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Abstract: Developing efficient electrochemically active nanostructures from Earth-abundant elements
has gained significant interest in recent years. Among different transition metals, nickel and copper
are abundant electrocatalysts for energy-storage applications. Nickel–copper selenide (NiCuSe2)
nanostructures were prepared on a stainless-steel mesh with a cost-effective, simple, and versatile
electrodeposition method for supercapacitor applications. The change effect in the bath concentration
of nickel and copper altered the structural and electrochemical properties of NiCuSe2 electrode.
X-ray diffraction (XRD) patterns confirmed the pure phase of ternary NiCuSe2 thin films with a
cubic crystal structure. The surface morphology of NiCuSe2 was tuned by nickel and copper from
spherical porous nanoflowers, nanoplates, nanocubes, and nanosphere-like nanostructures deposited
on the stainless-steel mesh. The electrochemical performance of the electrodeposited NiCuSe2 was
investigated in alkaline 1 M KOH electrolyte. The synergetic effect of bimetallic nickel and copper
with the selenide electrode showed superior specific capacity of about 42.46 mAh g−1 at 10 mV s−1

along with reasonable cycling stability.

Keywords: nickel–copper selenide; electrodeposition; nanostructures; supercapacitor; stainless-steel
mesh; nanoflakes

1. Introduction

The rapid depletion of fossil fuels and rising pollution have led to high demand for alternative
energy-harvesting and -storage systems [1]. Supercapacitors are an advanced type of electrochemical
energy-storage technology [2,3], which is used in various electronic devices, electric vehicles, solar cells,
and wearable devices. Supercapacitors have advantages such as high power density, high energy
density, long life cycle, and low cost of manufacturing and maintenance [4,5]. Recently, porous carbons,
conducting polymers, and several transition-metal compounds composed of oxides, nitrides, sulfides,
and selenides have been utilized as electrodes for electrochemical-energy storage applications [6–9].
The poor electrical conductivity of transition metal oxides/hydroxides and the lower stability of sulfides
limit their electrochemical performance [10]. Among these materials, transition-metal selenides are
promising electrode materials for supercapacitors, oxygen evolution, and other applications because
of their good electrical conductivity, higher values of theoretical specific capacity, and structural and
optoelectronic properties [11–13].
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Metal selenides, made up of Cu, Bi, Sn, etc., have low band-gap energy and are applied in
photoelectrochemical cells for solar-energy harvesting systems and electrocatalytic applications [13,14].
Similarly, binary metal selenides were synthesized and are devoted to improving electrocatalytic
activity. Recently, bimetallic Cu–Co selenide nanowires showed improvement in the electrochemical
properties of supercapacitors [15]. Tang et al. fabricated NiSe nanowires on nickel foam via a two-step
hydrothermal method, which exhibited capacitance of 1790 F g−1 at 5 A g−1 [16]. Zhang et al. reported
stable SnSe nanosheets having energy-storage capacity (228 F g−1 at 0.5 A g−1) using a high-temperature
refluxing method [17]. Furthermore, Chen et al. fabricated a Ni–Co selenide supercapacitor by a
hydrothermal method, exhibiting a specific capacity of 535 C g−1 at 1 A g−1 [18]. These methods involve
complex processes and are not binder-free electrode-preparation approaches. Binder-containing
electrodes also have poor electrical conductivity and cause an increased dead surface during
electrochemical studies [10].

Transition-metal selenides are produced by various methods, including chemical bath
deposition [19], evaporation, and electrodeposition [20]. Among these methods, electrodeposition
has advantages such as low cost, ease to control nanostructure growth, simple, and ecofriendly.
Appropriate metals for bimetallic selenides are nickel (1.43 × 107 S m−1) and copper (5.96 × 107 S m−1)
because of their high electrical conductivity compared to that of other metals, which might assist to
preserve a higher electrical conductivity for selenium (1 × 10−3 S m−1).

