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Abstract: In the past decade, a renewed interest on electromagnetic processing of materials has
motivated several investigations on the interaction between matter, electric and magnetic fields.
These effects are primarily reconducted to the Joule heating and very little attention has been dedicated
to the magnetic field contributions. The magnetic field generated during electric current-assisted
sintering has not been widely investigated. Magnetism could have significant effects on sintering
as it generates significant magnetic forces, resulting in inductive electrical loads and preferential
heating induced by overlapping magnetic fields (i.e., proximity effect). This work summarizes the
magnetic field effects in electric current-assisted processing; it focuses on health and safety issues
associated with large currents (up to 0.4 MA); using FEM simulations, it computes the self-generated
magnetic field during spark plasma sintering (SPS) to consolidate materials with variable magnetic
permeability; and it quantifies the Lorentz force acting at interparticle contact points. The results
encourage one to pay more attention to magnetic field-related effects in order to engineer and exploit
their potentials.

Keywords: magnetic field; electro-magnetic assisted processing; spark plasma sintering

1. Magnetic Field Effects in Electromagnetic Processing of Materials (EPM)

In electromagnetic processing of materials (EPM) [1], research has been mostly focused on current
and temperature effects, often neglecting the magnetic contribution. The purpose of this paper is
to investigate the effects of self-generated magnetic fields by a current passing across the processed
material. This work does not cover externally applied magnetic fields, as such a topic was extensively
discussed by Guo et al. [2].

As early as 1886, Elihu Thompson developed the first resistance welding machine, which represented
a major improvement in joining technology with a wide range of applications [3]. At that stage, it was
already clear that ferromagnetic objects (both constituting the welding fixtures or the work piece)
should be avoided. High current (exceeding several hundreds of Amperes) would generate a strong
magnetization of these ferromagnetic materials, resulting in a decreased welding efficiency limiting
the maximum output current [4]. Curiously, at that time, ferromagnetic materials in the vicinity of the
welding equipment were intentionally employed to increase the resistive load on the generator.
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Electric current-assisted sintering (ECAS) techniques began their journey from the beginning
of the last century. Compared with conventional sintering techniques, ECAS has the following
advantages: low furnace temperature, short processing duration, direct Joule heating on the workpiece,
and significantly improved material properties [2,5–8]. While magnetic field effects have been
well-investigated in the case of welding, they still remain unexplored in sintering. The magnetic fields
effects in ECAS, being secondary effects, are poorly discussed in the literature. Table 1 summarizes
magnetic-related effects in EPM. It includes several electromagnetic phenomena, their applications,
physical principle and their mathematical formulation. White and Fasenfest [9] proposed a method
for evaluating the discrete Biot–Savart law. Wheeler et al. [10] investigated the skin effect as early as
1942, and he also proposed a mathematical formulation for different configurations and operating
frequencies. Ahmad et al. [11] analyzed the skin effect in detail by proposing computer models.
The proximity effect occurring at high frequency (>100 kHz) with applications in pipe welding was
analyzed in Ref. [12]. Such an effect caused a current density increase in the vicinity of the strip edge
zone. Zhao et al. [13] investigated the influence of the proximity effect on the welding process, including
high-frequency welding of H-shaped steel and T-shaped steel. Thus far, no work has been published
on the possible influence of the proximity effect on sintering. J. Trapp [14] quantified the pinch effect
and its impact on the sintering of ideal spherical particles. Yurlova et al. [15] investigated the influence
of the pinch effect on the sintering process, and their result suggests that magnetic forces would result
in a modification of the sample shape, allowing an easy extraction out of the die. These effects became
apparent under low-pressure conditions. The concept of the undesired “arc blow” effect induced by the
magnetic field was analyzed by Tomoyuki et al. [16] in 2011. The experimental conditions needed for
preventing arc blow were discussed by Yamaguchi et al. [17] and M. Vural [18]. Lockwood et al. [19]
explained that under AC conditions, an electrical arc is more stable than in DC, and they correlated the
influence of electromagnetic force with the porosity of the welded materials. With some analogies,
Adamian and Shneerson [20] investigated the mechanisms of electric wire explosion where a strong
radial compression induced by the magnetic field contributes to fragmentation of the particles.

