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Abstract: Porphyry Cu-Mo deposits, which are the most important sources of copper and
molybdenum, are typically processed by flotation. In order to separate Cu and Mo minerals
(mostly chalcopyrite and molybdenite), the strategy of depressing chalcopyrite while floating
molybdenite has been widely adopted by using chalcopyrite depressants, such as NaHS, Na2S,
and Nokes reagent. However, these depressants are potentially toxic due to their possibility to
emit H2S gas. Thus, this study aims at developing a new concept for selectively depressing
chalcopyrite via microencapsulation while using Fe2+ and PO4

3− forming Fe(III)PO4 coating. The cyclic
voltammetry results indicated that Fe2+ can be oxidized to Fe3+ on the chalcopyrite surface, but not
on the molybdenite surface, which arises from their different electrical properties. As a result of
microencapsulation treatment using 1 mmol/L Fe2+ and 1 mmol/L PO4

3−, chalcopyrite was much
more coated with FePO4 than molybdenite, which indicated that selective depression of chalcopyrite
by the microencapsulation technique is highly achievable.
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1. Introduction

Porphyry Cu-Mo deposits are the most important sources of copper (Cu) and molybdenum (Mo),
because they account for about 60% and 50% of the world’s Cu and Mo productions [1]. In porphyry
Cu-Mo deposits, chalcopyrite (CuFeS2) and molybdenite (MoS2) are the predominant Cu and Mo
minerals [2,3], and they are separately recovered as Cu and Mo concentrates via a two-step process:
(i) bulk flotation in order to produce Cu-Mo bulk concentrates; (ii) the selective flotation of molybdenite
from Cu-Mo bulk concentrates. Bulk flotation is conducted with the assistance of proper collectors,
such as xanthate for chalcopyrite and insoluble nonpolar oily collectors (e.g., diesel, kerosene, or fuel
oil) for molybdenite [4,5], and pH adjuster (e.g., quick lime (CaO) or slaked lime (Ca(OH)2) to increase
the pulp pH at >10 where iron sulfides (mostly pyrite (FeS2)) are depressed due to the competitive
adsorption of OH– that inhibits xanthate adsorption on the surface of iron sulfides [6]. After this,
the Cu-Mo bulk concentrates are treated with chalcopyrite depressant (e.g., sodium hydrosulfide
(NaHS), sodium sulfide (Na2S), and Nokes reagent (P2S5 + NaOH)) in order to depress chalcopyrite
while floating molybdenite [5]. These reagents function as chalcopyrite depressants by producing
HS– that desorbs the adsorbed xanthate on the chalcopyrite surface and/or reduces the pulp potential,
in which chalcopyrite does not float [7].
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Although the conventional chalcopyrite depressants are effective in separating Cu and Mo minerals
from bulk Cu-Mo bulk concentrates, these have the potential to generate toxic hydrogen sulfide gas
(H2S(g)) when pulp pH is not properly controlled [3,5,8]. At a pH below 10, for example, H2S(aq) species
starts forming and it is readily vaporized due to its high vapor pressure [7]. Thus, the flotation circuits
should consist of covered flotation cells with an active ventilation system to avoid the accident that is
caused by H2S emission [5,7,9]. Moreover, the corrosive nature of H2S that destroys pipelines and
imperfect molybdenite recovery are other drawbacks of using conventional depressants [3,7,8,10].

Because of the above-mentioned limitations, there have been many attempts to replace the
conventional chalcopyrite depressants with alternative depressants for molybdenite (e.g., dextrin [11,12],
lignosulfonates [13], O-carboxymethyl chitosan [14,15], carboxymethylcellulose [16], humic acid [17], etc.)
and chalcopyrite (e.g., sodium sulfite (Na2SO3) [3], pseudo-glycolythiourea acid (PGA) [18],
2,3-disulfanylbutanedioic acid (DMSA) [19], disodium bis (carboxymethyl) trithiocarbonate (DBT) [20],
chitosan [21], etc.). Between these two approaches, the strategy of depressing chalcopyrite is more
preferred than depressing molybdenite, because, in porphyry deposits, the amount of molybdenite
is lower when compared to that of chalcopyrite (i.e., Cu grade, 0.44%; Mo grade, 0.018%) [2]. In the
case that molybdenite depresses while chalcopyrite floats, the mechanical entrainment of molybdenite
could occur within a large volume of froth products, resulting in the loss of valuable molybdenite,
which is critical, because molybdenite recovery is of importance for Cu-Mo processing plants to be
economically viable [22].