In this study, we report an electrodeposition method for the preparation of nickel–copper selenide
nanostructures. Some reports were on the preparation of ternary NiCuSe2 via other chemical methods.
However, less attention has been paid towards electrodeposition and supercapacitor applications.
We developed various NiCuSe2-coated nanostructures on stainless-steel mesh by a potentiostatic
mode of the electrodeposition method. The effect of nickel and copper bath concentration with
a constant concentration of selenide on the structural and electrochemical properties was studied.
The prepared electrodes were used for the measurements of supercapacitive properties in the 1 M
KOH alkaline electrolyte.

2. Experiment Details

2.1. Chemicals and Materials

Nickel sulfate hexahydrate (NiSO4·6H2O), copper sulfate anhydrous (CuSO4), and selenium
dioxide (SeO2) were procured from Sigma-Aldrich, Seoul, Korea. Potassium hydroxide (KOH) was
purchased from Daejung, Gyeonggi-do, Korea. All chemicals were of analytical grade and used
as received.

2.2. Synthesis of NiCuSe2 Thin Films

NiCuSe2 nanostructures were deposited by an electrodeposition method on the stainless-steel mesh.
The electrochemical bath contained an aqueous solution of nickel sulfate hexahydrate, copper sulfate,
and selenium dioxide in a separate beaker. Deposition was carried out on a cleaned stainless-steel
mesh at room temperature with a potentiostatic mode at −0.75 V for 120 s constant for all samples.
The molarity effect of the nickel and copper precursor on the electrochemical properties was investigated.
The molarity of nickel and copper was varied, while selenium molarity was kept constant throughout
the experiment. The four samples were obtained with nickel concentrations of 0.0025, 0.0050, 0.0075,
and 0.01 M, and copper concentrations of 0.011, 0.008, 0.004, and 0.015 M, and denoted as S-1, S-2, S-3,
and S-4, respectively.

2.3. Characterizations

Field-emission scanning electron micrographs (FE-SEM) were recorded on an JEOL microscope
(JEOL JSM-7100, Tokyo, Japan). Powder X-ray diffractograms (XRD) were recorded with a D8 advanced
diffractometer system (Bruker, Billerica, MA, USA) equipped with a Cu–Kα radiation source (40 kV,
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40 mA). X-ray photoelectron spectra (XPS) were collected with an ESCALABMK II X-ray photoelectron
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an Mg–Kα X-ray source.
Electrochemical analysis was performed using a VersaSTAT 3 Potentiostat Galvanostat workstation
(Princeton Applied Research, Princeton, NJ, USA).

2.4. Electrochemical Measurements

Cyclic-voltammetry (CV) and galvanostatic-charge/discharge (GCD) measurements were
conducted on a VersaSTAT 3 electrochemical workstation using a typical three-electrode system
at room temperature. Stainless-steel mesh was used as working electrode, while a Pt wire and a
saturated Ag/AgCl electrode served as the counter and reference electrode, respectively. Electrochemical
characteristics were studied in aqueous 1 M KOH solution, and the geometric area of the working
electrode was one unit cm2 for all electrodes.

3. Results and Discussion

3.1. NiCuSe2 Characterization

Figure 1 presents the XRD patterns of all NiCuSe2 samples prepared by the potentiostatic mode
of the electrodeposition method. A strong diffraction peak of the stainless-steel mesh was observed
at 43.54◦ for all NiCuSe2 samples. Diffraction peaks of NiCuSe2 at 36.42◦ and 50.66 were consistent
with the (211), (311), and (332) planes of cubic NiCuSe2 (JCPDS 00-018-0888). The diffraction peaks of
Cu at 50.66◦ and 74.4◦ overlapped with the peak of Ni, and matched with the (200) and (220) planes
of cubic Cu (JCPDS 00-004-0836) and cubic NiCuSe2 (JCPDS 00-006-0507). The peak at 36.42◦ was
only observed for S-1 due to the formation of defects with the higher concentration of copper [21].
These results confirmed the formation of pure ternary phase of the NiCuSe2. The intensity of the nickel
peak was linearly increased, while the intensity of the steel peak was linearly decreased from S-1 to
S-4. The intensity of nickel and copper peaks was altered with the concentration variation experiment
without any shift in peak positions. The crystallite sizes of the samples were calculated using the
Scherrer equation: 31.47, 32.62, 32.74, and 33.85 nm for samples S-1, S-2, S-3, and S-4, respectively.

