metals m\py

Article

Complete Extraction of Amorphous Aluminosilicate
from Coal Fly Ash by Alkali Leaching under
Atmospheric Pressure

2

Andrei Shoppert I*, Dmitry Valeev 20, Irina Loginova ! and Leonid Chaikin !

1 Department of Non-Ferrous Metals Metallurgy, Ural Federal University, 620002 Yekaterinburg, Russia;

loginova_irina@mail.ru (LL.); Li.chaikin@urfu.ru (L.C.)

Laboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of the
Russian Academy of Sciences, 119334 Moscow, Russia; dmvaleev@yandex.ru

Correspondence: a.a.shoppert@urfu.ru

Received: 24 November 2020; Accepted: 16 December 2020; Published: 16 December 2020 f‘r:,e(fgtz);

Abstract: One of the potential sources of alumina and mesoporous silica is the coal-fired thermal
plants waste known as the coal fly ash (CFA). The studies of the alumina extraction from CFA are
often focused on the preliminary desilication, but the efficiency of the alkali desilication is low due to
formation of the desilication product—Nag[AlSigOr4]-Nap X (DSP). This research is focused on the
possibility of CFA desilication without formation of DSP using a leaching process with higher liquid
to solid ratios (L/S) and alkali concentrations. The experimental data were analyzed using an artificial
neural network (ANN) machine learning method and a shrinking core model (SCM). The investigation
of the CFA morphology, chemical and phase composition before and after leaching were carried out
by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), inductively
coupled plasma optical emission spectrometry (ICP-OES) and X-ray diffraction (XRD). The present
work shows that it is possible to avoid formation of DSP if using the L/S ratio >20 and concentration
of Na;O—400 g/L during CFA leaching. The kinetics analysis by SCM showed that the process is
limited by the surface chemical reaction at T <100 °C, and by diffusion through the product layer at
T >100 °C, respectively. The SEM images of the solid residue after NaOH leaching under conditions
that prevent the DSP formation show mullite particles with an acicular structure.

Keywords: coal fly ash (CFA); amorphous aluminosilicate; desilication; alkali leaching; acicular
mullite; neural network; kinetics; shrinking core model

1. Introduction

Coal is the main source of energy worldwide. The ever-increasing energy demand means that
coal will remain a key component in energy generation for the nearest future [1], with proven reserves
of over 1000 billion tons [2]. As a result of coal combustion on thermal power plants (TTP), the solid
residue is formed, which is usually referred to as coal fly ash (CFA). The CFA content of most coals
is around 10-20%, while it reaches ~40% in the brown coal from the Ekibastuz basin of Kazakhstan
Republic [3]. The volume of generated CFA will increase in upcoming years due to the increasing need
for energy from coal plants. The degree of CFA utilization is also increasing, but it still does not exceed
70% in China, USA and India, etc. Moreover, the average utilization rate in the world, according to
various estimates, is not more than 25% [4,5], and there is a large difference between developed and
developing countries.

In Russia, over 90 million tons of coal was combusted in 2018 to generate electricity [6]. This value
corresponds to 25 million tons of CFA [7], while the CFA utilization rate was less than 8.5% [8]. A total

Metals 2020, 10, 1684; d0i:10.3390/met10121684 www.mdpi.com/journal/metals


http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-8820-7502
http://dx.doi.org/10.3390/met10121684
http://www.mdpi.com/journal/metals
https://www.mdpi.com/2075-4701/10/12/1684?type=check_update&version=2

Metals 2020, 10, 1684 20f17

of 1.5 billion tons of CFA has been accumulated in Russian ash landfills. At many TPPs, the capacity of
ash landfills for storing new amounts of ash is practically exhausted. Damage caused by CFA to the
environment includes pollution of soil and groundwater by the natural leaching of heavy metals from
CFA as well as risk of chronic lung diseases for people living close to the ash landfills [9].

