 18.2 0.13 0.14 71.2

Table 2. Physical properties of AISI 304 austenitic stainless steel.

Specific Heat Capacity Elastic Modulus Coefficient of Thermal Expansion Thermal Conductivity Density

(J·kg−1·K−1) (GPa) (10−6·K−1) (W·m−1·K−1) (g/cm3)

500 194 17.3 16.3 7.93

3.1.2. Experimental Equipment

Wet turning AISI 304 round bars and power measurement were performed and are shown in
Figure 2. The computer numerical control (CNC) lathe is Yishui CKJ6163 (Yishui Inc., Shandong, China),
with a maximum spindle speed of 1000 rev/min, a maximum spindle power of 11 kW, and a cooling
pump power of 0.125 kW. The power analyzer WT500 (Yokogawa, Tokyo, Japan) and sensors were
adopted to measure power consumption from the lathe input lines. Three-phase power signals were
connected to WT500 and recorded with WTViewerEfree software. In addition, the surface roughness
tester RTP120 (Shjingmi Inc., Shanghai, China) was employed to measure the workpiece machined
surface roughness.
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3.1.3. Design of Experiments

The variances of cutting depth ap, feed speed f, and cutting speed v were customized according to
the capacity of the lathe and the cutting inserts. Table 3 shows the cutting parameters and their levels.
Taguchi method was used to design the L25 (53) orthogonal experiments with three factors and five
levels, as shown in Table 4. The initial cutting parameter used the recommended value, cutting depth
of 1.2 mm, feed speed of 0.25 mm/rev, and cutting speed of 90 m/min.

Table 3. Cutting parameters and their levels.

Parameters Range Level 1 Level 2 Level 3 Level 4 Level 5

ap (mm) 0.2–2.2 0.2 0.7 1.2 1.7 2.2
f (mm/rev) 0.15–0.35 0.15 0.20 0.25 0.30 0.35
v (m/min) 50–90 50 60 70 80 90

Table 4. Experiment design using L25 (53) orthogonal array and their measurement results.

No.
ap f v d n Ra MRR SEC

(mm) (mm/rev) (m/min) (mm) (r/min) (µm) (mm3/s) (J/mm3)

1 0.2 0.15 50 47.40 336 1.0325 24.9116 73.8180
2 0.2 0.20 60 46.97 407 1.5835 39.8676 56.2968
3 0.2 0.25 70 46.55 479 2.3270 58.1238 46.4650
4 0.2 0.30 80 46.13 621 3.0725 89.6062 39.1952
5 0.2 0.35 90 45.71 627 3.9995 104.5854 34.9219
6 0.7 0.15 60 45.29 422 0.9995 103.4517 25.0040
7 0.7 0.20 70 43.87 508 1.6190 160.7579 19.7991
8 0.7 0.25 80 42.44 600 2.3195 229.4776 16.4892
9 0.7 0.30 90 41.03 699 3.0820 309.9726 14.3977

10 0.7 0.35 50 39.60 402 3.8170 200.6044 13.6178
11 1.2 0.15 70 38.17 584 0.8830 203.4855 18.3305
12 1.2 0.20 80 35.74 713 1.6265 309.4723 14.9285
13 1.2 0.25 90 33.32 860 2.4110 433.9042 13.2391
14 1.2 0.30 50 30.93 515 3.1150 288.6046 12.3712
15 1.2 0.35 60 46.98 407 3.8100 409.7492 1.4578
16 1.7 0.15 80 44.56 572 0.7810 327.3309 1.9894
17 1.7 0.20 90 41.14 697 1.4180 489.3811 1.5024
18 1.7 0.25 50 37.67 423 2.1520 338.5855 2.3185
19 1.7 0.30 60 34.28 557 3.0020 484.5907 1.4280
20 1.7 0.35 70 30.90 721 3.8335 655.8941 1.1752
21 2.2 0.15 90 46.85 612 0.7980 472.1559 2.4545
22 2.2 0.20 50 42.40 376 1.4105 348.2292 3.1293
23 2.2 0.25 60 37.03 516 1.7555 517.5645 2.1792
24 2.2 0.30 70 32.58 684 2.8110 718.1025 1.4547
25 2.2 0.35 80 43.53 585 3.6870 974.7890 1.1535
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Before each set of experiments, the spindle speed was calculated according to Equation (4) for
CNC programming.