Miki et al. [9] reported that the difference in electrical resistivity between chalcopyrite and
molybdenite can be utilized for reducing the floatability of chalcopyrite selectively. The electrical
resistances of chalcopyrite and molybdenite are 234 Ω and 1.2–1.5 MΩ, respectively, so electrochemical
reactions occur more preferably on the surface of chalcopyrite than that of molybdenite [9]. Based on
these distinctively different electrical properties of minerals, this study investigated the application of
microencapsulation technique while using ferrous (Fe2+) and phosphate (PO4

3−) ions as a pretreatment
for depressing the floatability of chalcopyrite. Due to the extremely high electrical resistivity of
molybdenite, Fe2+ is hardly oxidized to ferric ion (Fe3+); however, chalcopyrite has a low electrical
resistivity and, thus, Fe2+ can be oxidized to Fe3+, which then reacts with PO4

3− and forms ferric
phosphate (FePO4) on the surface of chalcopyrite, rendering it hydrophilic. This is the first part of
a two-part paper, the aim of which is to investigate whether microencapsulation while using Fe2+

and PO4
3− can selectively create FePO4 coating on the surface of chalcopyrite rather than that of

molybdenite. Specifically, the overall scope of this part is as follows: (i) elucidating the mechanism
of selective coating formation via an electrochemical technique (i.e., cyclic voltammetry (CV)) and
(ii) confirming whether chalcopyrite is selectively coated with FePO4 via shake-flask experiments that
are coupled with surface characterizations (i.e., scanning electron microscopy with energy-dispersive
X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS)). A follow-up paper
will discuss the effect of microencapsulation using Fe2+ and PO4

3− on the selective depression of
chalcopyrite in Cu-Mo flotation separation.

2. Materials and Methods

2.1. Mineral Samples

Chalcopyrite and molybdenite were obtained from Copper Queen Mine, Cochise County, AZ,
USA and Spain Mine, Renfrew County, ON, Canada, respectively. The samples were crushed by a
jaw crusher (BB 51, Retsch Inc. Haan, Germany), ground by a vibratory disc mill (RS 100, Retsch Inc.,
Haan, Germany), and then screened in order to obtain a size fraction of less than 75 µm. Mineralogical
and chemical compositions of the samples were determined by X-ray diffraction (XRD; Figure 1)
and X-ray fluorescence (XRF; Table 1). The chalcopyrite sample is composed of mainly chalcopyrite
with pyrite and silicate minerals (e.g., quartz (SiO2), amesite (Mg2Al2SiO5(OH)4), and actinolite
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(Ca2(Mg,Fe2+)5Si8O22(OH)2)) as impurities, while molybdenite sample is highly pure and only
contains trace amounts of impurities, as can be seen.
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Figure 1. X-ray diffraction (XRD) patterns of (a) chalcopyrite and (b) molybdenite.

Table 1. Elemental compositions of chalcopyrite and molybdenite.

Chalcopyrite Molybdenite

Elements wt.% Elements wt.%

Cu 23.2 Mo 56.8
Fe 32.6 S 43.0
S 29.4 Others 0.2
Si 9.5 - -

Others 5.3 - -

2.2. Stability of Fe2+ in the Presence of PO4
3− vs. pH

The stability of Fe2+ in the presence of PO4
3− was investigated as a function of pH in order to

decide the suitable pH condition for FePO4 coating formation on chalcopyrite to be selective. For this,
a solution containing 1 mmol/L FeSO4·7H2O and 1 mmol/L KH2PO4 was prepared, and its pH was
adjusted in the pH range of 2–6 while using dilute HCl and NaOH. All of the chemicals used in
this study were of reagent grade (Wako Pure Chemical Industries, Ltd., Osaka, Japan). After pH
adjustment, the solution was allowed to stabilize for 10 min. at room temperature under magnetic
stirring (400 rpm). Afterwards, the solutions were filtered through 0.2 µm syringe-driven membrane
filters (LMS Co. Ltd., Tokyo, Japan), and then analyzed by inductively coupled plasma atomic emission
spectrometer (ICP-AES, ICPE-9820, Shimadzu Corporation, Kyoto, Japan) in order to identify the
changes in dissolved Fe concentration.