CFA contains a large number of valuable components, and its recycling can be economically and
environmentally beneficial. In China, great efforts have been made to develop efficient ways of utilizing
CFA [10,11]. About 20% of the generated CFA is used for production of concrete [2]. Other areas include
land reclamation [12-14], ceramic industry [15-18], production of catalysts [19-22], sorbents [23], deep
separation of useful components [24-27], zeolites [28-31] and extraction of non-ferrous metals [32-35].

The chemical composition of CFA depends on the combustion method and coal deposit [10]. In
the province of Inner Mongolia in China, CFA with high alumina (Al;O3) content is formed, up to
50 wt.% [35]. The alumina content in Russian CFA is not more than 25-30 wt.% and it contains
more than 60% of silica (SiO,). This fact reduces the economic attractiveness of the Russian CFA for
sandy grade alumina production [36], since a preliminary removal of silicon from the CFA is necessary.
The choice of a method depends on the minerals where alumina and silica are concentrated. The phase
composition of CFA depends mainly on the method of coal combustion. If heat boilers are used in
TPP with the combustion temperature above 1300 °C, the main alumina-containing mineral is mullite
(AlgSioOq3) [37], while in the CFA obtained in fluidized bed combustion, most of Al,Oj3 is concentrated
in an amorphous glassy residue [38].

The main method for desilication of CFA is leaching by caustic alkali solution (NaOH). Silica
can easily be leached at atmospheric pressure from an amorphous glassy mass. This type of leaching
produces a silicate solution that can be used to precipitate mesoporous silica [39]. The desilication
degree by this method does not exceed 60% [40-45] because of the simultaneous process of Al leaching
and the precipitation of an insoluble compound—desilication product (DSP) [46]. This process can be
described by the following Equations (1-2):

xAl,O3-ySiO;(amorphous) + 2(x + y)NaOH — yNaySiO3 + 2xNaAl(OH)4 + (y—3x)H;0, 1

6Na,SiO3 + 6NaAl(OH)4 + NapX — Na6[A16Si6024]-Na2X + 12NaOH + 6H,0, (2)

where X represents various inorganic anions, most often sulfate, carbonate, chloride, aluminate, etc.

The formation of a DSP as a result of alkaline leaching of fly ash has been used in many studies to
produce zeolites [47,48]. However, large amounts of 5iO, and Na,O are lost with the solid residue,
if the main goal is to further alumina extraction from this residue. The Na,O content in the solid
residue after conventional leaching reaches 12 wt.%. To reduce alkali losses it was proposed to use
preliminary extraction of soluble alumina by acid leaching [49]. Ma et al. [38] showed that by using
dual treatment of CFA by acid and alkali, the silica extraction degree reaches only 70%. Leaching of
silica from the surface of the CFA particles allows for destruction of the Si-O-Al bonds. The alumina
extraction degree significantly increases from 40% to 85% during subsequent acid leaching. This fact is
related to formation of DSP readily leached in HCl by Equation (3).

Nag[AlgSigO4]'Nap X + 24HCl — 6AICI; + 6NaCl + Nap X + 12H,0 + 6Si0,. 3)

In the previous studies devoted to bauxite [50,51], it was found that under certain conditions it
is possible to keep alumina and silica in liquor for a long time without the formation of DSP. This
made it possible to obtain red mud with high iron content. This opportunity appears mainly by the
leaching of sodium aluminate containing sintering products under atmospheric pressure with highly
concentrated NaOH solutions. In these conditions, the limited solubility of silica is observed. After
reaching supersaturation, regardless of liquor temperature, DSP formation begins.

The main purpose of this study is to show the possibility of increasing the SiO; extraction degree
from CFA by NaOH leaching while reducing the loss of NaOH with solid residue by keeping Al,O3 in
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the liquor. In addition, to analyze the influence of technological parameters on the CFA desilication
degree and create a process model in this research, we used neural networks. For determination of the
mechanism interaction of CFA with NaOH, the kinetics of the leaching process using a shrinking core
model was studied.

