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Abstract: Grain boundary networks composed of equal microstructural elements were investigated in
a recent paper. In this work a more complicated artificial grain topology consisting of one four-sided,
two six-sided and one eight-sided grain is designed to further investigate the influence of grain
boundary and triple junction mobilities on the kinetics of the system in more detail. Depending on the
value of the equal mobility of all triple junctions, the initially square-shaped four-sided grain changes
its shape to become more or less rectangular. This indicates that the grain morphology is influenced by
the value of the mobility of the triple junctions. It is also demonstrated that a grain arrangement with
low mobility triple junctions controlling the kinetics of grain growth enhances growth of the large
eight-sided grains. In addition, grain growth is investigated for different values of mobilities of triple
junctions and grain boundaries. A strong elongation of several grains is predicted by the modeling
results for reduced mobilities of the microstructural grain boundary elements. The two-dimensional
modeling results are compared to micrographs of a heat-treated titanium niobium microalloyed
steel. This feature, namely the evolution of elongated grains, is observed in the micrograph due
to the pinning effect of (Ti, Nb)C precipitates at elevated soaking temperatures of around 1100 ◦C.
Furthermore, the experiments show that a broader distribution of the grain sizes occur at 1100 ◦C
compared to soaking temperatures, where pinning due to precipitates plays a less prominent role. A
widening of the distribution of the grain sizes for small triple junction mobilities is also predicted by
the unit cell model.

Keywords: triple junction mobilities; grain topology; vertex model; microalloyed steels

1. Introduction

Grain growth is a phenomenon occurring in polycrystalline materials at elevated temperatures
that aims to decrease the grain boundary area and thus contributes to minimize the total (Gibbs)
energy in the system. The microstructural changes linked to grain growth influence the properties of
the materials. Generally, a microstructure consisting of small grains with a uniform size distribution
results in mechanical properties which outperform materials with a coarse-grained microstructure.
Numerous theoretical and experimental investigations were thus conducted for many decades to better
understand the physical processes governing grain growth. As an example the effect of solute drag on
migrating grain boundaries and interfaces had been investigated theoretically and experimentally in
earlier days, see e.g., [1–5], and remains a hot topic until today, e.g., [6–18].

Two different kinetic regimes were identified and classified as normal or as abnormal grain growth,
see e.g., [3,19–21]. Several criteria exist to distinguish between abnormal and normal grain growth.
A metrical criterion claims that the rate of the ratio of the abnormal grain with grain radius RA to
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mean grain with radius RM must be positive, i.e., d(RA/RM)/dt > 0, see Rios [22]. The distribution
of the grain sizes in the system remains unimodal during normal grain growth, whereas a bimodal
or multimodal distribution evolves during abnormal grain growth. However, the meaning of RM is
ambiguous in the case of a bimodal size distribution of the grains as pointed out by Kang [20]. Thus,
Rios and Glicksman [23] proposed a topological criterion for abnormal grain growth dNA/dt > 0, with
NA being the number of faces of the abnormal grain. Various reasons for the occurrence of abnormal
grain growth are reported [19]. Large grains could pre-exist or develop in an erratic manner by the
impingement of grains which can contribute to abnormal grain growth. However, Thompson et al. [24]
showed that: “If uniform grain boundary energy is the only factor affecting boundary motion, an
abnormally large grain in a matrix of normal grains does not grow at a higher relative rate than its
neighbors.” Abnormal grain growth may occur due to second phase particles distributed in the matrix
phase, which partially pin the grain boundaries, see e.g., Rios [25]. Tweed et al. [26] investigated grain
growth in samples of aluminum containing alumina particles. They state that promoting anomalous
(abnormal) grain growth requires control of the oxide dispersion. Oliveira et al. [27] also observed
abnormal grain growth in Eurofer-97 steel. They conclude that: “The combination of a high intrinsic
grain boundary mobility, size advantage acquired in the early stages of annealing and the presence of
local microstructural instabilities (e.g., dissolution and coarsening of M23C6 carbides) explain abnormal
grain growth in Eurofer-97 steel.“

As stated by Zöllner and Rios [28] a bimodal size distribution indicating abnormal growth of
austenite grains may occur at intermediate soaking temperatures (ϑ ≈ 1100 ◦C) in microalloyed steels.
Normal grain growth is attributed to the microstructure of fine austenite grains at a low soaking
temperature (ϑ ≤ 1000 ◦C) and to coarse unpinned austenite grains at a high soaking temperature
(ϑ ≤ 1200 ◦C). The particles (e.g., NbC or (Ti,Nb)C) pin the grains at the low soaking temperature,
however at a high temperature the particles dissolve resulting in a subsequent unpinning of grains.
Experimental evidence of these features of the microstructural evolution in microalloyed steels can be
found in [29–31].

Whereas grain growth usually tends to become faster with increasing temperature (e.g., in
microalloyed steels), according to Rheinheimer et al. [18], [32] a transition to slower grain growth is
observed in strontium titanate between 1300 ◦C and 1390 ◦C. They attribute this behavior to two different
types of grain boundaries, a high mobility low temperature and a low mobility high temperature grain
boundary. It should be noted that Olmsted et al. [33] have demonstrated by a molecular dynamics
simulation that some boundaries may move via a non-activated motion mechanism, which significantly
increases low temperature mobility. It is clear from the observations mentioned above that the
phenomenon of abnormal grain growth is influenced by elements of the microstructure. These elements
are triple junctions and grain boundary lines when a simplified two-dimensional setting is considered
and quadruple points, triple lines and grain boundary areas in three dimensions. Triple junctions
and quadruple points gain influence on the kinetics of grain growth particularly in nanocrystalline
materials [34], but this is also the case for vanishing grains in much coarser microstructures. In
addition, solute drag is known to reduce the mobilities of grain boundaries. Furthermore, the pinning
of certain structural elements by second phase particles or pores can be effective until the driving
force for grain boundary migration is below the attraction force of the particles, see e.g., Gottstein and
Shvindlerman [35] and Apel et al. [36].

