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Abstract: It is generally accepted that severe plastic deformation (SPD) has the ability to produce
ultrafinegrained (UFG) and nanocrystalline materials in bulk. Recent developments in high pressure
torsion (HPT) processes have led to the production of bimetallic composites using copper, aluminum or
magnesium alloys. This article outlines a new approach to fabricate multilayered Ni-Ti nanocomposites
by a patented SPD technique, namely, high speed high pressure torsion (HSHPT). The multilayered
composite discs consist of Ni-Ti alloys of different composition: a shape memory alloy (SMA) Ti-rich,
whose Mf > RT, and an SMA Ni-rich, whose Af < RT. The composites were designed to have 2
to 32 layers of both alloys. The layers were arranged in different sequences to improve the shape
recovery on both heating and cooling of nickel-titanium alloys. The manufacturing process of Ni-Ti
multilayers is explained in this work. The evolution of the microstructure was traced using optical,
scanning electron and transmission electron microscopes. The effectiveness of the bonding of the
multilayered composites was investigated. The shape memory characteristics and the martensitic
transition of the nickel-titanium nanocomposites were studied by differential scanning calorimetry
(DSC). This method opens up new possibilities for designing various layered metal-matrix composites
achieving the best combination of shape memory, deformability and tensile strength.

Keywords: composites; HSHPT; nano multilayers; Ni-Ti; SPD

1. Introduction

Multilayered composites have attracted much attention in engineering design as a promising
technique to develop a novel combination of physical and mechanical properties acquired from the
individual characteristics of the incorporated materials [1–5]. Bimetallic shape memory composites are
among the most widely investigated class of composites, offering better shape memory properties for
the design of new decomplex applications [6].

Shape memory alloys are stimulus-responsive materials with two universal properties:
superelasticity and shape memory effect [7,8]. The occurrence of martensite-to-austenite and
austenite-to-martensite transitions gives rise to shape memory and superelastic responses [9,10].
Among these alloys, Ni-Ti SMAs are among the most interesting thermo-responsive SMAs that are
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capable of exhibiting reliable shape memory characteristics, in addition to presenting high ductility and
strength [11]. Research on Ni-Ti shape memory alloys has been revived by controlling the “size-effect”.
Grain size reduction to the nano range greatly increases recovery stress [12]. The nanocrystalline (NC)
or ultrafinegrained (UFG) microstructure significantly enhances the mechanical and shape memory
characteristics in comparison with the coarse grained alloy of the same composition [13]. One way
to refine the microstructure of the fabricated bulk UFG and nanostructured SMAs is severe plastic
deformation (SPD) processing [14]. Most metal-matrix composites are obtained by accumulative roll
bonding, a variant of the SPD technique, which also makes it possible to obtain multiple layers [15].
In addition, bimetallic “Ni-Ti/Ni-Ti” shape memory composites obtained by welding present large
recoverable strain on heating and cooling [16], and are potential candidates for use as thermomechanical
actuators [7,9,17]. In earlier work, the major problem of the formation of a thick brittle intermetallic
layer was encountered, in particular in high temperature bonding processes [18]. Recent developments
have led to the use of high pressure torsion (HPT) as an appropriate severe plastic deformation
technique in the manufacturing of bimetallic composites [18].

The aim of our research is to study the structure and phase transformations of smart Ni-Ti
multilayered composites obtained using the HSHPT technique. This process combines HPT and friction
stir processing, and is capable of fabricating UFG discs of about 40 mm in diameter from different types
of alloys [19–21]. In addition, a more dependable method to fabricate bulk UFG metallic composites
is HSHPT. We fabricated an “Ni-Ti/Ni-Ti” composite with 2 to 32 multilayered discs. The HSHPT
process helps achieve very good bonding, high-quality interfaces with no intermetallic layers and
ultrafine-grained microstructure from individual Ni-Ti layers.