2. Materials and Methods

2.1. Analysis

Mineralogy of the raw CFA and the samples after alkali leaching were measured by X-ray
diffraction (XRD) using a Difrei-401 diffractometer (JSC Scientific Instruments, Saint Petersburg,
Russia) using a Cr-Ka radiation source and a 20 range from 15° to 140° with 30 min exposure time.
The operating mode of the X-ray source was set to 25 kW/4 mA. The mineral phases were analyzed by
Match 3 software.

The chemical composition of CFA and solid residue was measured by inductively coupled plasma
optical emission spectrometry (ICP-OES) at an atomic absorption spectrometer, Varian AA-240FS
(Agilent Technologies, San Jose, CA, USA). For quality assurance, samples were analyzed twice.
The carbon contents were determined by a fractional gas analyzer, CS-600 (LECO Corporation,
St. Joseph, CA, USA).

The surface morphology and elemental composition of the raw CFA and the samples after NaOH
leaching were investigated by scanning electron microscopy with energy-dispersive X-ray spectroscopy
(SEM-EDX, Vega IlI, Tescan, Brno, Czech Republic).

The average particle size and specific surface area of the CFA samples were determined by laser
diffraction method (LD) using an Analysette 22 NanoTec (Fritsch, Idar-Oberstein, Germany) and by
the Brunauer-Emmett-Teller method (BET) using NOVA 1200e (Quantachrome Instruments, FL, USA),
respectively. Before sorption analysis, all samples were subjected to degassing under vacuum at 200 °C
for12 h.

2.2. Experiments

CFA leaching by NaOH was carried out in an apparatus consisting of a 0.5 L stainless steel
reactor, with openings for injecting chemical reagents, as well as for temperature control and the
recycling of evaporated water through a water-cooled reflux condenser. The reactor was thermostated.
The materials were stirred using an overhead mixer at 700 rpm (if not stated otherwise), which ensured
uniform density of the pulp. A predetermined portion of the CFA was added to a prepared alkali
solution with the concentration of 400 g/L. Na,O. At the end of the experiment, the leaching pulp was
filtered in a Buchner funnel; the leaching cake was washed with distilled water, dried at 100 °C for
240 min, weighed and analyzed by ICP-OES. All the experiments were performed twice and the mean
values are presented here. The loss on ignition (LOI) was determined by calcination at 1000 °C for
60 min.

2.3. Materials and Reagents

The CFA formed from combustion of Ekibastuz brown coal at the Reftinskaya thermal power
plant in Asbest, Russia was used as a raw material. The particle size distribution of the raw CFA is
shown in Figure 1. A part of the CFA used in the kinetic study was additionally grinded and subjected
to sieve analysis to obtain three size fractions with a similar chemical composition: —50 pm, +50-74 um
and +74 um. The mean content of oxides and elements of CFA is shown in Table 1.
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Figure 1. The particle size distribution of the raw coal fly ash (CFA) and CFA after NaOH leaching at
T =110 °C, liquid to solid (L/S) ratio = 21.5, T = 75 min.

Table 1. Chemical composition of the CFA from Reftinskaya thermal power plant (TPP), Asbest, Russia.

Main Components, wt.%
Si02 A1203 CaO Fez 03 TiOZ MgO NaZO Kzo LOI C
63.12 23.40 1.85 4.85 1.17 0.51 0.75 0.59 3.99 1.60

