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Abstract: This paper presents the prediction of the fatigue life of aluminum Al 2024-T351 at room and
elevated temperatures under uniaxial loading using finite element simulation. Structural parts such
as fuselage, wings, aircraft turbines and heat exchangers are required to work safely at this working
condition even with decreasing fatigue strength and other properties. The monotonic tensile and
cyclic tests at 100 ◦C and 200 ◦C were conducted using MTS 810 servo hydraulic equipped with MTS
653 high temperature furnace at a frequency of 10 Hz and load ratio of 0.1. There was an 8% increase
in the yield strength and a 2.32 MPa difference in the ultimate strength at 100 ◦C. However, the yield
strength had a 1.61 MPa difference and 25% decrease in the ultimate strength at 200 ◦C compared
to the room temperature. The mechanical and micro-structural behavior at elevated temperatures
caused an increase in the crack initiation and crack propagation which reduced the total fatigue life.
The yield strength, ultimate strength, alternating stress, mean stress and fatigue life were taken as the
input in finite element commercial software, ANSYS. Comparison of results between experimental
and finite element methods showed a good agreement. Hence, the suggested method using the
numerical software can be used for predicting the fatigue life at elevated temperature.

Keywords: elevated temperature; aluminum Al 2024-T3; fatigue life; ANSYS Workbench

1. Introduction

Aluminum alloy is one of the leading materials in aircraft, automotive and heavy industries due to
its lightweight, high strength, good electrical conductivity, high elastic modulus and thermal resistance
properties [1,2]. All these properties have an impact on the budgeting in terms of cost, performance and
production. Furthermore, the designed components must meet the anticipated requirement and factor
of safety of the parts for various working conditions. The study of fatigue is important because the
components can experience catastrophic failure due to the condition of loading and unloading after a
certain amount of time [3]. The fatigue behavior is quite important in order to estimate changes in the
properties and cumulative damage of the material related to the life cycle [4,5]. Several coefficients
such as size, shape, surface finish and fatigue strength are important to determine the characteristics of
the structural components. These characteristics are used in plotting the stress-life curve or strain-life
curve [6]. In addition, the collection of data from experimental tests [7], and analytical or numerical
models [8] is the common practice to determine the fatigue properties. A standard machine testing for
axial loading can have frequency of up to 20 Hz and the commonly applied frequency is 10 Hz [9].
A study on the damage accumulation proposed an approach that takes the amplitude from below
the fatigue limit [10]. Moreover, a fatigue prediction without material constant is also possible [11]
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and the calculation method for variable types of loading [12] with a combination of high and low
cycle curves [13]. The effect of the mean stress in the surface crack growth [14] and multiple types of
loading [15] related to fatigue prediction have also been studied.

There are several standards and codes [16–18] to follow in order to ensure the reliability of the
product under fatigue testing evaluation. Several studies on low cycle fatigue (LCF < 104) and high
cycle fatigue (HCF < 107) [19–23] were conducted on aluminum alloy. In addition, fatigue life that is
more than 107 is considered as a very high cycle fatigue (VHCF).

The temperature during cruising speed at Mach 2.2 can reach up to 120 ◦C and 240 ◦C at most for
frame generators [24]. Furthermore, some working conditions will require the components such as
aircraft turbine, heat exchanger and steam turbine to be able to run under elevated temperatures [25].
The definition of elevated temperature is the temperature at which material can operate safely despite
decreasing in strength and other properties [26]. Therefore, the low cycle fatigue (LCF) testing is
important for designers to gain information and concern for the components that are working under
this condition. Moreover, for aluminum alloy, as the temperature increases, the fatigue life and strength
decreases under constant loading [27]. The strain deformation, crack growth and crack initiation are
also influenced by an increase in temperature [28]. Numerous studies on damage accumulation [29–31]
have been able to predict fatigue at elevated temperatures, but they are time consuming and require
expensive setup and equipment. The unpolished surfaces or scratches contribute to faster crack
initiation that starts from micro to macro scale [32]. Moreover, the crack initiation process is faster at
elevated temperatures continued by rapid crack propagation rate than at room temperature [33].

The approach of using numerical software to solve problems of multiphysics solutions related
to thermal, structural or fluid has been widely accomplished by other researchers. The advantage
of using numerical software is that the strengths and weaknesses of the model are known before
the final products manufactured. The commonly used numerical software programs for predicting
fatigue life are ABAQUS, MSC NASTRAN, SolidWorks and ANSYS Workbench. Several studies were
reported [34–38] predicting the fatigue life theoretically or by comparing with experimental results.
ANSYS was used [39,40] in predicting the stress concentration areas. However, the design of the 3D
model was by different computer aided design (CAD) software before being imported to the desired
numerical software to run the fatigue analysis. This is due to experience in accustomed CAD software
that reduces the time taken to design.