2.3. Electrochemical Behaviors of Fe2+ on Chalcopyrite and Molybdenite

The electrochemical behaviors of Fe2+ on chalcopyrite and molybdenite were investigated by
CV while using an electrochemical measurement unit (SI 1280B, Solartron Analytical, Farnborough,
UK) with a conventional three-electrode system consisting of a mineral (chalcopyrite or molybdenite)
working electrode, a platinum (Pt) counter electrode, and an Ag/AgCl (saturated KCl) reference
electrode. The mineral electrodes were prepared in an identical way that was illustrated in our
previous works [23,24]. Two types of electrolyte solutions were prepared: (i) 0.1 mol/L Na2SO4 and
(ii) 1 mmol/L FeSO4·7H2O and 0.1 mol/L Na2SO4, both of which were adjusted to pH 4. The solution
was equilibrated at 25 ◦C and then deoxygenated by N2 purging for 30 min. After this, three electrodes
were inserted and equilibrated at open circuit potential (OCP), and then CV was measured under
the following conditions: initial scan polarity, positive; potential scan range, −0.8 to +0.8 V; scan rate,
30 mV/s.
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2.4. Microencapsulation Treatment

Prior to the microencapsulation treatment, mineral samples were washed in order to remove
the effects that are caused by the presence of oxidized layers formed during sample preparation.
The washing procedure is as follows: ultrasonic cleaning in ethanol, acid washing (1.0 M HNO3),
triple rinsing with de-ionized (DI) water (18.2 MΩ·cm), dewatering with acetone, and drying in a
vacuum desiccator [25].

For the microencapsulation treatment, 1 g of washed mineral (e.g., chalcopyrite or molybdenite)
and 10 mL of a solution containing 1 mmol/L Fe2+ and 1 mmol/L PO4

3− (pH 4) were put into a 50-mL
Erlenmeyer flask and then shaken in a constant temperature water bath at 25 ◦C and 120 min−1 for
1–6 h. After predetermined time intervals, the suspensions were filtered through 0.2 µm syringe-driven
membrane filters and then analyzed by ICP-AES. Treated minerals were thoroughly washed with DI
water, dried in a vacuum dry oven (40 ◦C), and then analyzed by SEM-EDX (JSM-IT200, JEOL Ltd.,
Tokyo, Japan) and XPS (JPS-9200, JEOL Ltd., Tokyo, Japan). The XPS analysis was conducted using
an Al Kα X-ray source operated at 100 W (Voltage, 10 kV; Current, 10 mA) under ultrahigh vacuum
conditions (approximately 10−7 Pa). The narrow scan spectra were calibrated while using the binding
energy of adventitious carbon (C 1s) (285.0 eV) for charge correction. For deconvolutions of the spectra,
XPSPEAK version 4.1 (Raymond WM Kwok, Chinese University of Hong Kong, Hong Kong, China)
was used with an 80% Gaussian–20% Lorentzian peak model and a true Shirley background [26,27].

3. Results

3.1. Stability of Fe2+ in the Presence of PO4
3− vs. pH

The oxidation rate of Fe2+ to Fe3+ by dissolved oxygen (DO) is known to be pH-dependent [28,29].
Fe2+ oxidation rate under acidic conditions (i.e., pH < 4) is very slow and independent of pH, as shown
in Figure 2a. However, at pH ≥ 5 Fe2+, the Fe2+ oxidation rate shows the second order dependence
on [OH−], indicating that a 100-fold increase in the rate occurs for a unit increase in pH [28]. In the
studied system, not only Fe2+, but also PO4

3− coexist, so the stability of Fe2+ in the presence of PO4
3−

as a function of pH was investigated (Figure 2b). The concentration of Fe2+ was almost not changed
between pH 2 and 4, but above which Fe2+ concentration decreases rapidly. This result is identical to
that reported by previous works [28,29], indicating that Fe2+ is stable at pH < 4, even in the presence
of PO4

3−. The oxidation of Fe2+ by DO is not preferred, because the selective coating formation could
only be achieved when Fe2+ oxidation occurs on the surface of chalcopyrite. Thus, pH 4 was selected
for microencapsulation treatment to be selective.
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3.2. Electrochemical Behavior of Fe2+ on Chalcopyrite and Molybdenite

Figure 3 shows the cyclic voltammograms of chalcopyrite (Figure 3a) and molybdenite (Figure 3b)
in the absence and presence of 1 mmol/L Fe2+. The current density was continuously increased as the
applied potential increased, which means that chalcopyrite as well as its oxidation products (e.g., Fe2+)
were oxidized (Equations (1) and (2)), as shown in the first anodic scan of chalcopyrite in the absence
of Fe2+ (Figure 3(a2)) [30–32]. When 1 mmol/L Fe2+ was present, the current density was apparently
increased as compared to that without Fe2+. This increase in current density most likely resulted from
the oxidation of Fe2+ to Fe3+ (Equation (2)).

