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Abstract: Thin-walled parts made of aluminum alloy are mostly used as structural elements in the
aerospace, automobile, and military industries due to good homogeneity, corrosion resistance, and the
excellent ratio between mechanical properties and mass. Manufacturing of these parts is mainly
performed by removing a large volume of material, so it is necessary to choose quality machining
parameters that will achieve high productivity and satisfactory quality and accuracy of machining.
Using the Taguchi methodology, an experimental plan is created and realized. Based on its results
and comparative analysis of multi-criteria decision making (MCDM) methods, optimal levels of
machining parameters in high-speed milling of thin-walled parts made of aluminum alloy Al7075 are
selected. The varying input parameters are wall thickness, cutting parameters, and tool path strategies.
The output parameters are productivity, surface quality, dimensional accuracy, the accuracy of forms
and surface position, representing the optimization criteria. Selection of the optimal machining
parameter levels and their ranking is realized using 14 MCDM methods. Afterward, the obtained
results are compared using correlation analysis. At the output, integrative decisions were made on
selecting the optimal level and rank of alternative levels of machining parameters.

Keywords: thin-walled parts; aluminum alloy Al7075; high speed milling;
optimization of machining parameters; MCDM methods; correlation analysis

1. Introduction

The modern market of specialized products requires materials with high mechanical properties,
small mass, relatively low price, and good machinability, which is all contained in aluminum alloys [1].
Thin-walled parts of aluminum alloys are very important structural components in the aerospace,
automobile, and military industries, but they are often used in toolmaking and other electromechanical
industry branches [2,3].

In parallel with the increase in market requirements for thin-walled components of
aluminum alloys, numerous studies are being realized which are oriented towards:

• Design optimization to reduce mass, deformations and vibrations, increase load capacity,
and strength
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• Optimization of manufacturing process planning to increase productivity, cost-effectiveness,
the dimensional accuracy, accuracy of forms and surface position, machining quality, etc., which is
the main research subject in this paper.

Thin-walled parts of Al alloys can be obtained by casting, injection molding, material removal
technologies, etc. Manufacturing of these parts is most often realized by milling, during which a large
volume of material is removed, which can amount up to 95% of the initial mass of raw material [4,5].
Therefore, using appropriate high-speed machining parameters, it is necessary to achieve high
productivity while also maintaining the required machining accuracy and quality. On the other hand,
due to the low stiffness of thin-walls, it is also recommended to avoid the appearance of vibrations
and deformations, which can cause machining errors, low quality, and the appearance of scrap [6–9].
The main causes for the appearance of these errors in the literature are the type of material, elements of
machining system (machine, tool, fixtures), cutting parameters, machining strategies, metalworking
fluids and coolants, wall thickness, and others [2,5,10–15]. By analyzing numerous research studies,
influential machining parameters for thin-walled structures are systematized and represented in Figure 1.

Figure 1. Influential machining parameters for thin-walled parts.

The main groups of machining parameters for thin-walled parts are the following:

• Process planning parameters: Type and shape of a blank (casting, bar, sheet metal, etc.), Type and
sequence of process operations (casting, cutting, heat treatment, etc.), Type and sequence of
machining operations (face and plane milling, rough and soft milling, etc.)

• Machining system parameters: Machine tool (stiffness, accuracy, available cutting parameters, etc.),
Cutting tool (type, material, geometry, number of cutting edges, specific cutting edge angles, etc.),
Fixtures (type, method, and place of positioning, clamping force, etc.), Metalworking fluids and
coolants (type, concentration, purity, supply method, pressure)

• Workpiece parameters: Type of material, Mechanical characteristics (hardness, strength, elasticity,
toughness, etc.), Physicochemical characteristics (structure, chemical composition, density,
thermal characteristics, corrosion resistance, etc.), Technological characteristics (machinability
parameters), Geometric characteristics (shape: linear, triangular, rectangular, hexagonal and
complex; wall-thickness to the wall-height ratio: small height-to-thickness ratio <15:1, moderate
height-to-thickness ratio <30:1, very large height-to-thickness ratio≥30:1; the accuracy of measures,
the accuracy of forms and surface position; surface quality, etc.) and