In our model phenomena like solute drag and particle pinning are taken into consideration
by reduced effective mobilities of grain boundaries and/or triple junctions. Rios [37] used Hillert’s
classical equation for grain growth (see [3]) and modified it by considering a term for the pinning force.
He concluded that a higher grain boundary mobility can cause abnormal grain growth in case of a
sustained mobility advantage and combined with a pinning force it can develop into an abnormal grain
before it outgrows its local environment and loses its mobility advantage. On the one hand, it is not in
the scope of these semi-empirical growth laws to obtain information about the grain topology. On
the other hand, it is possible to investigate the migration of grain boundaries or even grain boundary
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networks by means of vertex models, see e.g., [38–42]. The interplay between the kinetics of grain
growth and topological features can be investigated with the latter models. It has been observed
experimentally and is confirmed in these works that finite mobilities of triple junctions and even
quadruple junctions influence the kinetics. The influence of the surrounding grain topology on the
kinetics of grain growth is, however, not yet systematically investigated for systems with finite grain
boundary mobilities, distinct grain boundary energies and finite mobilities of triple junctions. To this
aim a two-dimensional, simplified grain structure consisting of one four-sided, two six-sided and one
eight-sided grain is constructed and subjected to grain growth. Different mobilities are attributed
to the grain boundaries of different specific energies and to the triple junctions and eventually the
evolution of the grain microstructure is investigated. Thereby, the rate-controlling mechanisms during
different grain growth scenarios are revealed.

2. Problem Description and Methods

2.1. Geometrical Arrangement

In a recently published paper [43] the two-dimensional grain boundary network consisted of a
certain “unit cell” composed of a triple junction with three adjacent grain boundaries. This unit cell
was periodically repeated in order to fill the space. A larger unit cell allowing for a more complicated
microstructure is presented in Figure 1a. This unit cell consists of one four-sided (grain I), two six-sided
(grains II and III) and one eight-sided grain IV and can be perpetuated without spaces in the plane.
The 16 triple points of the arrangement are delineated in the sketch. It follows from the translational
symmetry boundary conditions that some of these triple points are equivalent, e.g., the triple point
T1 is equivalent to T9 shifted by the vector u, see Figure 1b. Similarly, triple points T12, T13 and T14

are equivalent to T4, T5 and T6, respectively. The triple points T10 and T11 are equivalent to T3 and T4

shifted by the vector v. The triple points T15 and T16 are equivalent with T6 and T7 shifted by the vector
(u− v). The system contains 19 grain boundaries, where the equivalent grain boundaries follow from
analogous considerations. The system is thus fully described by 8 independent triple points T1–T8,
and 12 independent grain boundaries 1–12. This means that e.g., the structural element consisting of
triple points T11 and T10 and grain boundary 13 is equivalent to the structural element T4 and T3 and
grain boundary 3. The area of the unit cell remains constant during time. The simulated grain growth
concludes when the four-sided grain 1 vanishes, i.e., topological transformations are not considered.
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Figure 1. Initial arrangement of the “unit cell” of the grains. (a) The four grains are labelled by Roman
numerals I-IV. The triple points are denoted as T1- T16. The grain boundaries are labelled by Arabic
numerals in italics 1-19. (b) The displacement vectors u and v are used to construct the triple points
T9–T16 from triple points T1–T7.
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2.2. Description of the Numerical Procedure

The kinetics of grain growth is simulated by means of Finite Difference routine programmed
in Fortran using an explicit integration scheme. The details concerning the evolution equations and
contact conditions are presented in [43]. The grain boundaries are initially discretized by 100 node
points. Grain boundaries change their length during grain growth. New node points are generated in
case that the distance of the old node points is too far. Node points are eliminated in grain boundary
regions with a too high density.

3. Results

The kinetics of the arrangement of grain boundaries is investigated, where specific energies
γGB j and individual mobilities MGB j are assigned to each grain boundary j and individual finite
mobilities MT i of the triple junctions i influence the kinetics of grain growth. The initial length of
the side of the quadratic grain is the reference length. The reference time equals the time period for
the vanishing of the quadratic grain. The specific energies of the grain boundaries are always set
to the same value γGB j = 1, but the product MGB jγGB j may be different for each grain boundary
due to different individual grain boundary mobilities MGB j. Due to normalizing time and length the
mobilities MGB j and the specific grain boundary energies γGB j are taken as normalized dimensionless
quantities. The normalized triple point mobilities are multiples of the ratio of unit grain boundary
mobility to unit length.

3.1. From Curvature Controlled to Triple Junction Controlled Grain Growth

In a first example all mobilities MT i are set to the same value MT, but this value is altered in
different simulations. The mobilities MGB j are all equal and set to a medium value; MGB = 1. It is
expected that kinetics of grain growth is controlled by the mobilities of the triple junctions for small
values of MT. In Figure 2, the grain arrangement is shown for different normalized times t = t/tf,
where tf is the final simulation time when the four-sided grain practically vanishes. The mobilities of
the triple junctions are set to a small value, MT = 0.1 in Figure 2a. The evolution of the arrangement
for different normalized times t is depicted in Figure 2b for MT = 200. This value is sufficiently large,
so that the evolution of the arrangement is completely curvature-driven.
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are set to the small value 0.1. (b) All mobilities MT i are set to a large value 200, so that the kinetics is
curvature-driven only.
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It is apparent that the grain boundaries in Figure 2a remained almost straight lines and their
migration was controlled by small MT− values. In contrast some of the grain boundaries were distinctly
curved in case of high MT− values. One of the striking differences in the evolution of microstructure is
the development of grain I. High triple point mobilities MT did not significantly change the shape of
the initially quadratic grain I. However, small MT− values resulted in an elongated grain I before the
grain vanished. In the following the elongation is described by the a/b ratio, where a denotes the length
of the horizontal sides of grain I and b is the vertical length of grain I. The a/b ratio is plotted versus
normalized time t for different MT− values in Figure 3.
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Figure 3. The a/b ratio of grain I as a function of t for different MT -values.