This study presented the prediction of fatigue life of aluminum Al 2024-T351 at elevated
temperatures of 100 ◦C and 200 ◦C under uniaxial loading using ANSYS Workbench. To the author’s
knowledge, there is still no study conducted using this numerical software to predict the fatigue
life at elevated temperatures. Several numerical software programs can predict fatigue life at room
temperature. The author tried to implement the same procedure using the test data from the elevated
temperature to the numerical software. The latest literature [34] showed the effectiveness of fatigue life
prediction using ANSYS Workbench. The numerical software is user friendly that enables the author to
complete the study. The fatigue life prediction of components that operate under elevated temperature
can be conducted in the future using this study as a reference. The monotonic tensile and cyclic tests
with different percentages of loadings were conducted to obtain the yield strength, ultimate strength,
elastic modulus and life cycle as input to the numerical software. The results were also compared with
a cyclic test at room temperature. It was expected that the results between experimental and numerical
simulation be in good agreement to display the efficiency of the software in predicting fatigue life at
elevated temperature.

2. Methodology

2.1. Experimental Procedures

The material aluminum Al 2024-T351 was selected for the test due to good fatigue strength,
corrosion resistance and lightweight properties. This material is widely used in transportation such as
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in the automotive and aerospace field. The lightweight properties require less force to move or fly
a vehicle that leads to higher fuel efficiency and lower manufacturing cost. This strong and flexible
material is ideal for the design of frames, aircraft fuselage, wings and other component structures.
The specimen was cut from an aluminum plate using water jet technology with a dimension of
200 mm × 20 mm × 3 mm rendering to ASTM E8M standard. The tensile tests were conducted at room
and elevated temperatures—100 ◦C and 200 ◦C, correspondingly.

A grip pressure of 4.83 MPa was applied to the test specimens at both ends. The alignment of grip
was reset before running the test. The monotonic tensile tests were conducted at a crosshead speed of
1 mm/min using 100 kN MTS 810 servo hydraulic (MTS Systems Corporation, Eden Prairie, MN, USA) at
room temperature conditions, as shown in Figure 1. For tests at elevated temperature, the MTS 810 was
equipped with MTS 653 high temperature furnace (MTS Systems Corporation, Eden Prairie, MN, USA)
as in Figure 2 with a capability to reach a maximum temperature of 1000 ◦C. The entire gauge area of the
specimen was covered with MTS 653. The tests were performed to acquire the mechanical properties
such as yield strength and ultimate strength.
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Figure 2. Monotonic/cyclic test at elevated temperature using MTS 810 equipped with MTS 653 high
temperature furnace.



Metals 2020, 10, 1581 4 of 14

The temperature was measured using digital thermometer TM902C (Reland Sung, Fujian, China).
Four thermocouples, T1, T2, T3 and T4 were placed in the high temperature furnace. Three thermocouples,
T1, T2 and T3 were attached to the specimen and T4 hanging in the middle area, as shown in Figure 3.
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The cyclic tests were performed according to ASTM E466 standard at a frequency of 10 Hz,
sinusoidal waveform and load ratio of 0.1. Each test was loaded with a specific mean load and for tests
at room temperature, the test started at the maximum load value of 90% of the yield and decremented
by 5% for the next tests until 70% of the yield strength. Similarly, the maximum load for 100 ◦C started
from 90% to 75% of the yield strength; the maximum load decreased by 5% in each test. For tests at
200 ◦C, the maximum load started from 90% to 70% of the yield strength; the maximum load decreased
by 10% in each case. The results were plotted in the form of stress-life curves to estimate the cycles to
failure after definite loading. The loads applied were shown in Table 1.

Table 1. The loads applied at a different percentage of the yield strength.

Condition Yield Strength (%) Mean Load (kN) Amplitude (kN)

Room

90 6.48 5.31
85 6.13 5.01
80 5.77 4.72
75 5.41 4.42
70 5.05 4.13

100 ◦C

90 6.13 4.99
85 5.76 4.72
80 5.43 4.44
75 5.09 4.16

200 ◦C
90 6.02 4.92
80 5.35 4.38
70 4.68 3.83

The cyclic test can only be conducted after certain inputs such as mean load, amplitude and
frequency are known. The load ratio, Lr can be calculated by the given Equation (1) [41].

Lr =
Lmin

Lmax
(1)

The range of load, LR can be calculated by the difference between maximum load, Lmax and
minimum load, Lmin in the following Equation (2).

LR = Lmax − Lmin (2)
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The amplitude load, La is half of range of load, LR is given by Equation (3).