• Machining operation parameters: depth of cut, feed, cutting speed/number of revolutions,
tool path strategies.
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Authors in [16,17] investigated the influence of wall thickness, milling forces, and cutting tool
position on the deformations of thin-walls and the appearance of geometric errors. The results from [16]
show that the machining parameters can be selected for each pass to achieve milling efficiency and
accuracy, while the results from [17] predict the definition of remnant material in order to reduce
deformations and achieve high machining quality. Yan et al. [18] proposed the machining strategy
with maximal depth of cut from the considered range and with the respect to the threshold of the
cutting force. Efficiency of the proposed methodology was tested on the basis of simulation and
experiments and the obtained results showed the reduction in machining time and surface error.

The study in [19] considers the influence of clamping fixtures, operation sequence, selected tool
path strategy, and cutting parameters on plastic/elastic deformations during the machining process
using FEM analysis and CAM software. The proposed model performs a computationally efficient
transient thermo-mechanical coupled field milling simulation, predicts the workpiece non-linear
behavior during machining due to its changing geometry, allows the modelling of the effects of initial
residual stresses on part deformations and integrated analytical machining load - cutting force and
shear plane temperature. A model of deformations of thin-walled structures in the milling process
and prediction of machining errors are investigated in [20,21]. In [20], a new model is proposed
to predict surface form errors caused by milling force during the five-axis flank milling process.
The results showed that the surface deformation error of thin-walled structures is affected together
by the instantaneous milling force and the local stiffness of the workpiece. On the other hand, in the
paper [21] a three-dimensional finite element model was established for the milling of thin-walled parts,
that predicts the elastic deformation law of the thin-walled blade.

Sapthagiri and Rao [22] used the Taguchi method to experimentally examine the significance of
machining parameters (cutting speed, feed, depth of cut, a width of cut, tool path layout) and the
influence of coolants on the reduction in tool temperature, as influential parameters on the deformation
during machining. The optimum parameters which influence distortion were identified. By checking
the samples machining with different tools and different speeds the warpage of the components are
very less. Authors in [23] emphasized the influence of cutting parameters on the cutting forces and
the surface roughness during face milling of aluminum alloy 7075 obtained by the new semi-solid
metal casting process. Results show that the optimal combination for the cutting force is the choice of
a minimum level for all tested parameters, while for the surface roughness the cutting depth at the
median level is the most preferable for the observed range.

Sridhar and Babu [24] investigated the influence of the material removal rate on the distortion
of thin-walled parts of aluminum alloy by combining the following machining parameters: feed,
cutting speed, depth of cut, and width of cut. They concluded that the increase of feed, depth of cut
and width of cut lead to the increase of distortion of thin-walled structures. Also, the increase of
material removal rate by increasing feed and speed instead of depth of cut and width of cut represents
better solution for minimizing wall distortion. Qu et al. [25] optimized the milling parameters for
thin-walled parts from the point of view of cutting forces, surface roughness, and material removal rate.
The results showed that the cutting force and surface roughness increased with increasing feed per
tooth and milling depth. On the other hand, the increase of spindle speed affected the increase of
cutting force as well as the decrease of surface roughness.

Bolar et al. [26] researched the influence of feed rate, the number of flutes and machining strategies
on surface finish, and deflection errors during machining of ultra-thin C shaped walls made of
aluminum alloy. The authors concluded that a combined approach i.e., concave and convex machining
with four fluted carbide end mill produced superior quality and precise thin-wall components.
Shamsuddin et al. [27] compared milling cutting path strategies on surface finish, thickness accuracy,
and machining time for thin-walled aluminum alloys. MasterCam X MR2 software was used to obtain
the best tool path strategy. Experimental results showed that true spiral is the best machining strategy
in terms of thickness accuracy but lack of surface roughness when compared to other machining
strategies. However, concerning surface roughness and machining time, the parallel spiral strategy was
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more promising when compared to other strategies. Popma [28] developed a system for automated
generative computer-aided process planning (CAPP) for thin-walled parts machined on high-speed
CNC machines with a special emphasis on machining sequence and strategies for thin-walled parts
while achieving accuracy and quality of machining.