CuFeS2→ Cu(1 − x)Fe(1 − y)S(2 − z) + xCu2+ + yFe2+ + zS0 + 2(x + y)e− (1)

Fe2+
→ Fe3+ + e− (2)
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During the cathodic scan in the absence of 1 mmol/L Fe2+, it exhibited four cathodic peaks (C1, C2,
C3, and C4), as shown in Figure 3a,(a1). According to Holiday and Richmond [31], the first two
cathodic peaks (C1 and C2) were due to the reduction of dissolved species, like Fe3+ and Cu2+. Holiday
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and Richmond [31] executed cathodic linear-sweep voltammetry while using stationary and rotating
chalcopyrite electrodes, both of which were pretreated at 0.65 V vs. SCE for 2 min., and found out
that two cathodic peaks at 0.38 and 0.15 V vs. SCE observed in the voltammogram using a stationary
electrode were absent when the electrode was rotated. Thus, the appearance of C1 and C2 can be
explained by the reduction of Fe3+ to Fe2+ at 0.3–0.4 V (Equation (3)) and the formation of covellite
(CuS) at 0.1–0.2 V (Equation (4)), respectively. At the applied potential between −0.4 and −0.7 V,
two additional peaks (C3 and C4) were observed (Figure 3(a1)), which resulted from the reduction of
CuS to chalcocite (Cu2S) and S0 to H2S, as illustrated in Equations (5) and (6) [30–32].

Fe3+ + e−→ Fe2+ (3)

Cu2+ + S0 + 2e−→ CuS (4)

2CuS + 2H+ + 2e−→ Cu2S + H2S (5)

S0 + 2H+ + 2e−→ H2S (6)

Similarly, these four cathodic peaks (C1, C2, C3, and C4) were also observed in the voltammogram
in the presence of 1 mmol/L Fe2+; however, it is important to note that the current density of C1

was obviously increased. This indicates that more Fe3+ was generated during the anodic scan of
chalcopyrite in the presence of 1 mmol/L Fe2+ as compared to that of control. On the other hand,
cyclic voltammograms of molybdenite showed that there is no clear difference between the absence
and presence of 1 mmol/L Fe2+ (Figure 3b). It is most likely attributed to the low electrical conductivity
of molybdenite, making the electrochemical reactions of Fe2+/Fe3+ redox couple hard to occur on its
surface. Therefore, the cyclic voltammetry results imply that the selective oxidation of Fe2+ on the
chalcopyrite surface is highly possible.

3.3. Microencapsulation Treatment for Chalcopyrite and Molybdenite

Figure 4 shows the precipitation rates of dissolved Fe and P during microencapsulation treatment
for chalcopyrite and molybdenite. The precipitation rate is calculated by the following equation:

Precipitation rate (%) = (Ci − Ct)/Ci × 100% (7)

where Ci is the initial concentration of dissolved Fe or P in mg/L, and Ct is the concentration of dissolved
Fe or P in mg/L at time t. As shown in Figure 4a, the precipitation of dissolved Fe considerably occurred
in the presence of chalcopyrite; that is, around 60% of Fe2+ was precipitated after 1 h treatment and
it reached 93% after 6 h. Similarly, dissolved P was also significantly precipitated with chalcopyrite
(Figure 4b). When compared to the precipitation rate of dissolved P, the precipitated amount of
dissolved Fe was a bit low. This is probably due to chalcopyrite dissolution that releases Fe2+/3+,
resulting in the lowering of the Fe precipitation rate. These results indicate that Fe2+ is oxidized to Fe3+

on the surface of chalcopyrite, then, the resultant product (i.e., Fe3+) reacts with H2PO4
−, a dominant

species of phosphate at pH 4, forming FePO4, as shown in the following equation:

Fe3+ + H2PO4
−
→ FePO4↓ + 2H+ (8)