The triple junction controlled growth followed an almost perfect straight line in the double
logarithmic plot, green line presented in Figure 4. The four simulation results with the smallest MT−

values were used for the calculation of the green fitting curve, tf = K/MT with the constant K. The fit
yielded to K = (1.375± 0.002)s. An almost perfect, reciprocal relationship between the time tf and the
mobility MT was obtained in the range of small MT− values. In contrast to grain growth controlled
by the mobility of the triple junctions, grain growth was dominated by the curvatures of the grain
boundaries for sufficiently high triple junction mobilities MT. The horizontal red line marks this limit.
Mixed control was observed in the range 0.1 ≤MT ≤ 50.
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point controlled growth.
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The evolution of the areas of grains 1–4 are shown for different mobilities MT in Figure 5. Whereas
the areas grew or shrank as linear functions of normalized time t in case of curvature driven growth
(MT ≥ 200), the curves deviated significantly from straight lines for small MT− values. The areas of the
six-sided grains (grain II and III) remained almost constant in case of high MT-values (e.g., MT = 200),
but decreased significantly in case of small MT− values (e.g., MT = 0.1). The 8-sided grain (grain IV)
always grew at the expense of the other grains I, II and III. Area of grain IV had the potential to become
larger for lower values of MT.

Metals 2019, 9, x FOR PEER REVIEW 7 of 20 

 

 

Figure 5. Evolution of the areas 1–4 with respect to time at various values of 
T
M . 

3.2. Structural Elements with Reduced Mobilities  

The migration of grain boundaries might be limited by solute drag (e.g., of Nb in steels [44,45]) 

which can be accounted by a reduced mobility of the grain boundary. Second phase particles might 

pin grain boundaries, see e.g., Chang et al. [46], where the influence of the morphology of second 

phase particles on grain growth is investigated utilizing the model by Novikov [47], who considers 

the drag force of second phase particles. Triple points might also be nearly immobile or experience 

a reduced mobility. Thus, in the following some case studies are presented where structural 

elements with reduced mobilities are considered. At first, the mobilities of only certain triple points 

were reduced and the evolution of the grain network was analyzed. Then, the mobilities of certain 

grain boundaries were set to smaller values and the influence on the evolution of the structure was 

investigated. Pinning due to second phase particles was taken into account by setting the mobility 

of the grain boundary to zero. Finally, network segments consisting of both triple junctions and 

grain boundaries with reduced mobilities were simulated and analyzed.  

3.2.1. Triple Points with Reduced Mobilities 

In the first case (case I) the mobilities of the triple points 1, 2, 3 and 4 were reduced, 

1
T 

,  ( =1, 2, 3, 4)
i

M i , whereas the mobilities of the remaining independent triple points were 

large 100
T 

,  ( =5, 6, 7, 8)
i

M i , see Figure 6a. In the second case (case II) the mobilities of the triple 

points 5, 6, 7 and 8 were reduced, 1
T 

,  ( =5, 6, 7, 8)
i

M i , whereas the mobilities of the remaining 

independent triple points were large 100
T 

,  ( =1, 2, 3, 4)
i

M i  see Figure 6b.  

It is evident that the evolution of the grain arrangement depends on the position of the triple 

points with reduced mobility. The area of the eight-sided grain became considerably larger in case I 

(Figure 6a) compared to case II (Figure 6b). The reduced mobility of the triple points of grain I (case 

I) resulted in an elongation of the initially quadratic grain, whereas the a / b ratio remained almost 

constant in case II. The grain boundaries that separated grain I from grain II and grain I from grain 

III, respectively were considerably displaced and shortened during the evolution in both cases I and 

II. All other grain boundaries of grain II and III were almost immobile due to reduced triple point 

mobilities 1
T 

,  ( 5, 6, 7, 8)
i

M i 
 

in case II; grain II and grain III were strongly deformed in case I. 

Grain IV was growing at the expense of all remaining grains in case I, while this grain IV was 

Figure 5. Evolution of the areas 1–4 with respect to time at various values of MT.

3.2. Structural Elements with Reduced Mobilities

The migration of grain boundaries might be limited by solute drag (e.g., of Nb in steels [44,45])
which can be accounted by a reduced mobility of the grain boundary. Second phase particles might pin
grain boundaries, see e.g., Chang et al. [46], where the influence of the morphology of second phase
particles on grain growth is investigated utilizing the model by Novikov [47], who considers the drag
force of second phase particles. Triple points might also be nearly immobile or experience a reduced
mobility. Thus, in the following some case studies are presented where structural elements with
reduced mobilities are considered. At first, the mobilities of only certain triple points were reduced
and the evolution of the grain network was analyzed. Then, the mobilities of certain grain boundaries
were set to smaller values and the influence on the evolution of the structure was investigated. Pinning
due to second phase particles was taken into account by setting the mobility of the grain boundary to
zero. Finally, network segments consisting of both triple junctions and grain boundaries with reduced
mobilities were simulated and analyzed.

3.2.1. Triple Points with Reduced Mobilities

In the first case (case I) the mobilities of the triple points 1, 2, 3 and 4 were reduced, MT i =

1, (i= 1, 2, 3, 4), whereas the mobilities of the remaining independent triple points were large
MT i = 100, (i= 5, 6, 7, 8), see Figure 6a. In the second case (case II) the mobilities of the triple
points 5, 6, 7 and 8 were reduced, MT i = 1, (i= 5, 6, 7, 8), whereas the mobilities of the remaining
independent triple points were large MT i = 100, (i= 1, 2, 3, 4) see Figure 6b.
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Figure 6. Evolution of the grain arrangement for different normalized times t. (a) Case I: The mobilities
MT 1–4 are set to the comparatively small value 1, MT 5–8 are set to 100. (b) Case II: The mobilities
MT 5–8 are set to the comparatively small value 1, whereas, MT 1–4 are set to 100.