Due to the low rigidity of the thin-walled structures, vibrations often occur during machining,
which is divided into self-induced and forced vibrations [5]. Self-induced vibrations or chatter
occur when the frequency response is induced by the machining process, i.e., due to friction in the
tool-workpiece system, thermo-mechanical processes, or as a consequence of a regenerative effect.
Forced vibrations or amplification occur when the stiffness of the part is not sufficient to maintain a
constant chip thickness. The cutting tool bounces off the workpiece, producing vibrations at the same
frequency as the main spindle and its components.

Machining parameters significantly affect the efficiency of the machining process but also its
stability. In order to provide these criteria stability lobes diagrams (SLD) are used. Stability lobes
diagrams represent areas of stability, i.e., areas of machining parameters where vibrations will not
occur [29]. Authors in [30] studied the effect of VSR (Vibratory Stress Relief) on the deformations and
residual stresses of Al 7075 thin-walled parts. They concluded that VSR improved the shape and size
of material stability to a significant level by relieving induced residual stresses in thin-walled parts.
In addition to static and dynamic models, there are also analytical models related to the development
of new methods for predicting the behavior of systems based on frequency response and deformations
resulting from cutting forces [31].

By analyzing the literature sources, it can be concluded that the field of machining of thin-walled
parts has been the research subject of many researchers around the world for many years. Due to
the specificity of the thin-walled part design, the machining parameters’ influence is much more
pronounced compared to the “normal” thick-walled parts. Optimization theory as a scientific discipline
has a huge application in solving various engineering problems, where the application of appropriate
methods finds the best solution for the selected optimization object for certain conditions based on one
or more optimization criteria. Machining parameters are most often input variables that are optimized
within the machining processes. For optimal parameters, those values are taken that give the best
solution of the objective function. The selection and optimization of machining parameters are mostly
realized using experimental research with the application of appropriate single and multi-criteria
optimization methods, simulation techniques, and their combination.

This paper’s main research subject is to determine the quality machining parameters in high-speed
milling of linear thin-walled components made of aluminum alloy Al7075. To that end, using the
standard Taguchi orthogonal sequence L27, the experimental plan is created and realized. Based on its
results and by applying MCDM methods, selecting the optimum machining parameter levels is achieved.
At the input of the experimental design, the following parameters are varied: wall thickness (a),
number of revolutions (n), feed rate (f), depth of cut (δ), and tool path strategies (TPS), while the output
parameters are the following ones: machining time (T)/material removal rate (MRR), wall thickness
deviation (∆a), flatness deviation (∆b), parallelism deviation (∆c), perpendicularity deviation (∆d)
and surface roughness (Ra). These output parameters represent the optimization criteria, which
are assigned weight coefficients based on the design and technological requirements of thin-walled
parts. The selection of the optimum machining parameter levels and their ranking is realized using
14 chosen MCDM methods: GRA (Grey Relational Analysis), AHP (Analytic Hierarchy Process),
MOORA (Multi-Objective Optimization Method by Ratio Analysis), TOPSIS (Technique for Order
Performance by Similarity to Ideal Solution), ROV (Range Of Value), COPRAS (COmplex PRoportional
Assessment of alternatives), ARAS (Additive Ratio ASsessment), WASPAS (Weighted Aggregates Sum
Product ASsessment), VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje - in Serbian),
OCRA (Operational Competitiveness Rating Analysis), EDAS (Evaluation based on Distance from
Average Solution), MABAC (Multi-Attributive Border Approximation area Comparison), SAW (Simple
Additive Weighting) and SPW (Simple Product Weighting). The obtained results are compared and
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methods that satisfy the pre-determined constraints of correlation coefficients are adopted using
correlation analysis. Based on these results, the integrative and final solution of the optimal machining
parameter levels is defined, and alternative solutions are ranked.