Figure 2 shows the XRD analysis of the raw CFA. It can be seen that the raw CFA mainly consists
of three mineral phases: mullite, magnetite (Fe304), quartz (SiO;) and a high amount of a glassy
amorphous phase (from 20 to 40 degrees on Figure 2). The amorphous phase (A-S), in addition to
mullite, also could contain potassium (K-A-S) and calcium feldspars (Ca-A-S), which are found in the
SEM image (Figure 3, Table 2), but are not seen in XRD pattern due to the small amount, low crystallinity
and relatively close peaks position with quartz. The quantitative analysis of amorphous and crystalline
phases in the CFA sample was carried out by the method used in the Abdrakhimov et al. article [52]
(Table 3). It combines the Rietveld method and the complete removal of the glassy amorphous phase.
The SEM images in Figure 3 also demonstrate that mullite and magnetite particles are predominantly
spherical in shape with a relatively smooth surface, while amorphous particles have an irregular shape
with a rough surface. It can be seen in Figure 3b that the surface of mullite particles is covered by
a glassy amorphous phase.
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Figure 2. X-ray diffraction (XRD) patterns of the raw CFA from Reftinskaya TPP, Asbest, Russia (the

numbers above the peaks refer to d-spacing).

SEM HV: 20.0 kV SEM MAG: 30.0 kx 1 VEGA3 TESCAN

Det: BSE

SEMHV:200kV  SEM MAG: 5.00 kx . \ SEM HV: 20.0 kV
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Figure 3. The SEM images of raw CFA at magnitude 1500 (a) mullite particles covered by amorphous
aluminosilicate (A-S) at magnitude 30,000 (b) and at magnitude 5000 (c,d) (yellow cross indicates place
of scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analysis; the
elemental compositions are shown in Table 2).
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Table 2. The elemental compositions (wt.%) of CFA particles (see Figure 3 for the spectra numbers).

Spectrum (0] Si Al Ca K Fe Ti Mg Na Phase
1 539 205 16.5 1.0 11 6.1 0.3 - 0.7 Mullite + A-S!
2 529 304 14.7 0.3 07 03 0.3 - 0.5 AS
3 461 227 4.8 4.6 - 192 08 1.7 - Magnetite + Ca-A-S 2
4 527 260 10.6 0.3 0.8 8.0 - 0.7 0.5 AS
5 56.1 8.2 5.8 0.7 - 0.7 19.7 0.2 0.2 Rutile + A-S
6 542 227 21.3 - 0.5 0.4 04 - 0.6 Mullite + A-S
7 563 9.8 4.6 11.6 - 0.3 - 0.3 - Ca-A-S
8 575 216 9.8 84 03 13 - - 0.4 Ca-A-S
9 572 311 10.6 - 0.8 - 0.4 - - A-S
10 50.8  26.5 18.8 0.7 0.7 1.2 0.5 0.4 0.5 Mullite + A-S
11 592 237 14.6 0.3 0.5 1.1 - - 0.6 A-S

1 A-S—amorphous aluminosilicate; > Ca-A-S—Ca containing amorphous aluminosilicate.

Table 3. Semi-quantitative determination of mineral phases in raw CFA.

Phase Content %
Amorphous 50.26
Mullite 22.05
Quartz 12.06
Feldspar 7.22
Magnetite 4.69
Rutile 1.17
Other 2.55
Total 100

Other materials used in the present research include: caustic alkali of the reagent grade (JSC Soda,
Sterlitamak, Russia) and distilled water.

3. Results and Discussion

3.1. The Effect of Leaching Conditions on the Desilication Efficiency

In this research, the possibility of CFA leaching by highly concentrated alkaline solutions (HCAS)
at an increased liquid to solid (L/S) ratio and atmospheric pressure was investigated. This method
allows excluding the DSP formation. The application of HCAS allows using temperatures above 100 °C
without high-pressure equipment. The boiling point of a solution with a concentration of 430 g/L
NaOH (32%) or 330 g/L NayO is 120 °C. To reduce the number of experiments and to identify the
mutual influence of various factors on each other, a full factorial design method was used. The matrix
of experiments and the results obtained on the extraction of aluminum and silicon into solution, as
well as the Na,O content in the solid residue are shown in Table 4. The concentration of caustic alkali
in all experiments was 400 g/L Na;O to exclude solution boiling at high temperatures.