It is interesting to note that, even during microencapsulation treatment for molybdenite, around
20–40% of dissolved Fe and P were precipitated (Figure 4a,b). Although the CV results indicated
that Fe2+ oxidation could not occur on the surface of molybdenite (Figure 3b), the precipitation of
dissolved Fe and P apparently occurred in the presence of molybdenite. These opposite results
are attributed to the different electrical resistivity of different sides (e.g., basal and edge planes)
of molybdenite [9]. Miki et al. [9] investigated electrolysis oxidation treatment while using basal-
and edge-plane-oriented molybdenite electrodes and confirmed that electron transfer was actively
pursued through the edge plane when compared to that through the basal plane. At an applied
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potential of 1.0 V vs. SHE, for example, the current density of the edge-plane electrode was around
0.1 mA/cm2, lasting for 800 s, while it was closed to 0 mA/cm2 in the case of the basal-plane electrode.
The particle size of molybdenite used in this study is less than 75 µm. As the size of molybdenite
particle reduces, the ratio of basal-plane/edge-plane also decreases [33]. This means that electron
transfer reactions, like Fe2+ oxidation on fine molybdenite, become easier to occur when compared to
coarse molybdenite. Thus, approximately 20–40% of dissolved Fe and P were precipitated during the
reaction with molybdenite (Figure 4).
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Figure 5 shows the SEM-EDX results of untreated- and treated-chalcopyrite. As can be seen in the
SEM image of untreated chalcopyrite, its surface was smooth and clear; however, after microencapsulation
treatment, the surface morphology dramatically changed the secondary precipitates that covered the
surface of chalcopyrite. Untreated chalcopyrite exhibited strong signals of Cu, Fe, and S, while treated
chalcopyrite showed that the signals of Cu and S were decreased, but signals of Fe and O were
increased, as shown in the EDX spectra of these samples. In addition, the P signal appeared in the
spectrum of treated chalcopyrite. These increased (i.e., Fe, P, and O) and decreased (i.e., Cu and S)
signals were also found in the elemental maps of treated chalcopyrite. These results indicate that,
after microencapsulation treatment, Fe–P–O-containing coatings were formed on the chalcopyrite
surface. On the other hand, the SEM-EDX results of molybdenite with and without treatment (Figure 6)
showed that there is no clear difference between the two samples, although 40% of dissolved Fe and P
were precipitated (Figure 4). It could be speculated that the signals of Fe and P are almost noise levels
due to the small amount of precipitate present on the molybdenite surface or the precipitates do not
exist on the molybdenite surface.

In order to further characterize the surfaces of untreated and treated minerals, XPS analysis was
adopted, which can analyze a very thin layer of coating (around ~6 nm) and give the information on the
chemical state of the element. Figure 7a shows the XPS P 2p spectra of untreated and treated chalcopyrite.
As it can be seen, treated chalcopyrite exhibited a broad peak that was centered at around 133.5 eV
composed of adsorbed PO4

3− (130.0, 131.4 and 132.8 eV) [34] and P(V) of FePO4 (133.7 eV) [34,35],
which support that FePO4 coating was formed on the chalcopyrite surface by microencapsulation
while using Fe2+ and PO4

3−. In the case of the XPS spectrum of treated molybdenite (Figure 7b),
a weak and gentle peak of FePO4 was observed. The peak area of FePO4 in the XPS spectrum of
treated chalcopyrite was three times higher than that of treated molybdenite, which indicated that
more FePO4 is present on the chalcopyrite surface, as confirmed by Figures 4–6. All of the results that
were obtained in this study imply that Fe2+ oxidation, followed by FePO4 precipitation, preferably
occurs on the chalcopyrite surface rather than on the molybdenite surface, so the selective depression
of chalcopyrite in the flotation of bulk concentrates is highly achievable, which will be evaluated in
detail in Part 2 of this study.
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4. Conclusions

This study investigated microencapsulation while using Fe2+ and PO4
3− in order to selectively

coat chalcopyrite with FePO4 with the aim of improving Cu-Mo flotation separation. The findings of
this study are summarized, as follows:

1. In the presence of phosphate ion, Fe2+ was stable at pH ≤ 4, above which, however, Fe2+ became
unstable due to its rapid oxidation to Fe3+, which was then precipitated as FePO4 and/or FeO(OH).
Thus, microencapsulation treatment using Fe2+ and PO4

3− is recommended to be conducted at
pH 4 in order to achieve the selective Fe2+ oxidation on chalcopyrite surface.

2. The CV results indicated that Fe2+ oxidation can occur on the chalcopyrite surface, but not on the
molybdenite surface, due to their different electrical properties.

3. After microencapsulation treatment using Fe2+ and PO4
3−, SEM-EDX and XPS analyses confirmed

that chalcopyrite was more coated with FePO4 than molybdenite.
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