n =
1000v
πd

(4)

where v is cutting speed in m/min, d is workpiece diameter in mm, and n is spindle speed in rev/min.
After each set of experiments, the workpiece surface roughness was measured from three different

locations, and the average value was taken as the surface roughness Ra in each experiment. The MRR
and SEC under each set of cutting parameters were obtained according to Equation (2) and (3),
respectively. Twenty-five sets of experimental results are summarized in Table 4.

Because the size of workpiece was small and turning experiments were performed using cutting
fluid, the tool wear was not serious. In addition, all experiments used new cutting inserts and the
tool flank wear was less than 0.10 mm. Therefore, the influence of tool wear was not considered in
the paper.

3.2. Grey Relational Analysis

The advantage of grey relational analysis is that it can transform the complex multi-objective
optimization problem into a single objective optimization problem through the calculation of grey
relational grade (GRG). The calculation of GRG includes the following three steps [22].

Firstly, preprocess the experimental results of Ra, MRR, and SEC to avoid the effect of adopting
different units. If the original data sequence is ‘the-smaller-the-better’, then this original data sequence
is preprocessed using Equation (5); if the original data sequence is ‘the-larger-the-better’, then this
original data sequence is preprocessed using Equation (6).

x∗i (k) =
maxx

◦

i (k) − x
◦

i (k)

maxx
◦

i (k) −minx
◦

i (k)
(5)

x∗i (k) =
x
◦

i (k) −minx
◦

i (k)

maxx
◦

i (k) −minx
◦

i (k)
(6)

i = 1, 2, . . . , m; k = 1, 2, . . . , z (7)

where m is the number of experiments, z is the number of data sequences, x
◦

i (k) is the original data
sequence, maxx

◦

i (k) is the maximum value in the original data sequence, minx
◦

i (k) is the minimum
value in the original data sequence, and x∗i (k) is the contrast sequence. In this optimization example, the
smaller Ra, the larger MRR, and the smaller SEC are desired. Therefore, the data sequences Ra, MRR,
and SEC were preprocessed by Equation (5), Equation (6), and Equation (5), respectively. The results of
data preprocessing are shown in Table 5.

Secondly, calculate the grey relational coefficient (GRC) based on the results of data preprocessing.

ξi(k) =
∆min +ϕ∆max
∆oi(k)+ϕ∆max

(8)

∆oi(k) =
∣∣∣Xo(k)−x∗i (k)

∣∣∣ (9)

∆min =min
∀ j∈i

min
∀k

∣∣∣∣Xo(k)−x∗j(k)
∣∣∣∣ (10)

∆max =max
∀ j∈i

max
∀k

∣∣∣∣Xo(k)−x∗j(k)
∣∣∣∣ (11)

where ξi(k) is GRC, Xo(k) is the reference sequence and Xo(k) = 1, ∆oi(k) is the deviation value
between Xo(k) and x∗i (k), and ϕ is the distinguishing coefficient and ϕ = 0.5 normally.
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Table 5. The results of data preprocessing.