La =
Lmax − Lmin

2
(3)

Moreover, the mean load, Lm is important as higher load means the lower fatigue life of the tested
components. The Equation (4) can be used to calculate the mean load.

Lm =
Lmax + Lmin

2
(4)

2.2. Numerical Procedures

The use of numerical software is to determine an approximate solution to the specific problem.
When the experimental results are available, any numerical results can be verified. The selected
computer aided design (CAD) software to design the 3D model of the specimen was SolidWorks
2012. The dimension was set to 200 mm in length, 20 mm width and 3 mm thickness as shown in
Figure 4. A top plane was selected for the sketching of the model. The thickness was generated by
using a boss-extrude feature from the sketch. The complete 3D model is as shown in Figure 5. The 3D
model was saved as IGES format for the ease of importing from ANSYS Workbench 16.1 (ANSYS Inc.,
Canonsburg, PA, USA).
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The mechanical properties such as yield strength, ultimate strength, mean stress, alternating stress
and fatigue life acquired from experimental tests were assigned in the engineering data of the software.
Moreover, a fine mesh with SOLID 187 10-noded element was selected due to its suitability in covering
the uneven surface areas in order to predict results closer to the experiments. The mesh model can be
observed in Figure 6a with the generated number of nodes of 6181 and the number of elements of
1008. The boundary conditions shown in Figure 6b were applied similar to the experimental setup.
The fixed support A indicates the specimen end was clamped with all degrees of freedom fixed and at
point B the load was applied. In addition, stress-life was selected in the fatigue tool option with the
load ratio set to 0.1.
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3. Results and Discussion

3.1. Fatigue Life of Aluminium Al 2024-T351

The working temperature changes the properties of the material, especially in terms of its
strength [42]. The yield strength at 100 ◦C had a decrease of 6%, and 7% at 200 ◦C when compared
to the controlled room temperature. On the other hand, the average ultimate strength had a small
decrease of 3.75% at 100 ◦C and 25% at 200 ◦C when compared to the controlled room temperature.
The data are shown in Table 2. The flat specimen under tensile loading experience shear rupture upon
failure [43]. The grains are affected by the level of loading, type and temperature. At room temperature,
the visibilities of the grains were not clear and there was an increase in the length as well. In addition,
the grain growth at high temperature caused it to be compressed and elongated due to tensile load
applied. The length increases, but the width decreases [44]. During tests at high temperature and
loading, the precipitates from the coarse grain may not visibly or dissolve completely.
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Table 2. The results obtained from the monotonic tensile tests.

Condition Yield Strength (MPa) Ultimate Strength (MPa)

Room 347.58 464.19
100 ◦C 326.12 446.78
200 ◦C 322.66 349.80

The stress-life curve for the aluminum at room and elevated temperatures is presented in Figure 7.
As anticipated the number of cycles increases when the stress applied deceases. The average fatigue
life at 90% was 45,343 cycles. As the load decreased, the fatigue life increased by 16% to 85%.
Moreover, the fatigue life at 80% was 88,215 cycles. There was about a 49% increase in the fatigue
life when the difference between the loading was only 10%. When the load was further decreased by
10%, the difference increased to 82% showing an average of 252,827 cycles at 70% of the yield strength.
The fatigue life at 90% and at 100 ◦C was 21,679 cycles. There was an increase of 65% when the load
decreased to 85% of the yield strength. However, there was only a 5% increase in the fatigue life as the
load reduced to 80%. The fatigue life at 75% increased by 33% compared to 80% displaying an average
of 96,688 cycles.
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At 200 ◦C, the fatigue life was 14,272 cycles. When the load was reduced by 10% the fatigue
life increased by 63% displaying 38,427 cycles. Further decrease in the percentage of loading by 10%
increased the fatigue life by 60%. The fatigue life at 70% has an increase of 85% compared to 90% of the
yield strength. It can be observed that at 90% of the yield strength, the fatigue life was reduced by half
at 100 ◦C and 69% at 200 ◦C compared to the room temperature. Additionally, at 80%, the fatigue life
difference was 27% and 56% at 100 ◦C and 200 ◦C, respectively. The difference at 70% for 200 ◦C was
62% and for 100 ◦C the percentage was expected to be lower compared to the room temperature.