2. Experimental Procedure

For this study, multilayered shape memory Ni50.3Ti/Ni49.6Ti composites were produced using
HSHPT severe deformation at ambient temperature. The materials used in this investigation were
cut from commercial shape memory Ni49.6Ti50.4 (at.%) sheets and superelastic Ni50.3Ti49.7 (at.%) rods.
The martensitic transformation temperature Ms for the SMA that is rich in titanium is 51 ◦C, while it is
–16.5 ◦C for Ni-rich alloy.

The details of the HSHPT procedure and the ad hoc machine used in the present work are given
in our earlier papers [19,21]. To enable microstructural refinement concurrent with bonding of layers,
the SPD process variables were chosen utilizing an EATON SVX024A1-4A1B1 frequency converter via
PLC XC 200. The speed of rotation of the upper punch was maintained at 900 rpm. Initially, a pressure
of 20 bars was applied using the bottom punch. The pressure levels monitored making use of the
Hottinger Spider 8 equipment were between 0.01 GPa and 0.68 GPa, depending on the number of
layers. The maximum torque reached was 42 Nm. The processing time lasted between 11 and 28 s.
The maximum pressure was applied for less than 5 s.

HSHPT was first applied on each Ni-rich sample (about 9.5 mm × 7.4 mm and 2.35 mm in
thickness) and Ti-rich sample (9.5 mm in diameter and ~2.35 mm in thickness) with austenitic and
martensitic structures, respectively, at room temperature. The second step involved was fabricating
the composites. To obtain two- and three-layer composites, discs with different chemical compositions
were made to overlap alternatively in different successions. In the third step, these modules were
cut in half and assembled as sandwich stacks. Four-layered composites were obtained by halving
the two-layered composite and overlapping the parts in the HSHPT machine. The same procedure
was used to obtain 8, 16 and 32 layers. Three-layered composites were obtained by overlapping the
obtained Ti-rich, Ni-rich and T-rich disks. Five-layered composites were obtained by overlapping
half of the obtained three- and two-layered composites. Six-layered composites were obtained by
overlapping the obtained three-layered composite (Ti-rich, Ni-rich and T-rich half disks) with another
three-layered composite (Ni-rich, Ti-rich and Ni-rich half disks). Nine-layered composites were
obtained by overlapping the half of obtained four- and five-layered composites. Twelve-layered
composites were obtained by overlapping the obtained 6-layered composite, and 24-layered composites
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were obtained by overlapping the obtained 12-layered composite (Figure 1). The cumulative degrees
of deformation of multilayered bimetallic composites, calculated using the formula ε = h0

h1
, (where h0

is initial thickness of the sample and h1 is the final thickness of the sample), ranged from 0.95 to 4.65.
The SPD discs produced were with d ≤ 40 mm and t = 1.5–0.15 mm.

Microstructural examinations highlighted the ability to manufacture multilayered composites and
revealed the reliable bond of layers, as well the reduction in grain diameter accomplished using the
HSHPT technique. Investigation of the multilayered Ni50,3Ti/Ni49,6Ti microstructure was done using
an OLYMPUS BX51 (manufactured by Olympus microscopes, Tokyo, Japan) optical microscope, with
the QCapture (QuickPHOTO MICRO 2.3, Prague, Czech Republic) software package, under bright
and dark field modes. The microstructure was studied using a Zeiss (ZEISS EVO MA15, manufactured
by Carl Zeiss Microscopy GmbH, Jena, Germany SEM/EDX (Scanning Electron Microscope coupled
with Energy Dispersive X-ray analyzer) to study the grain structure and the quality of the joints.
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for 4, 16, 32 layered composites: 
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Figure 1. Processing route of Ni50.3Ti/Ni49.6Ti composite discs cut in half and assembled as sandwich
stacks with: (a) number of layers multiple of 2 and (b) number of layers multiple of 3.

An in-depth microstructural analysis was also carried out using a TEM (Transmission Electron
Microscope, Model Tecnai 20G2, FEI, Hillsboro, OR, USA), operating at a voltage of 200 kV.
The martensitic transformation temperatures were measured using a differential scanning calorimeter.
The DSC tests were run using a DSC 204 F1 Phoenix model from Netzsch (Selb, Germany). The tests
were performed between −150 ◦C and 150 ◦C using a cooling and heating rate of 10 ◦C/min, under a
protective gaseous nitrogen atmosphere. Specimens (15–20 mg) were obtained from the HSHPT discs
for 4, 16, 32 layered composites:

- one set of samples from mid-radius of the discs,
- another set from the edge and the center of each disc.