It is evident that the evolution of the grain arrangement depends on the position of the triple
points with reduced mobility. The area of the eight-sided grain became considerably larger in case I
(Figure 6a) compared to case II (Figure 6b). The reduced mobility of the triple points of grain I (case
I) resulted in an elongation of the initially quadratic grain, whereas the a / b ratio remained almost
constant in case II. The grain boundaries that separated grain I from grain II and grain I from grain III,
respectively were considerably displaced and shortened during the evolution in both cases I and II. All
other grain boundaries of grain II and III were almost immobile due to reduced triple point mobilities
MT i = 1, (i = 5, 6, 7, 8) in case II; grain II and grain III were strongly deformed in case I. Grain IV
was growing at the expense of all remaining grains in case I, while this grain IV was growing mainly at
the expense of grain I in case II. Grain I became strongly elongated before it vanished for the conditions
used in case I. In contrast, the shape of grain I was almost conserved for case II.

In the next case III the mobility of triple point 2 was reduced, whereas all other triple point
mobilities remained high. In case IV the mobility of triple points 2 and 8 were reduced. Comparison of
cases III and IV revealed that the evolution of the grain arrangement was strongly influenced only by
reducing the mobility of the triple points belonging to the four-sided grain. It is shown in Figure 7a
(case III) that a reduced mobility of triple point 2 resulted in a strongly distorted grain boundary
structure. A reduced mobility of triple point 8 did not significantly influence the topology of the grain
structure, see Figure 7b (case IV). Thus, the grain structures (compare Figure 7a,b) appeared to look
similar before grain I disappeared.
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The mobilities of the triple points 1 and 2 were reduced in case V (Figure 8a) and the mobilities 

of the triple points 2 and 3 were reduced in case VI (Figure 8b). All mobilities of the other triple 

Figure 7. Evolution of the grain arrangement for different normalized times t. (a) Case III: The mobility
MT 2 is set to 1, all other triple point mobilities MT 1,3–8 are set to 100. (b) Case IV: The mobilities MT 2,8

of the triple points 2 and 8 are set to 1, whereas, the MT 1,3–7 of the remaining triple points are set to 100.

The mobilities of the triple points 1 and 2 were reduced in case V (Figure 8a) and the mobilities of
the triple points 2 and 3 were reduced in case VI (Figure 8b). All mobilities of the other triple points
were set to high values. The shrinkage of grain I exhibited different features when cases V and VI were
compared. Grain I with blue grain boundaries of at normalized time t = 0.25 looked to be rotated by
an angle of 90◦ in anticlockwise direction if one compares the evolution of grain I shown in Figure 8a,b,
respectively. However, at higher normalized times the grain boundary between triple points 1 and 4
shrank more in case V than in case VI. Grain I disappeared with an almost equilateral triangle shape at
a normalized time t = 1 in case V, whereas grain I at t = 1 exhibited the shape of a vertically elongated
rectangle in case VI. This is a further indication that the mobilities of the individual microstructure
elements play a decisive role in grain growth.
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Figure 8. Evolution of the grain arrangement for different normalized times t. (a) Case V: The mobilities
MT 1,2 of the triple points 1 and 2 are set to 1, all other triple point mobilities MT 3–8 are set to 100.
(b) Case VI: The mobilities MT 1,2 of the triple points 2 and 3 are set to 1, all other triple point mobilities
MT 1,4–8 are set to 100.

In case VII the triple points of grain I were set to entirely different values (Figure 9a). This resulted
in a migration of the grain boundary network that a pretended weak rotation of grains III and IV was
observed. Grain IV was able to grow markedly on the expense of the other grains. It is likely that the
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irregular structure of grain boundaries observed in grain growth experiments arises from different
mobilities of the structural elements. This interpretation is supported by the results of case VII. The
triple points 1–4 of grain I are pinned in case VIII (Figure 9b). In this case all grains remained in the
structure. The system tended to a constrained equilibrium. The times given in Figure 9b have the
following meaning: time t1 is the initial time; t1 = 0. The final time t4 was set to a sufficiently high
value so that the grain boundaries did not migrate anymore and t2 and t3 were chosen in such a way
that grain IV increased its area change by 25% and 75%, respectively. The initial angle α was located
between a horizontal line from triple point 3 to the grain boundary that contained triple point 3 and
separated grain IV and grain III. This initial angle α = π/4 became α′ = π/3 after equilibration.
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Figure 9. Evolution of the grain arrangement for different normalized times t. (a) Case VII: all triple
point mobilities not adjacent to grain I are set to high values, and the triple point mobilities of grain
I are all distinctly different: Mobility MT 1 = 100, MT 2 = 1, MT 3 = 10 and MT 4 = 0.1 set to 1, all
other triple point mobilities are set MT 1,5–8 are set to 100. (b) Case VIII: The triple points 1-4 of grain I
are pinned.

3.2.2. Grain Boundaries with Reduced Mobilities

The effect of grain boundaries with reduced mobilities on the evolution of the grain arrangement
was investigated in this subsection. The mobilities of all triple points were set to a high value, here 100,
so that the influence of the triple junctions on the kinetics of grain growth was negligible. However,
certain reduced grain boundary mobilities influenced the evolution of the grain arrangement. In
this sense the mobility of certain grain boundaries were set to small values; here the mobility of
grain boundary 1 was set to 0.1; MGB 1 = 0.1, the remaining grain boundary mobilities are set to 1;
MGB 2−12 = 1 in case IX, see Figure 10a. In case X the mobility of grain boundary 4 was reduced;
MGB 4 = 0.1, see Figure 10b, the mobilities of the other grain boundaries are set to 1; MGB 1−3,5−12 = 1.
In case IX a reduced mobility was attributed to grain boundary 1 and as a consequence grain I became
vertically elongated with grain boundary 3 disappearing first. When the mobility MGB 4 was reduced
as in case X grain I became horizontally elongated. The vertical elongation of grain I was more
pronounced in case X than the horizontal elongation in case IX.
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Figure 10. Evolution of the grain arrangement for different normalized times t. (a) Case IX: The
mobilities MT 1–8 are set to value 100, whereas the mobility of grain boundary MGB 1 is set to a
comparatively small value 0.1 and the remaining grain boundary mobilities MGB 2–12 are set to 1. (b)
Case X: The mobilities MT 1–8 are set to value 100, grain boundary mobility MGB 4 is set to 0.1 and the
remaining grain boundary mobilities MGB 1–3,5–12 are set to 1.