Magnetic materials subjected to an alternating electrical discharge greatly increase their inductance,
thereby reducing the welding current. The result is a direct consequence of Lenz’s law. This also
explains the rationale for choosing different types of power supplies (AC/DC) for different materials.
The magnetic field also generates undesired interference with the probing devices, thus affecting the
readings of temperature, current, voltage. Zhang and Senkara [21] investigated how a spot welding
high current affected these signals. In response to this problem, they adopted fiber-optic displacement
sensors, which are insensitive to the high magnetic fields.

In summary, magnetic-related effects are complex and Table 1 suggests a simplification of these
phenomena. This manuscript is divided into two parts. The first part provides some FEM simulations
to quantify magnetic strength generated by a spark plasma sintering machine, both at the tooling
level and the interparticle level for materials with different magnetic permeability (i.e., copper, iron,
alumina, graphite). The second part of the paper provides some preliminary experimental evidence of
the magnetic field effects on sintering.
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Table 1. Magnetic field effects in electromagnetic processing of materials (EPM). The possible implications on sintering are listed in italics.

Effect Name Principle and Mathematical Formulation Typical Use, Implications on Sintering

Biot–Savart Law
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ferromagnetic conductor sees an increase in resistivity due 

For ferromagnetic materials (i.e., 
Ni, Fe, Co), the Curie temperature 

It commonly occurs in high-frequency alternating current,
resulting in preferential current flow within the skin depth.

∆ =

√
2

ωµγ

∆—(m), the radial depth that the current can reach from the
surface of the wire.
Where ω, µ, and γ are angular frenquency, permeability,
and conductivity.
According to Lenz’s law, the induced current is always in
the opposite direction to the imposed current,
which eventually leads to the current in the conductor
tending to approach the surface of the conductor [10–12,24].
Eddy currents are loops of electrical current within a
conductor resulting from a changing magnetic field [24,25].

Heat generation localized on the skin depth. This effect
was commonly used in induction heating of a

workpiece [10,11,13,24].
Preferential heating by skin effect. Possibility to

counterbalance radiative heat losses.
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Table 1. Cont.

Effect Name Principle and Mathematical Formulation Typical Use, Implications on Sintering

AC resistance change in the vicinity of the
Curie temperature
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Table 1. Cont.

Effect Name Principle and Mathematical Formulation Typical Use, Implications on Sintering

Pinch effect
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Table 1. Cont.

Effect Name Principle and Mathematical Formulation Typical Use, Implications on Sintering
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2. The Combined Experimental/Computational Methodology

The primary purpose of this paper was to develop accurate simulations accounting for the
magnetic field effects. The Multiphysics coupling was recreated using a built-in scheme using Comsol
Multiphysics [30]. The electrothermal model was built according to the model proposed in Ref. [31].
It reproduced the spark plasma sintering (SPS) sample geometry, upper punch, lower punch, and SPS
die, as shown in Figure 1.
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(B) thermal fields.

The electrical and thermal boundary conditions are summarized in Figure 1. Axially symmetric
boundary conditions were applied along the axial axis. An electrical power input was applied to the
upper ram while the lower one was grounded. The lateral surfaces of graphite elements were assumed
to be electrically insulated. The initial temperature of all components was 20 ◦C, and the upper and
lower ends were water-cooled and maintained at the preset temperature of 20 ◦C. The SPS process
was operated in vacuum (≤5 Pa), so convection heat transfer was ignored. The heat on the graphite
surface was mainly transferred to the environment by radiation, and the surface emissivity of graphite
elements was assumed to be equal to 0.8 [32].

FEM conditions are summarized as follows. Parameters and formula settings of electric field.
No initial electric potential at all components.
Electric insulation boundary: n× J = 0
Provide the power input at this boundary (current density/electric potential):

V = V0−n× J = Jn

where V0 and Jn are the power supply formula in voltage and current, respectively.
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The electric current equation at the domain where the current passes is:

∇× J = Q j,vJ = σE +
∂D
∂t

+ JeE = −∇vJc = σED = ε0εrE

where σ, ε0 and εr are the electric conductivity, vacuum dielectric constant, and relative permittivity.

ε0 = 8.8542× 10−12[F/m]

Parameters and formula settings of magnetic field.
Initial magnetic vector potential at all components: A = 0
Magnetic insulation boundary: n×A = 0
Coupling electric and magnetic fields:

∇×H = JB = ∇×AE = −
∂A
∂t

J = σE + σv×B + JeB = µ0µrHJC = σE

where A, J, µ0 and µr are the magnetic vector potential, current density, permeability of vacuum,
and relative permeability of the material.