Prior to DSC, an etching solution of HF:HNO3: H20 (1:5:10 in volume) was used to remove the
oxidation of the surface layer and the regions affected by the cutting process.

3. Results and Discussion

3.1. Optical Microscopy

Figure 2 illustrates bright and dark field optical micrographs (OM) of the multilayers observed in
the Ni50.3Ti/Ni49.6Ti alloy composite, whose sample was cut as a cross-section around the middle of
the discs. The bright field micrograph of the three-layered Ni50.3Ti/Ni49.6Ti/Ni50.3Ti alloy composite is
shown in Figure 2a.
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Figure 2. Optical micrograph of Ni50.3Ti/Ni49.6Ti composite discs: (a) bright field image of three layers
and (b) dark field image of 24 layers.

This feature is consistent with the refined microstructure resulting from severe plastic deformation
by HSHPT. While some precipitate particles could be observed, the grain boundaries were not resolved,
as the size of the microstructural features was beyond the resolution range of the optical microscope.
The bonding between the sheets was discontinuous, narrow and could hardly be detected, since the
chemical compositions were almost the same. The dark field optical micrograph of the 24-layered
composite (Figure 2b) showed flowlines and waviness, as highlighted by the color contrast. This is in
good agreement with HPT findings for bi-layers in the Al/Mg composite [18]. The thickness of the
layers in this composite was about 22 µm. The interfacial layers were less obvious as the number of
layers of the composite increased. The quality of the bonding was evident.

3.2. SEM/EDX Analysis

The SEM microstructure of the 12-layered specimen demonstrates a typical SPD structure
(Figure 3a). The microstructural modification by HSHPT results from three opposing effects. In the
first stage, low pressure and high speed of the punch act together, leading to an increase in temperature
of the material to almost 800 ◦C (estimated using a temperature sensor-CT laser radiation pyrometer
T2 MHCF OPTC).
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Figure 3. SEM image of HSHPT-processed metallic composite: (a) 12 layers, (b) 24 layers.

At this point, high pressure was exerted on the discs, leading to severe deformation. Besides
shearing, recovery and recrystallization of grains took place due to the samples attaining high
temperature. Grain refining during HSHPT should result from dynamic recrystallization that takes
place at high temperature; it could be said that rapid cooling to room temperature “freezes” the UFG
structure produced at high temperature. On the surface of the sample, only curved lines could be
observed, and not grain boundaries. The materials were welded without a detectable intermediate
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area. The adhesion of layers was noticeable. The presence of smooth interfaces between layers was
attributed to the specific condition created during HSHPT. Other methods of manufacturing the
metallic composite led to the occurrence of an intermetallic layer at the interface.

To investigate the distribution of elements in the Ni rich/Ti-rich areas, a line scan by EDX was run
on the nine layers of the disc (Supplementary material: Figure S1). The nine layers were emphasized by
the variation of the Ti (a) and Ni (b) content, respectively. Across the layers (quasi 20 µm), alternating
areas Ni-richer or Ti-richer could be identified. EDX characterization was performed in an area
comprising the nine-layers of the composite. Figure S2 of the Supplementary Materials presents the
opposing variations of Ni and Ti contents in the successive nine layers of the composite. The severity
of plastic deformation introduced by HSHPT produced rotation and plastic flow of large volumes of
material caused by upper punch rotation at high speeds [19]. The 3-D images of the surfaces (seen in
Figure S2 of Supplementary Material) suggest the arrangement of the distinct layers.

3.3. Transmission Electron Microscopy

Figure 4 illustrates a TEM micrograph (bright field) of the four-layered Ni50.3Ti/Ni49.6Ti composite.
The UFG structure with an equiaxed morphology prevailed after HSHPT. The average size of the
grains was about 200–300 nm.
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Figure 4. TEM image of the 4 layered Ni50.3Ti/Ni49.6Ti composite.