In the following two cases XI (Figure 11a) and XII (Figure 11b) the boundary mobilities of the
grain boundaries of whole grains were reduced. In case XI the mobility of the grain boundaries of the
eight-sided grain were reduced, i.e., the mobilities of grain boundaries 2, 4, 5, 7 and 9–12 were set to 1:
MGB 2,4,5,7,9−12 = 1, the remaining grain boundary mobilities are set to 10. In case XII the mobility of
the grain boundaries of the four-sided grain were reduced, i.e., the mobilities of grain boundaries 1–4
were set to 0.1; MGB 1−4 = 0.1, the remaining grain boundary mobilities equal 1.
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Figure 11. Evolution of the grain arrangement for different normalized times t. (a) Case XI: The
mobilities MT 1–8 are set to value 100, whereas the mobilities of grain boundaries from the eight-sided
grain IV MGB 2,4,5,7,9–12 are set to 1 and the remaining grain boundary mobilities MGB 1,3,6,8 are set to 10.
(b) Case XII: The mobilities MT 1–8 are set to value 100, grain boundary mobilities of the four sided
grain I MGB 1–4 are set to 0.1 and the remaining grain boundary mobilities MGB 5–12 are set to 1.

In cases that reduced mobilities were assigned to the grain boundaries of the eight-sided grain,
the two six sided grains II and III grew to a larger extent at the expense of the four-sided grain than
grain IV did. The shape of grain I remained symmetric during its evolution with respect to both the
horizontal and the vertical direction in both cases XI (Figure 11a) and XII (Figure 11b). The shape of
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grain I became horizontally elongated in case XI and vertically elongated in case XII. Grain IV was
only slightly growing due to the reduced mobilities of its grain boundaries in case XI, the area of grain
IV increased strongly in case XII.

The mobility of grain boundary 8 was reduced; MGB 8 = 0.1 in case XIII (Figure 12a). In case
XIV (Figure 12b) the mobilities of grain III were reduced; MGB 3,6,8,10−12 = 0.1. The mobilities of the
remaining grain boundaries were higher by one order of magnitude in case XIII and XIV.
Metals 2019, 9, x FOR PEER REVIEW 13 of 20 

 

 
(a) 

 
(b) 

Figure 12. Evolution of the grain arrangement for different normalized times t . (a) Case XIII: The 

mobility of grain boundary 8 is reduced; 
GB 8
M  is set to 0.1 and the remaining grain boundary 

mobilities 
 GB 1 7,9 12

M  are set to 1.
 
(b) Case XIV: The mobilities 

T 1 8
M

 
are set to value 100, grain 

boundary mobilities of the six sided grain III 
GB 3,6,8,10 12

M  are set to 0.1 and the remaining grain 

boundary mobilities
GB 1,2,4,5,7,9
M  are set to 1. 

 

3.2.3. Pinning of Microstructural Entities 

In the following the evolution of the microstructure was investigated for certain completely 

pinned grain boundary regions. The mobility of triple point 8, 
T 8

M , and the mobilities 
GB 8-10
M  of 

the grain boundaries 8, 9 and 10 were set to zero in case XV. The mobilities of the remaining triple 

points 
T 1 7

M  were set to 100, and the mobilities of the remaining grain boundaries 
 GB 1 7,11 12

M  

were set to 1 in case XV (Figure 13a). In case XVI the mobility of triple point 3, 
T 3

M , and the 

mobilities 
GB 2,3,12
M  of the grain boundaries 2, 3 and 12 were set to zero in case XVI (Figure 13b). 

The mobilities of the remaining triple points 
T 1,2,4 8

M  were set to 100, and the mobilities of the 

remaining grain boundaries 
GB 1,4 11

M  were set to 1. Whereas the microstructure remained 

symmetric in case XV and the area of grain IV increased only slightly compared to case XVI, the 

microstructure was heavily distorted in case XVI. The morphology of grain II and grain III evolved 

differently and lengthened and strongly curved grain boundaries alternated with grain boundaries 

that remain straight in case XVI.  

  

Figure 12. Evolution of the grain arrangement for different normalized times t. (a) Case XIII: The
mobility of grain boundary 8 is reduced; MGB 8 is set to 0.1 and the remaining grain boundary mobilities
MGB 1–7,9–12 are set to 1. (b) Case XIV: The mobilities MT 1–8 are set to value 100, grain boundary
mobilities of the six sided grain III MGB 3,6,8,10–12 are set to 0.1 and the remaining grain boundary
mobilities MGB 1,2,4,5,7,9 are set to 1.

It is observed that a reduced boundary mobility MGB 8 of grain boundary 8 had a marginal
influence on the evolution of the grain arrangement. In contrast, the shapes of grain II and III evolved
in a completely different manner in case XIV. Grain II strongly grew at the expense of grain I whereas
the area of grain III increased only slightly. It is worth mentioning that in the grain boundary network
of case XIV some grain boundaries became elongated and strongly curved (see grain boundary 11 and
12 in Figure 12b), whereas others (6, 7, 8 and 10) remain almost straight.