When a material is subjected to a repeated loading and unloading, formation of micro-crack
arises in the stress concentration area. The surface area is the most common place that the crack
initiation starts [45,46]. Next, the crack propagates until reaching the critical length that causes failure
of the material. The letter A represents the stable region and letter B the unstable region. The surface
failure of aluminum at room temperature can be observed in Figure 8 with different percentages of
loading. The visibility of the fracture areas with smooth and shiny plus uneven appearance [47] can be
observed as well. In addition, the size of cavities in the unstable region is larger than the stable region.
The bigger particle size in the cavities means shorter fatigue life. The formation of void is a sign that
damage is experienced by the specimen and contributed by separation of grain boundaries or particle
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fracture [48]. Moreover, the crack growth pattern is not consistence due to different orientation of the
grains. The fatigue life can also be estimated using the striation length [49].Metals 2020, 10, x FOR PEER REVIEW 8 of 14 
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The surface failure at 100 ◦C can be observed in Figure 9 ranging from 90% to 75% of the yield
strength. The visibility of the stable crack growth region is very small due to catastrophic failure
during loading. Meanwhile, in Figure 10, surface failures from 90% to 70% of the yield strength can be
seen. The stable region surfaces are smaller compared to those at room temperature. Consequently,
at elevated temperature, the elastic modulus and surface energy are lower, causing faster crack initiation
and crack propagation [50]. The increased grain size causes the particle density to decrease. As a
result, the fatigue life decreases as temperature increases [51]. Similarly, the fracture of particles leads
to formation of voids [52]. In addition, the increase in rate of oxidation also contributes to the decrease
in fatigue life and affects the mechanical properties as well [53]. Therefore, the total fatigue life at
elevated temperature is affected by mechanical and micro-structural behavior that contributes to crack
initiation and crack propagation [54]. The plastic cracking mechanism happened when exposed to
elevated temperature. The plastic zone in the micro and macro cracks during loading leads to plastic
deformation at the elevated temperature.
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3.2. Numerical Results

Figure 11 shows the example of numerical results from the software ANSYS. The maximum
stress is located at the center of the specimen. At this area, the failure occurs and the fatigue life is
the minimum.
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Figure 12 shows the comparison of the stress-life curve for the aluminum at room temperature.
The increase in stress decreases fatigue life as expected. At 90% of the yield strength, the experimental
fatigue life was 45,343 cycles and the numerical value was 47,213 cycles. There was only a small
difference of about 4%. At 85%, the difference increased to 13.5%. The experimental life at 80% was
88,125 cycles and numerical life was 100,172 cycles. The difference was 14%. Moreover, the difference
between experimental and numerical results decreased by 1% at 75% of the yield strength. At 70%,
the difference was reduced to 9%. The highest difference between experimental and numerical results
was at 80% and the lowest was at 90%.Metals 2020, 10, x FOR PEER REVIEW 10 of 14 
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Figure 12. Comparison of results between experimental and simulation at room temperature.

The stress-life in Figure 13 shows the comparison of experimental and numerical results at 100 ◦C.
The highest difference was 27% at 90% of the yield strength. In terms of numbers, the experiment
displayed 21,679 cycles and numerical 29,548 cycles. The lowest difference was at 85% with only a 1%
difference. The difference at 80% and 75% were at 10% and 4%, respectively.
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The comparison of experimental and numerical results at 200 ◦C is presented by the stress-life
curve in Figure 14. The results showed the fatigue life of 14,272 cycles and 16,620 cycles for the
experimental and numerical work, respectively, at 90% of the yield strength. The difference between
the two methods was 14%. At 80%, the difference decreased by 2%. The lowest difference was at 70%
with only a difference of 3%. Nevertheless, the gap decreased between the trend lines at 100 ◦C and
200 ◦C using ANSYS as the stress decreased. The difference of experimental results is due to several
factors such as scratches, unpolished surfaces and micro-structural behavior. Therefore, all the results
show a good trend line comparison which proves a good agreement.Metals 2020, 10, x FOR PEER REVIEW 11 of 14 
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4. Conclusions

The fatigue testing of aluminum has been conducted at elevated temperatures with a frequency of
10 Hz and load ratio of 0.1. The influence of this temperature has caused a decrease in fatigue life,
yield strength and ultimate strength. The yield and ultimate strength decrease as the temperature
increases. The increase in the crack growth rate and grain size has caused the particle density to
decrease. The surface failure was separated into a stable and unstable region. The stable region was
smaller when the load applied was higher. Factors such as grain size, particle density, loading and
temperature have influence in the fatigue life of the material. The fatigue life at 90% of the yield
strength decreased by 50% when exposed to a temperature of 100 ◦C compared to the results at room
temperature. A further decrease in fatigue life was observed when the temperature was increased to
200 ◦C. The comparison of experimental and numerical results at room temperature showed that the
highest difference was 14% and the lowest was 4%. The comparison at 100 ◦C showed that the highest
difference was 27% and the lowest was 1%. The lowest difference at 200 ◦C was 3% and the highest
was 14%. A good agreement between experimental and numerical results was observed for all the
stress-life curves. The numerical software, ANSYS Workbench successfully proved its effectiveness in
predicting the fatigue life at room and elevated temperatures.
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