Xie et al. and Shokri [53,54] showed that the use of machine learning provides more accurate
models than traditional mathematical methods. The results obtained for the Si and Al extraction into
liquor and the Na,O content in the solid residue that are given in Table 4 were analyzed using machine
learning with artificial neural networks (ANNSs) included in the “Statistica 13” software. The best
results were obtained by the architecture MLP (a multilayer perceptron) 3-8-3, where the first digit is
the number of input neurons, the second is the number of hidden neurons, and the last is the number
of output neurons. High convergence of experimental data and values predicted using the resulting
network is obtained (R? = 0.97). The response surfaces predicted by the ANN for extracting Si and
Al into liquor, as well as the Na,O content in the solid residue, depending on the duration and the
L/S ratio at the T = 110 °C are shown in Figure 4. To obtain more exact results, the network was
additionally trained using experimental data of the leaching kinetics presented in Section 3.2.
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Table 4. The matrix for planning experiments and the results obtained on the leaching of aluminum
and silicon into liquor and the sodium content in the solid residue of CFA.

Time L/S Ratio Temperature SiRecovery Al Recovery NayO in Solid

No. (min) (mL/g) O (%) (%) Residue (%)
1 30 10 120 76.82 17.99 6.00
2 120 20 120 79.54 29.35 10.12
3 120 20 100 77.24 20.74 3.02
4 75 21.5 110 91.63 41.64 0.89
5 30 20 100 52.13 6.38 0.44
6 75 15 110 70.26 5.86 8.86
7 75 15 97 64.20 18.43 0.46
8 120 10 100 60.57 2.08 7.62
9 120 10 120 56.86 1.00 11.00
10 133 15 110 66.44 5.66 9.99
11 30 20 120 88.14 43.75 0.65
12 75 8.5 110 83.87 40.11 8.05

13 75 15 123 73.87 21.05 10.59

14 75 15 110 69.18 9.50 8.86

15 30 10 100 44.87 12.59 0.53

16 17 15 110 59.06 21.97 0.42

MLP 3-8-3 MLP 3-8-3
> z
[¢] ]
: 2
Z %
g . >80 =2 . > 40
£ =r 3 =
ez = <60 /;g ; i fg
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{'ﬂ
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== S =)
B ”’\:5 2RO LS
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Figure 4. Neural network response surfaces for: (a) Si extraction degree in the alkali solution;

(b) Al extraction in the alkali solution; (c) Na;O content in the solid residue. Blue points are the
experimental data.
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According to the response, surfaces shown in Figure 4, at the L/S ratio of up to 20 and 60 min
duration, the Si and Al extraction degrees were 88% and 45%. A minimum of Na,O content (0.89 mas.%)
is observed in the solid residue at these leaching conditions. It indicates the absence of the DSP
formation and maintenance of all readily soluble alumina in liquor. A decrease in L/S ratio to 15-10
allows for a severe increase in the NayO content in the solid residue, especially after 120 min leaching
duration. This fact indicates the beginning of the DSP formation. At 120 min of leaching duration, the
NayO content in the solid residue also begins to increase at L/S ratio 20, as the Si and Al extraction
degree also begin to decrease. This suggests that the liquor may be in the metastable area [55] until
reaching about 90 min (maximum Si extraction degree in Figure 4). The appearance of nuclei or an
insignificant increase in the concentration of silica leads to further supersaturation and the beginning
of mass precipitation of the DSP—a transition to the labile area.

3.2. Kinetic Study

The influence of various process conditions on the kinetics with the L/S = 20 and Na,O concentration
of 400 g/L was investigated for a detailed understanding of the mechanism of the CFA leaching.
The experimental points are shown in Figure 5. The average particle size in all experiments was 62 pm
(except for Figure 5b), stirring speed 700 min~! (except for Figure 5¢), T = 110 °C (except for Figure 5a).
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Figure 5. The results of fitting experimental data (points) by the shrinking core model (lines): the
diffusion through the liquid film (a); the surface reaction for the effect of temperature (b); (c) the
diffusion through the liquid film for the effect of stirrer rate; and (d) the diffusion through the liquid
film for the average particle size.
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The experimental data from Figure 4 were analyzed using various shrinking core models [56].
These models assume that by the leaching of the original particle, its core shrinks towards the center,
leaving behind an inert layer of the reaction product. In this case, mullite, quartz, unburned coal and
magnetic particles are not leached by NaOH and can be the inert reaction product.