3.2.3. Pinning of Microstructural Entities

In the following the evolution of the microstructure was investigated for certain completely
pinned grain boundary regions. The mobility of triple point 8, MT 8, and the mobilities MGB 8–10 of the
grain boundaries 8, 9 and 10 were set to zero in case XV. The mobilities of the remaining triple points
MT 1–7 were set to 100, and the mobilities of the remaining grain boundaries MGB 1–7,11–12 were set to 1
in case XV (Figure 13a). In case XVI the mobility of triple point 3, MT 3, and the mobilities MGB 2,3,12

of the grain boundaries 2, 3 and 12 were set to zero in case XVI (Figure 13b). The mobilities of the
remaining triple points MT 1,2,4–8 were set to 100, and the mobilities of the remaining grain boundaries
MGB 1,4–11 were set to 1. Whereas the microstructure remained symmetric in case XV and the area of
grain IV increased only slightly compared to case XVI, the microstructure was heavily distorted in case
XVI. The morphology of grain II and grain III evolved differently and lengthened and strongly curved
grain boundaries alternated with grain boundaries that remain straight in case XVI.
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be seen under the precondition that the grain boundary arrangement is kept at the same conditions 
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Figure 13. Evolution of the grain arrangement for different normalized times t. (a) Case XV: Triple
point mobility MT 8 is set to zero, the mobilities of the remaining triple points are set 100. The mobilities
of grain boundaries MGB 8–10 are set to zero and the remaining grain boundary mobilities MGB 1–7,11,12

are set to 1. (b) Case XVI: Triple point mobility MT 3 is set to value zero and remaining triple point
mobilities are set to 100. Grain boundary mobilities of MGB 2,3,12 are set to zero and the remaining grain
boundary mobilities MGB 1,4–11 are set to 1.

It is evident from the computer simulations presented above that the increase of area A4 of grain
IV strongly depends on the mobilities of the grain boundaries and triple junctions. The increase of area
for different cases is presented in Figure 14. A lower limit was reached when all grain boundaries were
immobile except the grain boundaries of grain I. Then grain IV could only gain area at the expense
of grain I (dotted line in Figure 14). The increase of A4 was also small in case XV, where the grain
boundaries 8, 9 and 10 and their triple point T8 were immobilized (black line). In case that the mobilities
of the triple points were set to a sufficiently high value that curvature driven grain growth dominated
and the grain boundary mobility was set to 1 the increase of A4 was slightly higher (dash-dotted curve).
Compared to this result, the reduction of the mobility of triple point 2 and 3 (case VI) resulted in a
higher increase of A4 (red curve). Pinning grain boundaries 2, 3 and 12 (case XV1) leads to a further
increase of A4 (blue curve). The highest gain in area in the cases studied occurred for case XII where
the mobility of the grain boundaries of the four-sided grain was reduced (green curve). It is worth
noting again in this context that the reference time is the time required for the four-sided grain to
vanish. Thus, the rate of increase of A4 might have been lower even if the total increase of A4 was
higher. This means that the widening of the grain size distribution will occur in systems with reduced
grain boundary or triple point mobilities rather than in case of classical curvature mediated grain
boundary migration. This must be seen under the precondition that the grain boundary arrangement
is kept at the same conditions for the whole process.
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Figure 15. (a) Sectional view of the prior austenite microstructure after thermal etching at 1100 °C 

(redrawn from [31] and analyzed by Fiji [48]). The grains are approximated by ellipses. (b) Ellipse 

with major axis d and minor axis c. 
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Figure 14. Increase of area A4 of grain IV with respect to normalized time for different cases.

Recently, Graux et al. [31] published optical micrographs of steel soaked at 1000 ◦C, 1100 ◦C and
1200 ◦C. While the austenite grains at 1000 ◦C and 1200 ◦C seem to be unimodally distributed, the
grains at 1100 ◦C exhibit a deviation from the unimodal distribution. (Ti,Nb)C precipitates are made
responsible for pinning austenite grain boundaries. Due to the thermodynamic calculations presented
in [31], it can be concluded that the (Ti,Nb)C precipitates are present at 1000 ◦C and 1100◦C and dissolve
at 1200 ◦C and higher temperatures. The microstructures are analyzed by means of software Fiji [48].
As an example the microstructure indicating a bimodal area distribution for thermal etching at 1100 ◦C
is shown in Figure 15a. The grains are approximated by ellipses, where d is defined as the major axis
and c is the minor axis (Figure 15b). The c/d ratio is a measure for the deviation of the grains from the
circle shape (c/d = 1).
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Figure 15. (a) Sectional view of the prior austenite microstructure after thermal etching at 1100 ◦C
(redrawn from [31] and analyzed by Fiji [48]). The grains are approximated by ellipses. (b) Ellipse with
major axis d and minor axis c.

A column plot shows the distribution of the ratio Ai/Am, where Ai is the area of grain i and Am is
the mean area of the grain (Figure 16). The Ai/Am ratio is represented well for 1000 ◦C and 1200 ◦C by
fitting with a lognormal distribution. Contrary, this lognormal fit does not work well for 1100 ◦C, see
Figure 16. There are several considerable large grains (Ai/Am > 3.5) at 1100 ◦C, which are not well
described by the lognormal fitting curve.
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microstructures etched at 1000 ◦C (red curve), 1100 ◦C (green curve) and 1200 ◦C (blue curve). Original
data are taken from [31].

The distributions of these c/d ratios are presented in Figure 17. The c/d ratios should move from
values smaller than 1 to values close to 1 with increasing temperature. This statement holds when the
column plots for 1000 ◦C (red) and 1200 ◦C (blue) are compared (see Figure 17). However, the green
column plots (1100 ◦C) are shifted to smaller c/d ratios.
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etched at 1000 ◦C (red curve), 1100 ◦C (green curve) and 1200 ◦C (blue curve).