3. Health Effects and Safe Distance for the Operators

During the electric current-assisted sintering process, large current can result in a strong magnetic
field, which might exceed the safety exposure limits. To the best of our knowledge, such an issue
has not been discussed in the literature. To meet the safety requirements, the resulting magnetic field
should be kept under control. Exposure limits are inversely proportional to the frequency accordingly
to the guidelines proposed by the International Commission on Non-Ionizing Radiation Protection in
2010 [33]. In DC, a well-accepted standard for the magnetic field exposure limit is 5 Gauss (0.0005 T),
whereas for AC, the exposure frequencies differ from country to country.

Here, we simulated the magnetic field generated by reference SPS machines (FCT systems,
Germany) operated in DC. The results are shown in Tables 2 and 3, and as expected, the safety
distance increases with the applied current (i.e., increasing the specimen dimension). The analysis
in Table 2 also includes a conservative scenario where electromagnetic shielding (i.e., sintering
chamber) is not employed. This assumption reflects the situation of unshielded or partially unshielded
cables/conductors. The good match between simulated results and the Bio–Savart law confirms the
accuracy of the simulations. The representative distribution of the magnetic field distribution is shown
in Figure 2.

Table 2. Safety distance test under DC conditions, for different currents assuming an exposure limit of
5 Gauss.

Standard
Commercialized

SPS Types

Dimension
Components

[mm]

Max Pressing
Force [kN]

Max Current
[A]

Safety Distance
without Shield (DC)

[cm]

Biot–Savart
Distance

Calculation [cm] *

HP D 2.5 Ø 30 25 3000 118.9 120
HP D 10 Ø 50 100 5500 217.7 200
HP D 25 Ø 80 250 8000 314.7 320
HP D 60 Ø 120 600 16,000 629.8 640
HP D 125 Ø 150 1250 24,000 956.3 960
HP D 250 Ø 300 2500 48,000/24,000 1894/1949 1920/960

* Biot–Savart calculation assumes an infinitely long conductor.
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Table 3. Electrical conductivity and relative magnetic permeability samples considered in the
simulations 20 ◦C.

Electrical Conductivity (S m) Relative Permeability

Graphite 8.3 × 104 1
Iron 1.12 × 107 200,000

Alumina 1 × 10−12 1
Copper 5.714 × 107 1
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Figure 2. Simulation of magnetic field distribution (units in Tesla) using an alumina sample with 30 mm
diameter, and assuming a current of 3000 A DC and no sintering chamber (i.e., shield). The safety
distance to meet the 5 Gauss line is 119 cm.

A more realistic simulation is instead achieved by considering a 2 cm-thick stainless steel chamber
(relative permeability is 1.06) [34]. The results are presented in Figure 3. The magnetic field strength
on the outside of the stainless steel is greatly reduced compared to the magnetic field strength on the
inside, which shows that the stainless-steel shell can effectively reduce the magnetic field strength,
thereby protecting the safety of the operator.
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mm diameter, and assuming a current of 3000 A DC and no sintering chamber (i.e., shield). The safety 
distance to meet the 5 Gauss line is 119 cm. 

A more realistic simulation is instead achieved by considering a 2 cm-thick stainless steel 
chamber (relative permeability is 1.06) [34]. The results are presented in Figure 3. The magnetic field 
strength on the outside of the stainless steel is greatly reduced compared to the magnetic field 
strength on the inside, which shows that the stainless-steel shell can effectively reduce the magnetic 
field strength, thereby protecting the safety of the operator. 

 
Figure 3. Magnetic field distribution when using a 30 mm sample of alumina and current of 3000 A,
adding a 2 cm-thickness stainless-steel shell. The magnetic field strength at the position represented
by the green circle within the chamber is 1.94 × 10−3 T, while the magnetic field outside the chamber
(red circle) is 1.218 × 10−7 T. The chamber can effectively shield the magnetic field down to a safe level
for the operator.

4. Magnetic Field Distribution during SPS of Different Materials: Electrical Conductivity and
Magnetic Permeability Effects

As discussed in the introduction, the ferromagnetic material below the Curie temperature is
expected to become magnetized under the application of an electrical discharge. As a representative
example, Sales et al. [26] investigated the changes in electrical resistance in the vicinity of the
Curie temperature of ferromagnetic materials. These effects are summarized in Table 1 under the
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section “AC Resistance change in the vicinity of the Curie temperature.” Assuming a DC discharge,
magnetization effects are expected to occur depending on the electrical conductivity and magnetic
permeability, as shown in Table 3.