Three model equations were used. When the leaching rate is limited by the surface chemical
reaction, the kinetic equation can be written as:

[1-@1-X)"]=kt, )

where X is the degree of conversion; k; is the apparent rate constant; f is the leaching time, min.
If the leaching kinetic is limited by the diffusion through porous layer of the product, then the
following equation can be used:

[1-2/3X-(1-X)"] =kt (5)

When the leaching rate is limited by the diffusion through the liquid film (external diffusion), the
kinetic equation can be transformed into:
X =kat. (6)

All the kinetic parameters and their standard errors were calculated with non-linear least-squares
methods using commercial software. The non-linear least-squares method has a large number of
advantages over linearization, and one of the main ones is the possibility to evaluate the quality
of fitting experimental data by the non-linear chi-square test (x?) [57]. The best convergence of the
experimental data with the shrinking core model was obtained using Equations (4) and (5).

The data presented in Figure 5a,b show that at temperatures below 100 °C, the kinetic model
provides the best fit for the experimental data. However, at temperatures above 100 °C, the model
is more suitable for diffusion through the reaction product. At T = 120 °C, complete extraction of
amorphous aluminosilicates is quickly reached, which leads to low convergence of the experimental
data with the model even without taking into account the points after 30 min of leaching. At high
temperatures, the surface reaction proceeds rather quickly and the process rate can be limited by the
access of the NaOH to the core through the product layer. The effect of stirring speed (Figure 5c¢) is not
as high as for temperature. This fact can indicate that there are no external diffusion limitations. An
increase of the average particle size also has a smaller effect on the kinetics than temperature. Figure 5d
shows that the experimental data obtained using larger particles (87 pm) are best suited to the diffusion
model through the reaction product (lowest x? value). This observation is in good agreement with the
shrinking core model, since when the particle size is larger, so the product layer will be thicker.

The values of reaction rate constants obtained from Figure 5b were used to calculate the apparent
energy activation (E,) and experimental orders of the stirring rate and average particle size by
plotting graphs in the coordinates Ink-1000/T, Ink-Inv and Ink-Inr,, where k—constant rate on the
corresponding graphs in Figure 5; T—process temperature, K; v—stirring speed, min~!; and 1, is the
average particle size, pm. Linear fit (Figure 6) was used to determinate the E, and the reaction orders
according to the Arrhenius equation (7):

k = ko exp (-E/RT). (7)

where k) is the pre-exponential factor; E is the apparent activation energy, kJ/mol; T is the reaction
temperature, K; and R is the universal gas constant, 8.314 J/mol-K.
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Figure 6. Relationship between Ink-1000/T from Figure 5a (a); Ink-Inv from Figure 5¢ (b); and Ink-Inr,
from Figure 5d (c) for CFA desilication by NaOH at L/S ratio = 20:1.

According to the slope obtained in Figure 6a, the E, value is 73.8 k]/mol. It confirms that surface
chemical reaction is the rate limiting step of the process, especially at T < 100 °C. This fact is due to
the need for high activation energy for the leaching of more refractory aluminosilicates at the later
stages of the process. The stirring speed order was 0.325, and for the average particle size, this value
was 0.403. The obtained low values of orders confirm the absence of serious limitations caused by the
diffusion process.

3.3. Solid Residue Characterization

The chemical composition of the solid residue obtained at T = 110 °C, L/S ratio = 21.5 and leaching
duration for 75 min (see #4, Table 4) is presented in Table 5. This CFA sample was investigated by XRD
and SEM-EDX to identify minerals that react under these conditions. The morphology and porosity of
this solid residue were studied as well using the BET method. X-ray diffraction of the solid residue
after NaOH leaching (#4 sample) is shown in Figure 7.