Metals 2020, 10, x FOR PEER REVIEW 3 of 8 

 

source (40 kV, 40 mA). X-ray photoelectron spectra (XPS) were collected with an ESCALABMK II X-
ray photoelectron spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an 
Mg–Kα X-ray source. Electrochemical analysis was performed using a VersaSTAT 3 Potentiostat 
Galvanostat workstation (Princeton Applied Research, Princeton, NJ, USA).  

2.4. Electrochemical Measurements 

Cyclic-voltammetry (CV) and galvanostatic-charge/discharge (GCD) measurements were 
conducted on a VersaSTAT 3 electrochemical workstation using a typical three-electrode system at 
room temperature. Stainless-steel mesh was used as working electrode, while a Pt wire and a 
saturated Ag/AgCl electrode served as the counter and reference electrode, respectively. 
Electrochemical characteristics were studied in aqueous 1 M KOH solution, and the geometric area 
of the working electrode was one unit cm2 for all electrodes. 

3. Results and Discussion 

3.1. NiCuSe2 Characterization 

Figure 1 presents the XRD patterns of all NiCuSe2 samples prepared by the potentiostatic mode 
of the electrodeposition method. A strong diffraction peak of the stainless-steel mesh was observed 
at 43.54° for all NiCuSe2 samples. Diffraction peaks of NiCuSe2 at 36.42° and 50.66 were consistent 
with the (211), (311), and (332) planes of cubic NiCuSe2 (JCPDS 00-018-0888). The diffraction peaks of 
Cu at 50.66° and 74.4° overlapped with the peak of Ni, and matched with the (200) and (220) planes 
of cubic Cu (JCPDS 00-004-0836) and cubic NiCuSe2 (JCPDS 00-006-0507). The peak at 36.42° was only 
observed for S-1 due to the formation of defects with the higher concentration of copper [21]. These 
results confirmed the formation of pure ternary phase of the NiCuSe2. The intensity of the nickel peak 
was linearly increased, while the intensity of the steel peak was linearly decreased from S-1 to S-4. 
The intensity of nickel and copper peaks was altered with the concentration variation experiment 
without any shift in peak positions. The crystallite sizes of the samples were calculated using the 
Scherrer equation: 31.47, 32.62, 32.74, and 33.85 nm for samples S-1, S-2, S-3, and S-4, respectively.  

 
Figure 1. XRD patterns of all samples. Figure 1. XRD patterns of all samples.



Metals 2020, 10, 1698 4 of 8

FE-SEM images for all samples with different magnifications are shown in Figure 2. NiCuSe2

nanostructures were clearly uniformly deposited on the stainless-steel mesh. Sample S-1 showed highly
porous spongy nanoflake-like nanostructures deposited on the stainless-steel mesh. After changing
bath concentration, interconnected nanoflake-like nanostructures grew on the surface of the steel mesh.
This type of surface morphology provided more surface area during electrochemical testing. Further,
by changing the bath concentration of Ni and Cu, the surface of NiCuSe2 showed a regular deposition
of a nanocubic-like nanostructure developing on the surface of the stainless-steel mesh. However, at a
higher bath concentration of Ni and Cu ions, there was a drastic change in surface morphology from the
cubic to the nanosphere. Spongy nanoflake, interconnected nanoflakes, nanocubic, and nanosphere-like
morphology was observed in all samples, while the size, thickness, and length of the nanostructures was
altered with the change in electrolyte bath concentration of Cu and Ni ions for ternary NiCuSe2 [22–24].
Nanoflake length for sample S-2 was slightly higher than that of the other samples, while nanosphere
size for sample S-4 was comparatively higher than that of other samples [25,26].
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XPS analysis was performed to further study the chemical environment of NiCuSe2.
The representative XPS spectrum of sample S-4 is depicted in Figure 3. Figure 3a shows the survey
spectrum of S-4, which exhibited peaks of nickel, copper, selenide, carbon, and oxygen without
any other impurities. Peaks of C 1s and O 1s were detected for the sample due to exposure to air
(Figure 3b,c). The spectrum of Cu 2p confirmed that the two main peaks (952.21 and 932.35 eV) could
be assigned for Cu 2p1/2 and Cu 2p3/2, respectively (Figure 3d). Similarly, peaks at 855.61 and 873.27 eV
appeared due to Ni 2p1/2 and Ni 2p3/2, respectively. The two corresponding satellite peaks were
observed at binding energies of 879.30 and 860.99 eV (Figure 3e). Selenium (Figure 3d) showed peaks
at 53.49 and 54.38 eV due to 3d5/2 and 3d3/2, respectively (Figure 3f) [27].
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3.2. Electrochemical Study