4. Discussion

According to the von Neumann–Mullins law the rate of area change of a certain grain only depends
on the number of the neighbors of this grain provided that the grain boundary mobility and the grain
boundary energy remain constant. Zöllner and Rios [49] investigated the von Neumann–Mullins
relation under triple junction dragging and obtained a similar law for the radius change rate

.
R provided

that the mobilities of the triple junctions and the grain boundary energies are constant. The change
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rate
.
a (a is the length of the horizontal grain boundary of four-sided grain I)—similar to

.
R in [49]—is

proportional to the triple junction mobility in case of triple junction controlled growth of grain I:

.
a = −C ·MT, (1)

where C is a positive constant. It follows from integration of Equation (1) that the final time tf is
inversely related to MT:

tf =
a0

C
·

1
MT

=
K

MT
, (2)

with a0 being the initial length of grain I and with K being a positive constant. It is shown that
the two extreme cases—curvature controlled grain growth and grain growth controlled by triple
junction dragging—is met in our simulations by plotting the final time tf versus different triple junction
mobilities MT (Figure 4). As the number of neighbors, the grain boundary mobility and the grain
boundary energy is kept constant, the time tf does not depend on MT in case of curvature-driven
growth (horizontal red line in Figure 4), i.e., for sufficiently high values of MT. In contrast the time tf is
inversely related to MT in case of triple junction dragging (green line in Figure 4) and the constant is
determined K = (1.375± 0.002)s in Section 3.1. Mixed control growth kinetics can be found between
these two extreme cases.

The grain boundary energies are always set to a constant value, neither the grain boundary
mobilities nor the grain boundary energies are specified in a way that they depend on the misorientation
angle between two neighboring grains of the grain boundary. Thus, coincidence site lattice (CSL) grain
boundaries are not considered in this work, yet. The different effective grain boundary and triple
junction mobilities enable to consider e.g., the effect of alloying elements dragged by grain boundaries
and triple junctions in a phenomenological manner. In our future work, where the artificial unit cell
might include more grains, it will be a challenging task to take different grain orientations into account,
and investigate the influence of certain CSL grain boundaries on the kinetics of grain growth.

In case that the triple junction mobilities MT are small, the grain boundaries remain almost straight
during their evolution. Since the triple junctions are nearly immobile, the boundaries have enough
time to straighten. Although occurring at a slower rate, it has been observed that triple junction
mobility controlled grain growth can be more effective with respect to the widening of the grain size
distribution (compare Figure 2a,b). The increase of the area of grain IV is investigated for different
cases with respect to reduced mobilities of triple junctions and/or grain boundaries (Figure 14). The
evolution of the arrangement shows that the area of the two six-sided grains II and III remains almost
constant during time for curvature controlled grain growth (Figure 5). However, in case of triple
junction dragging, grains II and III shrink resulting in an elongated four-sided grain I and leading to a
stronger increase of the area of the eight-sided grain IV. Elongation of grain I, measured by the side
ratio a/b, increases with decreasing values of MT (Figure 3).

It is shown in several examples that the grains may become heavily distorted during their evolution
in case that the mobility of certain triple junctions is decreased (Figures 7, 8 and 9a). A similar effect is
observed when the mobility of certain grain boundaries is reduced (Figures 10 and 11). Comparable to
the results of the computer simulations, heavily distorted grains, straight grain boundaries close to
strongly curved grain boundaries and strongly elongated grains can be frequently found in austenite
grain structures of micro-alloyed line pipe steels as well (see e.g., [50]). It is expected in these steels
that the the effective mobility of grain boundaries and triple junctions is small and inhomogeneously
distributed due to solute drag and particle pinning. It is, however, worth noting that even immobilizing
certain triple junctions or grain boundaries in the arrangement has almost no effect on the kinetics
(Figures 7b and 12a). Thus, it depends markedly on the topological position of the triple junction or
grain boundary if its mobility does effect the kinetics or not. It is shown in Figure 13b that pinning of
certain structural entities may even give rise to abnormal grain growth. It is worth mentioning that
reducing the mobilities of grains with less than 6 sides enhances the growth of the large more than
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six-sided grains. It is evident from the green line in Figure 14 that case XII leads to a stronger increase
of area of grain IV compared to all other cases investigated.

The area ratio appears to strongly deviate from a unimodally distribution function for a soaking
temperature of 1100 ◦C, whereas 1000 ◦C and 1200 ◦C result in unimodally distributed column plots
(Figure 16). The calulations (Figure 2) suggest that smaller mobilities of triple points (due to the
influence of (Ti,Nb)C precipitates) can be considerd as the onset of abnormal grain growth. The higher
temperature and the smaller effective mobilities of the microstructural grain boundary elements is
expected to give rise to both, the deviation from the unimodal grain area distribution and the stronger
elongation of the grains measured by their c/d ratios (Figure 17).

5. Conclusions

The following conclusions can be drawn based on the results of the computer simulations:

• It is demonstrated that differences in the mobilities of triple junctions and grain boundaries of
a grain have the potential to significantly change the shape of this grain. Small differences will
always occur e.g., due to spatial fluctuations of dissolved components in the migrating grain
boundary or a different retarding forces due to dragging of the triple junctions.

• Even if all triple junctions have the same mobility, the grain arrangement evolves differently
depending on the value of this mobility. Grain structures with smaller mobilities of the triple
junctions will result in a structure with strongly deformed grains compared to structures, where
a smaller influence of triple junction drag on the kinetics prevails. Small mobilities of triple
junctions and grain boundaries may enhance the increase of the area of those n-sided grains with
the highest amount of sides. A broader size distribution can be expected for microstructures with
small mobilities of triple junctions rather than in microstructures where curvature-driven grain
growth prevails.