2. MCDM Problem and the Model of the Integrative Multi-Criteria Ranking of Alternatives

2.1. MCDM Problem

Designers often encounter the need to select the optimal solution concerning products, processes,
resources, etc. [32,33]. In such situations, in addition to a large number of alternatives, a large number
of criteria appear, which together make the problem of selection more complex. The appearance of
several alternatives and criteria, some of which need to be maximized and some minimized, means that
decisions should be made in conflicting conditions and that multi-criteria decision-making techniques
should be applied to solve these complex tasks. These methods are based on scientific principles that
efficiently determine the optimal solution [34,35].

Since the proposed decision-making problem refers to the limited number of known alternatives,
the application of multiple-attribute decision making (MADM) is assumed. Numerous researchers and
scientists have developed many MCDM methods, from intuitive to sophisticated analytical methods.
These methods can be used to identify a single most suitable alternative, rank alternatives, select a limited
number of alternatives, or simply to distinguish acceptable from unacceptable alternatives [32,34].

There are similarities and differences when dividing the decision-making process into phases,
but they can generally be divided into the following ones:

1. Identifying and formulating a decision-making problem—an objective function;
2. Forming a decision-making model—determining a set of alternatives and criteria and collecting

appropriate data;
3. Applying an MCDM method—determining weight coefficients, evaluating alternatives for

selected criteria and evaluating alternatives;
4. Selecting the most acceptable alternative and/or ranking alternatives;
5. Correlation analysis and integrative selection of the most acceptable alternative and/or ranking of

alternatives (in case of using several MCDM methods to solve the same problem);
6. Analyzing the obtained results.

MCDM is a scientific field that is growing rapidly and intensively, as evidenced by the numerous
methods that have been developed so far and are still being developed [32,34,36–42]. In this paper,
the following MCDM methods introduced by the following researchers are applied: GRA [43], AHP [44],
MOORA [45], TOPSIS [46], ROV [47], COPRAS [48], ARAS [49], WASPAS [50], VIKOR [51], OCRA [52],
EDAS [53,54], MABAC [55], SAW [56] and SPW [34]. The main characteristics of these methods are to
be transparent and simple, provide a complete ranking of alternatives, ensure the use of minimum and
maximum criteria, enable the use of quantitative and qualitative data, not to require expert knowledge
in mathematics, and not to use specialized software [32,34,38].

In most papers, one or a few MCDM methods are used to select the optimal variant of products,
processes, resources, materials, etc. When a large number of these methods are applied, it is
necessary to compare them and make a final integrative decision about the selection of the optimal
solution [34,57–59].

2.2. Model of the Integrative Multi-Criteria Ranking of Alternatives

By applying several different MCDM methods to the same problem, even the same decision-maker
can obtain different results of alternative rankings which leads to the problem of conflicting decision
results. To be able to statistically analyze these conflicts and select methods whose results will be the
basis for deciding and selecting the optimal alternative and their rank, it is necessary to consider as
many different methods as possible that would form a sufficient sample [34,57–59].
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To reduce the risk of making wrong decisions, a large number of different MCDM methods are
applied in this paper. Through an iterative procedure, it is necessary to choose at least two methods
that will form the basis for integrative decision making on selecting the optimal alternative and rank
of alternatives. In the proposed case, these methods are chosen using the following methodology
which is realized through several iterations based on the appropriate parameters of correlation with
the limit values.