The electrochemical measurement of the all samples was performed in 1 M KOH solution against
Hg/HgO reference electrode at a potential window of 0–0.5 V. Figure 4a shows the CV, and the inset
shows the specific capacity of all four samples in a potential range of 0–0.5 V (vs Hg/HgO) at a constant
scan rate of 10 mV s−1. The CV curves of S-1, S-2, and S-3 with difference scan rate are depicted in the
Figure S1a–c. A well-defined redox peak was observed for S-4 compared to that of the other samples.
The specific capacity of all samples was calculated from this CV profile. The specific capacity (Cs) was
estimated from Cs

(
mAhg−1

)
=

∫
I(V)dv/mv × 3.6. The specific capacity values for samples S-1 to

S-4 were 4.30, 10.84, 22.37, and 42.46 mAh g−1, respectively. The performance of NiCuSe2 could be
optimized by changing the electrolyte bath concentration of Ni and Cu ions. The optimal concentration
of Ni and Cu ions in the electrolyte bath was responsible for the higher capacity values of S-4, as shown
in the Figure 4b. Figure 4c shows the specific capacity of the optimized NiCuSe2 electrode with various
scan rates, in the range of 10–100 mV s−1, respectively. The obtained values of specific capacity were
42.46, 37.94, 27.36, 21.01, 17.03, and 13.88 mAh g−1 for scan rates 10, 20, 40, 60, 80, and 100 mV s−1,
respectively. Owning to the excellent supercapacitor performance and higher area of CV for S-4,
the sample was selected as a representative to demonstrate the electrochemical properties. Figure 4d
shows the GCD curve of S-4 with different current densities. Specific capacity that was estimated from
the GCD curve of S-4 was 17.36 mAh g−1 at 0.25 mA cm−2. GCD curves at different current densities
were also mainly symmetrical, revealing the good electrochemical reversibility of S-4, as shown in
Figure 4d.
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The EIS of all samples is shown in Figure 5. The diffusion resistance of electrolyte ions can be seen
in the low-frequency region. The straight line in the low-frequency region shows the low diffusion
resistance of ions from the KOH solution to the electrode interface. The cycling stability of S-4 up to
1000 cycles was investigated with GCD at 1 mA cm−2 (as shown in Figure S1d). Sample S-4 maintained
reasonable cycling stability, and was slightly decreased in capacitance after 100 cycles due to the
irreversible reaction of the material.
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4. Conclusions

Variation in the electrolyte bath concentration of nickel and copper improved the electrochemical
performance of the nickel–copper selenide electrode. The electrochemical study indicated a superior
performance for S-4, with a 42.46 mAh g−1 at 10 mV s−1 in 1 M KOH electrolyte. Reasonable
cycling stability due to the stable structure on the stainless-steel mesh substrate was also observed.
These results proved that the nickel–copper selenide with an optimal concentration of nickel and
copper in the electrolyte bath may be a useful candidate for next-generation hybrid supercapacitors
and electrocatalytic applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/10/12/1698/s1,
Figure S1: (a–c) CV curves of the S-1, S-2 and S-3 samples at a different scan rate from 10–100 mV s−1 in the
potential range 0 to 0.5 V with 1 M KOH electrolytes, respectively, (d) cycling stability with respect to the number
of cycles.
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