The image highlights equiaxed subgrains isolated by dislocation cells. Between them, several
nanograins were also interspersed. These grains, with a size of under 50 nm, formed clear boundaries.
Various dislocation cell configurations, including high-density dislocations, zones of dislocation tangles
or condensed dislocation boundaries, were characteristic of the rather inhomogeneous microstructures
of the sample.

3.4. DSC

The DSC curves for samples extracted from the midradius of the discs of the Ni50.3Ti/Ni49.6Ti
composite with 4, 16 and 32 layers after HSHPT are shown in Figure 5. The equipment is capable of
measuring temperatures in the range of –150 ◦C to 150 ◦C, covering the martensite transformation
temperature range for both alloys. The thermograms of severe plastic-deformed composites revealed
two peaks upon heating and two peaks after cooling. It was possible to identify the transformation
temperatures corresponding to the Ni-rich (lower temperatures) and Ti-rich (higher temperatures)
SMAs. The peaks between 80 ◦C and 120 ◦C represented the martensite (B19’)-to-austenite (B2)
reversible transformation for the shape memory Ni49.6Ti50.4 (Ti-rich) alloy.



Metals 2020, 10, 1629 6 of 9

Metals 2020, 10, x FOR PEER REVIEW 6 of 9 

 

 
Figure 5. DSC curves of the 4 (black), 16 (blue) and 32 (red) layered Ni50.3Ti/Ni49.6Ti composites after 
HSHPT. 

The peaks between 10 °C and –30 °C represented the austenite (B2)-to-martensite (B19’) 
reversible transformation for Ni-rich Ni50.3Ti49.7 alloy. Making successive deformation to produce 4, 
16, 32 layers of composite did not significantly change the transformation temperatures. This result 
was obtained despite the fact that the degrees of deformation of the multilayered bimetallic 
composites with 4, 16 and 32 layers ranged from 1.17, 2.41 to 4.65. Likewise, the grain size was 
significantly reduced, while the cumulative degree of deformation increased. The reasonably stable 
transformation temperatures may be explained by the fact that the HSHPT process imposed a 
complex strain due to the high pressure concomitant with high rotational speed of the upper punch. 
The friction between punches and sample heated the severely plastic-deformed disc, thereby 
contributing to the rearrangement and decrement of the lattice defects. However, the intensity of the 
peaks was seen to decrease slightly with the increasing number of layers. 

On the other hand, the Ms temperature slightly increased in the initial state in both alloys, as 
compared to the Ni-Ti SMAs that were rich in titanium and nickel. These results can be attributed to 
the grain refinement brought about by severe plastic deformation. 

The Ni50.3Ti/Ni49.6Ti composite showed reversible martensitic transformation subsequent to SPD. 
Postdeformation annealing was not required in contrast to deformation using other severe plastic 
deformation methods. The HSHPT technique combines SPD imposed on the sample at RT by HPT 
with PDA caused due to the heat generated because of friction occurring between the anvils and the 
sample. 

Another important element that could be observed was the absence of the second step of the 
martensitic transformation, even in the Ni-Ti SMA that was rich in nickel. In the initial state, this alloy 
showed a two-stage phase transition of B19’ ↔ R-phase ↔ B2 (Figure S3 of Supplementary Materials). 
But the DSC curves corresponding to severely plastic-deformed discs exhibited just one strong 
transformation stage, namely B19’ ↔ B2. After HSHPT, the intermediate R-phase transition was 
suppressed, as observed in our earlier results from research on a Ni-rich Ni-Ti alloy [22]. 

The DSC curves at the center and edge of the disc, which had 32 layers after processing, are 
illustrated in Figure 6. 

Figure 5. DSC curves of the 4 (black), 16 (blue) and 32 (red) layered Ni50.3Ti/Ni49.6Ti composites
after HSHPT.