• It is demonstrated by simulations that reduced mobilities of microstructural grain boundary
elements can give rise to a deviation from a unimodal area distribution and to strongly elongated
grains. Supporting these simulation results, titanium and niobium microalloyed steels [31]
develop such a microstructure when held at 1100◦C due to the retarding force of the (Ti,Nb)C
precipitates. The precipitates dissolve at higher temperatures (1200◦C) and normal grain growth
is obtained eventually.
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Mirković, D.; Danoix, F.; et al. Precipitation and grain growth modelling in Ti-Nb microalloyed steels.
Materialia 2019, 5, 3267–3275. [CrossRef]

32. Rheinheimer, W.; Hoffmann, M.J. Non-Arrhenius behavior of grain growth in strontium titanate:
New evidence for a structural transition of grain boundaries. Scr. Mater. 2015, 101, 68–71. [CrossRef]

33. Olmsted, D.L.; Molm, E.A.; Foiles, S.M. Survey of computed grain boundary properties in face-centered
cubic metals—II: Grain boundary mobility. Acta Mater. 2009, 57, 3704–3713. [CrossRef]

34. Streitenberger, P.; Zöllner, D. Evolution equations and size distributions in nanocrystalline grain growth.
Acta Mater. 2011, 59, 4235–4243. [CrossRef]

35. Gottstein, G.; Shvindlerman, L.S. Theory of grain boundary motion in the presence of mobile particles. Acta
Metall. Mater. 1993, 41, 3267–3275. [CrossRef]

36. Apel, M.; Böttger, B.; Rudnizky, J.; Schaffnit, P.; Steinbach, I. Grain growth simulations including particle
pinning using the multiphase-field concept. ISIJ Int. 2009, 49, 1024–1029. [CrossRef]

37. Rios, P.R. Abnormal grain growth development from uniform grain size distributions due to a mobility
advantage. Scr. Mater. 1998, 38, 1359–1364. [CrossRef]

38. Weygand, D.; Bréchet, Y.; Lépinoux, J. Mechanisms and Kinetics of Recrystallisation: A Two Dimensional
Vertex Dynamics Simulation. Interface Sci. 2001, 9, 311–317. [CrossRef]

39. Barrales-Mora, L.A.; Mohles, V.; Shvindlerman, L.S. Effect of a finite quadruple junction mobility on grain
microstructure evolution: Theory and simulation. Acta Mater. 2008, 56, 1151–1164. [CrossRef]

40. Gottstein, G.; Ma, Y.; Shvindlerman, L.S. Triple junction motion and grain microstructure evolution. Acta
Mater. 2005, 53, 1535–1544. [CrossRef]

41. Barrales-Mora, L.A. 2D vertex modeling for the simulation of grain growth and related phenomena Math.
Comput. Simul. 2010, 80, 1411–1427. [CrossRef]

42. Streitenberger, P.; Zöllner, D. Triple junction controlled grain growth in two-dimensional polycrystals and
thin films: Self-similar growth laws and grain size distributions. Acta Mater. 2014, 78, 114–124. [CrossRef]

43. Gamsjäger, E.; Ogris, D.M.; Svoboda, J. Kinetics of grain boundary networks controlled by triple junction
and grain boundary mobility. Metals 2018, 8, 977.

44. Maalekian, M.; Radis, R.; Militzer, M.; Moreau, A.; Poole, W.J. In situ measurement and modelling of austenite
grain growth in a Ti/Nb microalloyed steel. Acta Mater. 2012, 60, 1015–1026. [CrossRef]

45. Bhattacharyya, M.; Langelier, B.; Zurob, H.S. Effect of Solute Nb on Grain Growth in Fe-30 Pct Mn Steel.
Metall. Mater. Trans. A 2019, 50, 3674–3682. [CrossRef]

46. Chang, K.; Feng, W.; Chen, L.-Q. Effect of second-phase particle morphology on grain growth kinetics. Acta
Mater. 2009, 57, 5229–5236. [CrossRef]

47. Novikov, V.Y. Grain growth in nanocrystalline materials. Mater. Lett. 2015, 159, 510–513. [CrossRef]
48. Fiji. Available online: https://imagej.net/Fiji (accessed on 25 September 2019).
49. Zöllner, D.; Rios, P.R. Investigating the von Neumann-Mullins relation under triple junction dragging. Acta

Mater. 2014, 70, 290–297.
50. Seikh, A.H.; Soliman, M.S.; AlMajid, A.; Alhajeri, K.; Alshalfan, W. Austenite Grain Growth Kinetics in API

X65 and X70 Line-Pipe Steels during Isothermal Heating. Adv. Mater. Sci. Eng. 2014, 246143, 1–8. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mtla.2019.100233
http://dx.doi.org/10.1016/j.scriptamat.2015.01.021
http://dx.doi.org/10.1016/j.actamat.2009.04.015
http://dx.doi.org/10.1016/j.actamat.2011.03.048
http://dx.doi.org/10.1016/0956-7151(93)90056-X
http://dx.doi.org/10.2355/isijinternational.49.1024
http://dx.doi.org/10.1016/S1359-6462(98)00052-9
http://dx.doi.org/10.1023/A:1015175231826
http://dx.doi.org/10.1016/j.actamat.2007.11.013
http://dx.doi.org/10.1016/j.actamat.2004.12.006
http://dx.doi.org/10.1016/j.matcom.2009.08.005
http://dx.doi.org/10.1016/j.actamat.2014.06.022
http://dx.doi.org/10.1016/j.actamat.2011.11.016
http://dx.doi.org/10.1007/s11661-019-05273-2
http://dx.doi.org/10.1016/j.actamat.2009.07.025
http://dx.doi.org/10.1016/j.matlet.2015.07.092
https://imagej.net/Fiji
http://dx.doi.org/10.1155/2014/246143
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Description and Methods 
	Geometrical Arrangement 
	Description of the Numerical Procedure 

	Results 
	From Curvature Controlled to Triple Junction Controlled Grain Growth 
	Structural Elements with Reduced Mobilities 
	Triple Points with Reduced Mobilities 
	Grain Boundaries with Reduced Mobilities 
	Pinning of Microstructural Entities 


	Discussion 
	Conclusions 
	References