Contrast Sequence Ra MRR SEC

1 0.9219 0.0000 0.0000
2 0.7507 0.0157 0.2411
3 0.5197 0.0350 0.3764
4 0.2880 0.0681 0.4765
5 0.0000 0.0839 0.5353
6 0.9321 0.0827 0.6718
7 0.7396 0.1430 0.7434
8 0.5220 0.2154 0.7890
9 0.2851 0.3001 0.8177

10 0.0567 0.1850 0.8285
11 0.9683 0.1880 0.7636
12 0.7373 0.2996 0.8104
13 0.4936 0.4306 0.8337
14 0.2748 0.2776 0.8456
15 0.0589 0.4051 0.9958
16 1.0000 0.3184 0.9885
17 0.8021 0.4890 0.9952
18 0.5740 0.3302 0.9840
19 0.3099 0.4839 0.9962
20 0.0516 0.6643 0.9997
21 0.9947 0.4708 0.9821
22 0.8044 0.3404 0.9728
23 0.6972 0.5186 0.9859
24 0.3693 0.7298 0.9959
25 0.0971 1.0000 1.0000

Finally, calculate the grey relation grade (GRG) according to the values of GRC and weights.

γi =
z∑

k = 1

wkξi(k) (12)

z∑
k = 1

wk = 1 (13)

where γi is GRG and wk is weight. The weight of the output can be determined by the expert system
according to actual production demand. In this optimization example, the weights of the three
optimization objectives are the same, namely w1:w2:w3 = 1:1:1.

The gray correlation coefficients (GRCMRR, GRCRa, and GRCSEC) and GRG of each set of
experiments can be obtained by Equations (8)–(13). The results of grey relational analysis and sorting
of GRG are shown in Table 6.

3.3. Process Modelling and ANOVA

The original relationship between cutting parameters and three optimization objectives has been
transformed into a new relationship between cutting parameters and GRG through grey relational
analysis. In order to find the optimal cutting parameters, the regression model of GRG based on
cutting parameters needs to be established first. The RSM was applied to fit the regression model, and
Equation (14) represents the general form of the second-order RSM model.

y = β0 +
k∑

i = 1

βixi +
∑
i< j

∑
βi jxix j +

k∑
i = 1

βiix2
i + ε (14)



Metals 2020, 10, 217 8 of 11

where x are independent variables, namely cutting parameters, k is the number of independent
variables, β is a coefficient of each term, and ε is a residual error.

Table 6. Results of grey relational analysis.

Contrast Sequence GRCMRR GRCRa GRCSEC GRG Sort

1 0.3333 0.8648 0.3333 0.5105 20
2 0.3369 0.6673 0.3972 0.4671 22
3 0.3413 0.5100 0.4450 0.4321 23
4 0.3492 0.4125 0.4885 0.4167 24
5 0.3531 0.3333 0.5183 0.4016 25
6 0.3528 0.8805 0.6037 0.6123 12
7 0.3685 0.6576 0.6609 0.5623 16
8 0.3892 0.5112 0.7032 0.5345 17
9 0.4167 0.4115 0.7329 0.5204 19

10 0.3802 0.3464 0.7446 0.4904 21
11 0.3811 0.9404 0.6790 0.6668 8
12 0.4165 0.6556 0.7251 0.5991 13
13 0.4675 0.4968 0.7504 0.5716 15
14 0.4090 0.4081 0.7641 0.5271 18
15 0.4567 0.3470 0.9917 0.5984 14
16 0.4231 1.0000 0.9775 0.8002 2
17 0.4945 0.7164 0.9905 0.7338 4
18 0.4274 0.5400 0.9689 0.6454 10
19 0.4921 0.4201 0.9925 0.6349 11
20 0.5983 0.3452 0.9994 0.6476 9
21 0.4858 0.9895 0.9654 0.8136 1
22 0.4312 0.7188 0.9484 0.6995 6
23 0.5095 0.6228 0.9725 0.7016 5
24 0.6492 0.4422 0.9918 0.6944 7
25 1.0000 0.3564 1.0000 0.7855 3

The cutting depth, feed speed, and cutting speed were coded using Equations (15)–(17), respectively.
The values of cutting parameters were normalized to the range of −1 to 1, which could cause the
controlled factors to affect the responses more evenly [23]. The software Minitab17 was applied to fit
the experimental data, with coded variables A, B, and C as continuous factors and GRG as output. The
regression model for GRG was developed as Equation (18).