2.2.1. First Iteration

In the first iteration, the ranks of all applied MCDM methods are compared, and the values
of Spearman’s rank correlation coefficients (Ri), the total Kendall’s rank correlation coefficient (W)
as well as the average Spearman rank correlation coefficient (R) of all MCDM methods are determined,
as well as standard deviations for all levels (σi), i.e., values of maximum and average standard deviation
(σmax and σav). These coefficients are compared with the limit-acceptable values, and if they are
all within the allowed limits, no further iterations will be performed. On the other hand, the final
solution—the ranks of alternative levels of a process plan’s parameters can be formulated.

Spearman’s Rank Correlation Coefficient (Ri)

Spearman’s rank correlation coefficient (Ri) makes it possible to quantify the degree of correlation
between any two sets of rank alternatives obtained by applying different MCDM methods and is
calculated according to the Equation (1). Spearman’s rank correlation coefficients (Ri) should be in the
range between 0.9 ≤ Ri ≤ 1 [60].

Ri = 1−
6
∑N

i=1 d2
i

N
(
N2
− 1

) (1)

where:

• N—sample size (number of alternatives to be ranked);
• Xi and Yi—the calculation values of output coefficients for any two MCDM methods;
• xi and yi—the ranks of alternatives in the model obtained based on Xi and Yi values;
• di = (xi − yi)—the difference between ranks of alternatives of two MCDM methods.

Kendall’s Rank Correlation Coefficient

Kendall’s rank correlation coefficient is used to determine the degree of correlation of the ranks of
all alternatives when three or more MCDM methods are used for decision making, which corresponds
to the case investigated in this paper. Kendall’s rank correlation coefficient (W) is calculated using the
Equation (2). Kendall’s rank correlation coefficient should be in the range between 0.9 ≤W ≤ 1 [61]:

W =
12·

∑k
i=1 T2

j

k2
·m(m2 − 1)

−
3(m + 1)

m− 1
(2)

where:

• Tj—the total sum of squares of ranks for each alternative;
• m—the number of alternatives to be ranked;
• k—the number of applied MCDM methods.

Average Spearman’s Correlation Coefficient (R)

Average Spearman’s rank correlation coefficient represents the correlation of all pairs of ranks of
alternatives obtained by applying different MCDM methods within the decision model. The simplest
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equation for its determination is based on Kendall’s W concordance coefficient, according to Equation (3).
The average Spearman rank correlation coefficient (R) should be between 0.9 ≤ R ≤ 1 [61].

R =
k·W− 1

k− 1
(3)

Standard Deviation

Standard deviation defines how much, on average, the elements of the sample deviate from the
arithmetic mean. In the observed case, the standard deviation values by levels-alternatives (σi) are
determined, and then the values of the maximum and average standard deviation (σmax and σav) are
determined. The average standard deviation should be between σav ≤ 1.5 [60].

2.2.2. Second and Further Iterations

Within the second iteration, methods that do not meet the limit values of previously defined
correlation coefficients are omitted from the further analysis, and the correlation coefficients are
re-determined, as well as their comparison with the limit values.

The procedure is repeated until at least two MCDM methods that satisfy the correlation coefficients’
set limit values are found. The more methods that meet the set conditions and the greater the degree
of correlation of the applied methods, the better and more accurate the solution is. If the optimal
solution is not found, it is necessary to apply other MCDM methods to satisfy the conditions of
correlation analysis.

3. Materials and Methods

3.1. Defining the Optimization Task

The object of this research is a linear thin-walled structure of aluminum alloy with a wall thickness
of a = 0.5–1.5 mm and a wall height of 30 mm, so the parts belong to the category of moderate
height-to-thickness ratio <30:1 (for 1.5 mm wall thickness) and very large height-to-thickness ratio
≥30:1 (for 0.5 mm and 1mm wall thickness).Considering that many parameters affect the process of
high-speed milling of thin-walled parts, recent experimental researches were conducted to determine
their limit values and level of influence on specific output parameters—optimization criteria [62].
As a result of these investigations, the following input parameters were selected: wall thickness (a),
number of revolutions (n), feed rate (f), depth of cut (δ), and tool path strategy (TPS) while the
output parameters were measured and calculated: machining time (T) / material removal rate (MRR),
wall thickness deviation (∆a), flatness deviation (∆b), parallelism deviation (∆c), perpendicularity
deviation (∆d) surface roughness (Ra), Figure 2.