The SPS simulations were done assuming a DC voltage of 10 V DC that represents the upper
operating limit of the equipment. The sample diameter of the sample was 30 mm with a height of
the sample of 8 mm. The magnetic saturation of the 2.4 T effect for soft iron was accounted for in the
simulations. The resulting magnetic field distribution is shown in Figure 4.
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Figure 4. Comparison of magnetic field distribution for different materials assuming a voltage of 10 V;
(a) the maximum recorded field strength within the graphite sample was 0.053 T, (b) that for iron was
1.4 T, and (c) that for alumina was as low as 9.1 × 10−10 T. Simulations in (d) were performed at a
temperature exceeding the Curie point, reaching 0.014 T within the iron sample.

According to Figure 4, the magnetic field strength depends strongly on the materials properties.
For graphite and alumina, the magnetic field distribution is relatively uniform. The peak value of
magnetic strength is 0.19 T, and it radially increases. For iron, the magnetic field distribution is
different, the peak value of magnetic strength is 1.4 T (much larger than 0.19 T), and the magnetic
intensity of the sample is much higher than those of the surrounding components. The intensity
of the magnetic field increases with the radius and reaches the maximum value at the edge of the
sample. It needs to be pointed out that the properties of ferromagnetic materials changed drastically
when the temperature exceeded the Curie point, due to the ferromagnetic to paramagnetic transition.
In Figure 4d, the temperature of the iron sample exceeded the Curie point, and the peak value of the
magnetic field strength reduced from 1.4 to 0.19 T.

In the literature, there are some examples of sintering under the application of an externally
applied magnetic field. For example, Eikeland et al. [35] investigated the externally applied magnetic
field prior to sintering, resulting in an improved degree of alignment of SrFe12O19. Using a different
approach, Li et al. [36] applied an external magnetic field using a inductor coil on iron-based powders
using a field strength up to 0.5 T AC 50 Hz. The results suggested an enhanced diffusion of the
alloying elements resulting from the application of an external magnetic field. The implications of these
magnetic fields are not well-investigated, and it is expected that any magnetic-related effect might
have a radial dependence. Further work might be needed to understand and exploit these effects.
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5. Magnetic Field Effects at Interparticle Contacts

In this section, magnetic field effects occurring at the interparticle contact point are investigated.
The analysis accounts for the impact of electro-magneto-thermal effects on the sintering process.
Magnetic effects are intensified by increasing the current. Selected ECAS [37] techniques are rationalized
in Table 4 with respect to pressure, discharge time, voltage, current, and sintered material compositions.

Table 4. Representative sintering parameters for electric current-assisted sintering (ECAS) techniques
based on high current density.

Inventor, Year, Reference Pressure, Discharge Time, Voltage, Current Density Sintered Material

Cremer, US1944 ≈100 MPa, 10 ms,
5–20 V, ≈60 kAcm−2 Cu, Al, brass

Parker, US1968 10 MPa, 1 ms, >150 kAcm−2

2000 Jcm−3 Ti, Fe

The electro-magnetothermal effect is summarized in Figure 5 for a copper sphere with a diameter
of 100 µm and current density of 60 kA/cm2 (6 × 108 A/m2) under a discharge time of 50 ms. The effect
of the neck growth was investigated for contact areas of 154.94 and 754.77 µm2.

The boundary conditions were similar to those for the SPS model under a significantly increased
current density.

The analysis of current density distribution is presented in Figure 5a,b. The current flows from top
to bottom following the curvature of the particles, and it was subjected to the neck constriction effect.
Analysis of temperature distribution (Figure 5c,d) suggests an even temperature distribution because
of the high thermal diffusivity of copper; in reality, a temperature increase at the interparticle contact
point should be expected because of contact resistance effects (not accounted by the proposed model).
The contact resistance has an inverse dependence on the pressure. Analysis of the magnetic field
strength distribution (Figure 5e,f) confirms strong magnetic effects at the interparticle contact point.
The analysis of the Lorentz force distribution is presented using the arrows in Figure 5e,f. The resulting
Lorentz force includes a radial compressive component and Z-axis repulsive component, which tend
to repel the particles from each other. The Z-component Lorentz force plays a significant role in the
molten metal ejection, and its color mapping distribution is shown in Figure 5g,h. This phenomenon
has some analogies with the repulsion generated in metal wire explosion. It is even more commonly
seen in welding as described in Ref. [38] In welding, this effect can be reduced by controlling the
welding force, preventing the formation of a molten phase.