Table 5. Chemical composition of the solid residue (#4 from Table 4) after CFA leaching by NaOH.

Main Components, wt.%
Si02 A1203 CaO Fez O3 TiOz MgO NaZO Kzo LOI C
23.42 41.42 2.83 15.30 3.69 1.61 0.89 0.28 8.15 5.05
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Figure 7. XRD pattern of the solid residue obtained after NaOH leaching at T = 110 °C, L/S ratio = 21.5,
T =75 min (the numbers above the peaks refer to d-spacing).

As can be seen in Figure 7, the amorphous glassy mass, observed in Figure 2, in the range
from 20 to 40 degrees, disappears, while the mullite peaks increase significantly. This fact suggests
that amorphous aluminosilicates are predominantly leached out while mullite remains unleached.
The peaks of quartz are decreased in comparison with the raw CFA, which indicates that 120 °C and
high concentration of sodium alkali is sufficient to dissolve even such a refractory mineral as quartz.

The data obtained are confirmed by the SEM-EDX method (Figure 8 and Table 6). Figure 8a,b
show that during the leaching process, at the surface of the raw particles a large number of pores
are created, while inside large particles (more than 50 um), smaller ones are found, access to which
is limited. This can be caused by the diffusion limitation at T = 110-120 °C, which is indicated by
the results of the shrinking core model (Figure 5). The particles with an acicular structure are shown
on the SEM images of the solid residue (Figure 8b). The EDX analysis has been done to clarify their
chemical composition.

According to the spectrum in Figure 8c, it can be seen that no glassy amorphous mass is found at
the solid residue surface, but a large amount of mullite, magnetite, quartz and unburned coal is left.
The elemental composition of mullite particles approaches stoichiometric mullite (AlgSipO13). While in
the raw CFA (Table 2), the mullite surface was covered with a glassy mass, since the content of SiO,
was higher in comparison with Al;O3. According to EDX analysis (Figure 8d,e), acicular particles were
mullite phase. Previous studies have shown that artificial mullite obtained at T >1300 °C may have an
acicular structure [58]. The absence of such particles in the raw CFA can be explained by coating of
mullite by glassy phase. Such a particle can be seen in Figure 3b, where the same acicular structure is
visible under the thin surface layer. Due to the high specific surface area, the mullite particles may sorb
the molten glassy mass on the surface during CFA formation.

At the desilication process by NaOH with high L/S ratio, only amorphous glassy mass and quartz
are leached and there is no DSP formation comparing with the desilication at low L/S ratio. This leads
to the exposure of mullite particles with an acicular structure and an increase in the porosity of the
solid residue. Physical characteristics of the raw CFA and the solid residue after alkali leaching are
shown in Table 7.
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According to the data in Table 7, it can be seen that after desilication the specific surface area
of raw CFA significantly increases, despite the similar particle size. The high value of the specific
surface area of the solid residue should have a positive effect on the kinetics of the subsequent alumina
extraction by HCl leaching.

SEM HV: 20.0 kV
Det: SE

SEM HV: 20.0 kV SEM MAG: 8.00 kx | SEM HV: 20.0 kV SEM MAG: 8.00 kx VEG‘AE TESCAN
Det: BSE 10 ym

(e)

Figure 8. The SEM images of the solid residue at 1000 magnitude (a) and at 3000 magnitude (b); the
SEM images with the EDX analysis at 1000 magnitude (c) and at 8000 magnitude (d,e) (yellow cross
indicates place of SEM-EDX analysis; the elemental compositions are shown in Table 6).
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Table 6. The elemental compositions (wt.%) of solid residue (see Figure 8 for the spectra numbers).