A =
ap − 1.2

1
(15)

B =
f − 0.25

0.1
(16)

C =
v− 70

20
(17)

GRG = 0.5912 + 0.14701A− 0.04508B + 0.02142C− 0.0150A2 + 0.0507B2
−0.0126C2 + 0.0124AB + 0.0162AC (18)

The predicted values for GRG of 25 sets of experiments can be computed according to Equation (18).
The comparison of measured–predicted values from the regression model is depicted in Figure 3, and
the average deviation of predicted values is 0.0937%.

The ANOVA results of the regression model are shown in Table 7. Based on the statistical analysis
results, the coefficient of determination R-sq for this regression model is 97.21%, and the adjusted
coefficient of determination R-sq (adj) is 95.82%, which indicates that the regression model can be used
to predict GRG according to cutting parameters.
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Table 7. ANOVA results for the GRG model.

Source DF SS MS F P

Regression model 8 0.324835 0.040604 69.81 <0.001
Error 16 0.009307 0.000582 - -
Total 24 0.334142 - - -

S = 0.0241181 R-sq = 97.21% R-sq (adj) = 95.82%

3.4. Optimization Results and Comparative Analysis

The optimization of the aforementioned regression model was solved with response optimizer
in minitab17 software. The constraint was the value range of the independent variables A, B, and C.
The solution goal was the maximum value of GRG. The optimization results are shown in Figure 4.
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As can be seen from Figure 4, the regression model obtains the maximum GRG of 0.8315 when
A = 1, B = −1, and C = 1. The optimal solution corresponds to the following cutting parameters: ap = 2.2
mm, f = 0.15 mm/rev, and v = 90 m/min, which are also consistent with experiment number 21.

The comparison of experimental results using the initial and the optimal turning parameters is
listed in Table 8. The initial parameters are suggested by tool maker, and the optimal parameters are
determined by the multi-objective optimization method developed. For the comparison between initial
setting and the optimal solution, MRR increased from 433.9042 mm3/s to 472.1559 mm3/s, Ra decreased
from 2.4110 µm to 0.7980 µm, and SEC decreased from 13.2391 J/mm3 to 2.4545 J/mm3, respectively.
The optimization results show that a trade-off point can be drawn between the good cutting quality,
high production rate, and low energy consumption with the proposed optimization method.
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Table 8. Results with different cutting parameters.

Items
ap f v Ra MRR SEC

(mm) (mm/rev) (m/min) (µm) (mm3/s) (J/mm3)

Initial parameters 1.2 0.25 90 2.4110 433.9042 13.2391
Optimal parameters 2.2 0.15 90 0.7980 472.1559 2.4545

Promotion - - - 66.90% 8.82% 81.46%

4. Conclusions

In this research, the multi-objective optimization framework of turning parameters was
investigated. The multi-objective optimization method based on grey relational analysis and RSM
was proposed and verified in wet turning AISI 304 austenitic stainless steel. The main conclusions are
as follows.

(1) In order to effectively balance the cutting quality, production rate, and energy consumption in
turning process, Ra, MRR, and SEC are featured as optimization objectives of turning parameters
for sustainable manufacturing.

(2) The complex multi-objective optimization problem can be transformed to a single objective
optimization problem with grey relational analysis, which simplifies the optimization procedure.

(3) The coefficient of determination R-sq of the GRG model is 97.21%. This means that the regression
model based on RSM can be used to predict the value of GRG with high accuracy.

(4) In this optimization example, the optimal combination of cutting parameters in turning AISI 304
austenitic stainless steel is: ap = 2.2 mm, f = 0.15 mm/rev, and v = 90 m/s. Compared with the
initial turning parameters, Ra decreases 66.90%, MRR increases 8.82%, and SEC decreases 81.46%.
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