The magnetic forces are expected to be more significant for when paramagnetic copper is replaced
with iron (diameter of the particles was 100 µm). The current density at the maximum cross-section
through the copper powder was set at 60 and 200 kA/cm2 for iron. Figure 6 shows the contribution of
the Z-axis for iron, where the Lorentz force reached the peak value of 321 N/mm3, far greater than the
9.65 N/mm3 for copper. This level of force is enough to affect the shape of the particle under such high
current density.

The proposed model requires some experimental validation. For example, Guyot et al. [39]
investigated the microscopic particle surface morphology on electrical discharge copper spheres with a
diameter of 50 µm. Their results evidence the formation of molten droplets on the spheres possibly
because of the Lorentz Force. In order to validate such an hypothesis, we employed 5 mm copper
spheres, as shown in Figure 7.
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Figure 5. Comparison of electro, thermal, and magnetic effects for 100 µm copper sphere discharged
under a current density of 60 kA/cm2, with the first column for small contact area and second column
for large contact area (154.94 and 754.77 µm2, respectively). (a) Current density distribution graph for
small contact (peak current density was 7.59 × 1010 A/m2) and (b) large contact area (peak current
density was 2.45 × 1010 A/m2). The temperature distribution graph under (c) small and (d) large contact
area. Magnetic field distribution with arrows indicating the Lorentz force for (e) small contact area
(peak magnetic intensity reached 0.13 T) and for (f) large contact area (peak magnetic intensity reached
0.06 T). Z-axis component Lorentz force contribution for (g) small contact area (max of 9.65 N/mm3)
and (h) for large contact area (max of 1.08 N/mm3).
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with optical microscope and SEM after application of a current of 15 kA/cm2 for 0.4 s. (d) Local
appearance with optical microscope at a current 7.5 kA/cm2 for 0.6 s. (e,f) The Lorentz force contribution
Z-component and the magnetic field strength distribution were simulated using a current of 15 kA/cm2

for 0.4 s, the Lorentz force peak value was 15.7 N/mm3, and the peak magnetic field strength was 1.16 T.

Figure 7a shows the surface of the copper ball before application of an electric current, and the
surface was smooth. Figure 7b,c show the overall morphology of bonded particles after application of
a 15 kA/cm2 discharge for 0.4 s. The two copper balls were bonded together well at the contact position.
Surprisingly, there are many protrusions on the surface of the copper ball that might originate by the
molten material being ejected due to the Lorentz force. Figure 7d shows a similar observation when
using a current of 7.5 kA/cm2 for 0.6 s. Figure 7e,f map the Lorentz force and magnetic distribution,
and the peak value was iron at 15.7 N/mm3, which is sufficient to promote molten metal ejection under
a high current density [40].

The Joule heat generated by the high current softens or even partially melts the copper spheres at
their interparticle contact. At the same time, the high current produces strong magnetic effects, and the
liquid copper is ejected from the neck under the action of the repulsive Lorentz force, resulting in the
formation of molten droplets, which reprecipitated on the spheres.

6. Conclusions

This article analyzed the possible role of magnetic fields on electric current-assisted processing.
The first section surveyed these effects considering the Biot–Savart Law, skin effect, AC resistance
change in the vicinity of the Curie temperature, proximity effect, pinch effect, and reactance dependence
on duty cycle. By using finite element simulation, we could determine the safe distance (i.e., exclusion
zone from the current conductor) for the operator. The second section simulates the magnetic field
distribution at the tooling level (punch/die/sample assembly) during spark plasma sintering of the
materials with variable electrical conductivity and different magnetic permeability. The same analysis
was carried out at the interparticle level in the case of copper and iron spherical particles. The model
was experimentally validated using 15 kA/cm2 for 0.4 s, where the molten droplet ejection was
correlated with the strong repulsive Lorentz force acting on the molten copper. The results suggest
that magnetic-related effects cannot be neglected when using ferromagnetic materials, when using
extremely large currents. Further investigation should be dedicated to pulsing and frequency-related
effects and how to exploit magnetic-related effects.
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