Spectrum (0] Si Al Ca K Fe Ti Mg Na C Phase
1 40.5 42 54 1563 03 275 138 0.6 0.5 - Magnetite + Ca-A-S
2 61.7 37.5 0.8 - - - - - - - Quartz
3 23.3 1.9 4.8 0.7 - 0.8 0.7 - - 67.7 C
4 559 304 27 0.8 - 0.5 0.3 - 0.2 - Quartz
5 33.2 50 147 02 - 0.4 0.3 - - 46.2 C + mullite
6 57.1 104 307 03 0.4 0.7 0.5 0.3 0.4 - Mullite
7 37.6 19 8.1 6.2 03 446 62 1.0 - - Magnetite + Ca-A-S
8 59.0 107 302 0.3 - - 0.5 - - - Mullite
9 52.2 120 314 06 0.4 0.9 1.0 0.5 - - Mullite
10 43.0 65 243 04 0.3 0.4 1.7 - - 23.6 C + mullite
11 65.1 20.5 86 3.5 - 0.5 0.6 0.4 - - Ca-A-S
12 61.1 101 200 45 - 0.7 14 - - - Mullite + Ca-A-S
13 57.9 103 309 0.2 0.2 0.2 0.3 - - - Mullite

Table 7. The textural properties and particle size of the raw CFA and the solid residue after desilication.

Specific Surface Total Pore Volume Pore Diameter Particle Size Distribution (um)
CFA 2 3
Area (BET) (m?/g) (cm®/g) (nm) Dx (10) Dx (50) Dx (90)
Raw CFA 0.81 0.07 88 7.17 77.06 210.38
Solid residue 15.70 8.99 25 7.41 67.23 200.45

Based on the above research, the mechanism for the desilication process of the raw CFA with
the appearance of acicular structure mullite particles is proposed (Figure 9). During the CFA
particles formation at T >1300 °C, mullite particles are covered with a glassy amorphous mass, which
subsequently solidifies into a film. Due to the NaOH leaching under conditions that prevent the
formation of a DSP, mullite particles with an acicular structure are exposed. This leads to a significant
increase of the porosity and specific surface area of the solid residue, and, consequently, to an increase
in its reactivity. The exposure of unburned carbon after complete extraction of glassy aluminosilicates
may also have a place [59]. Previously, it was shown [59,60] that an alkali activation can further increase
the specific surface area of the coal.

The liquor obtained by CFA leaching at suggested conditions can be used to precipitate mesoporous
silica and zeolites, which are synthesized at similar L:S ratios [47]. The possibility of selective extraction
of aluminum from the liquor and the solid residue will be discussed in future articles.

5i0* Uncovered mullite

Mullite

Mullite covered
by amorphous silica

Figure 9. The mechanism of CFA desilication with the formation of acicular mullite particles.
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4. Conclusions

In this article, the possibility of complete extraction of amorphous aluminosilicate from coal fly
ash by alkali leaching under atmospheric pressure was studied. Using an artificial neural network
method and the shrinking core model, it was shown that high L/S ratio and temperature is essential to
increasing leaching efficiency. The main conclusion is as follows:

1.  The raw CFA contains a large amount of amorphous aluminosilicate with high content of easily
soluble alumina. The extraction of this alumina by the NaOH simultaneously with silica at low
L/S ratio (<15) leads to the formation of DSP.

2. According to the response surfaces, at the T = 110 °C; C(Na,O) = 400 g/L; L/S ratio = 20 and
60 min leaching duration, the Si and Al extraction degrees were 88% and 45%. A very low Na,O
content (0.65 mas.%) is observed in the solid residue at these conditions. It indicates the absence
of the DSP formation.

3. Theresults of the kinetic analysis show that the leaching process is limited by the surface chemical
reaction at low T <100 °C; at high T >100 °C—the leaching process is limited by the diffusion
through the product layer. The apparent E,; was 73.8 kJ/mol.

4. Due to the NaOH leaching of CFA at conditions that prevent the formation of a DSP, mullite
particles with an acicular structure are exposed. This leads to a significant increase of the porosity
and specific surface area of the solid residue, and, consequently, to an increase in its reactivity.
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