The peaks between 10 ◦C and –30 ◦C represented the austenite (B2)-to-martensite (B19’) reversible
transformation for Ni-rich Ni50.3Ti49.7 alloy. Making successive deformation to produce 4, 16, 32 layers
of composite did not significantly change the transformation temperatures. This result was obtained
despite the fact that the degrees of deformation of the multilayered bimetallic composites with 4, 16 and
32 layers ranged from 1.17, 2.41 to 4.65. Likewise, the grain size was significantly reduced, while the
cumulative degree of deformation increased. The reasonably stable transformation temperatures may
be explained by the fact that the HSHPT process imposed a complex strain due to the high pressure
concomitant with high rotational speed of the upper punch. The friction between punches and sample
heated the severely plastic-deformed disc, thereby contributing to the rearrangement and decrement of
the lattice defects. However, the intensity of the peaks was seen to decrease slightly with the increasing
number of layers.

On the other hand, the Ms temperature slightly increased in the initial state in both alloys,
as compared to the Ni-Ti SMAs that were rich in titanium and nickel. These results can be attributed to
the grain refinement brought about by severe plastic deformation.

The Ni50.3Ti/Ni49.6Ti composite showed reversible martensitic transformation subsequent to SPD.
Postdeformation annealing was not required in contrast to deformation using other severe plastic
deformation methods. The HSHPT technique combines SPD imposed on the sample at RT by HPT with
PDA caused due to the heat generated because of friction occurring between the anvils and the sample.

Another important element that could be observed was the absence of the second step of the
martensitic transformation, even in the Ni-Ti SMA that was rich in nickel. In the initial state, this alloy
showed a two-stage phase transition of B19’↔ R-phase↔ B2 (Figure S3 of Supplementary Materials).
But the DSC curves corresponding to severely plastic-deformed discs exhibited just one strong
transformation stage, namely B19’ ↔ B2. After HSHPT, the intermediate R-phase transition was
suppressed, as observed in our earlier results from research on a Ni-rich Ni-Ti alloy [22].

The DSC curves at the center and edge of the disc, which had 32 layers after processing,
are illustrated in Figure 6.
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In the HSHPT condition, the DSC curves revealed two peaks upon cooling and two upon heating,
both for the edge sample and the middle sample only in the four-layered composite; for the 16-
and 32-layered samples, the DSC peaks associated with the Ni-rich layers were observed only for
the center and edge samples, respectively. The exothermic and endothermic peaks of the Ti-rich
alloy broadened, perhaps because of the increased density of the dislocations. The severe plastic
deformation of Ni-rich alloy led to a considerable broadening of the exothermic peaks which were,
however, still visible. Processing by HSHPT is complex because the imposed strain varies, both with
the rotational speed of superior punch applied to the composite and with the position within the disc.
Consequently, the thickness of the discs was slightly higher at the center where the cooling speed
would be expected to decrease. The microstructure developed more rapidly at the edge than at the
center of the disc in all plastic deformation processes by torsion at high pressure. The absence of
transformation peaks associated with the Ni-rich alloy could be related to heterogeneous deformation
of the HSHPT material [23].

4. Conclusions

In summary, a new SPD method, HSHPT, can successfully be used to manufacture bimetallic
composites with an ultrafine grained structures. The achieved shape memory multilayer composites
were composed of 2 to 32 layers of Ni50.3Ti and Ni49.6Ti alloys. The bonding of layers was achieved
mainly by the high pressure imposed and short time high temperature reached during the high speed
rotation of upper anvil. A very good joint was obtained, regardless of the number of layers or alternating
them. The microstructure of composites was uniform where the bonding of adjacent layers could not be
detected by optical microscopy and SEM. The SPD process was effective at refining both the alloys that
made up the composite. As-HSHPT processed composite discs revealed martensitic transformation
after deformation. The module diameter varied between 20 and 40mm, and was dependent on the
number of layers and the degree of deformation applied. The thickness of the layers varied from
300 µm to 20 µm. HSHPT yields multilayered, fine structures and may, in future study, be adapted
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for use for two-way SME. Future work will be also focus on the fabrication the new metallic UFG
composites by HSHPT. This technology is capable of inducing thermocompression bonding starting
from dissimilar materials. Multilayer composites with desirable mechanical, electrical, magnetic and
biocompatibility properties provide the opportunity to create effective functional applications.
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