Figure 2. The optimization tasks (unit: mm).

The main optimization task refers to determining the optimal machining parameters of the
observed thin-walled parts as an objective function by achieving high productivity, the accuracy of
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measures, quality of machining, the accuracy of form and surface position order of importance of the
criteria. The hierarchical structure of the optimization problem consists of the following elements:

• Objective function: Optimum machining parameter levels of the line-type thin-walled parts of
aluminum alloy from the aspect of high productivity, accuracy, and quality of machining;

• Optimization criteria: Output parameters of the machining process (MRR, ∆a, ∆b, ∆c, ∆d, and Ra);
• Alternative solutions (alternative variants): Selected combinations-levels of input parameters of

the process (a, n, f, δ, and TPS) based on the designed experimental plan.

3.2. Experimental Design

Assuming that the mathematical relations of the input parameters and performances of the
process are complex and nonlinear, three levels of variations were chosen for each parameter (Table 1).
When choosing the parameters’ values, literature recommendations, technical and technological
limitations of the machine and tools, characteristics of the workpiece material, and previous
experimental research were taken into account.

Table 1. Input parameters and levels of variation.

Parameter Unit Level

Wall thickness (a) mm 0.5 1 1.5
Number of

revolutions (n) rpm 6000 12,000 24,000

Feed rate (f) mm/min 600 1200 2400
Depth of cut (δ) mm 1 2 3

Tool path strategy
(TPS)—Cimatron -

Path 1-climb Path 2-conventional Path 3-mixed

The planning of the experiment was performed using the Taguchi methodology, which is very
often and efficiently applied for experimental analysis and optimization of production processes [63].
Based on the selected varying input machining parameters and the corresponding levels of variation,
an experimental design matrix was made using the standard Taguchi orthogonal array L27 consisting
of 27 rows (experimental trials) and 13 columns (parameter levels) where the input parameter levels
are connected to columns 1, 2, 5, 9 and 12.

3.3. Realizing the Experiments

A blank material used for machining sample parts is the prismatic shape
(70 mm × 40 mm × 40 mm), and the material is alloy Al7075 (AlZnMgCu1.5). This aluminum
alloy has very good mechanical properties, high fatigue, and corrosion resistance, making it suitable
for the machining of thin-walled structures. The chemical composition of this alloy is: Al (87.1–91.4%),
Cr (0.18–0.28%), Cu (1.2–2%), Fe (≤0.5%), Mg (2.1–2.9%), Mn (≤0.3%), Si (≤0.4%), Ti (≤0.2%),
Zn (5.1–6.1%). The main mechanical properties are tensile strength (560 MPa), Rp0.2 (500 MPa),
yield strength (7%), hardness (150 HBW). Experimental investigations were performed on the
high-speed CNC vertical milling machining center DIGMA HSC 850 (Frezal, Ruma, Serbia), using
high-pressure air as a coolant during machining. The Alu-power carbide end mill cutter, manufactured
by YG (Incheon, South Korea), was used for machining parts. The basic tool information is the
following: diameter D = 8 mm, helix angle 30◦, 2 flutes, corner radius R = 0.6 mm, flute length
L1 = 10 mm, overall length L = 70 mm. Figure 3 shows the machining system used to realize the
experimental machining process with the image of the machine tool’s workspace, i.e., the main spindle
with the tool and the workpiece clamped in the machine fixtures.
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Figure 3. Workspace of the machine tool.

To avoid deformations in the machining process, analysis of the positive cases from the
literature [9,28] and previous implementation of the experiments made it possible to choose a strategy
of alternating machining of both sides of the wall. According to Figure 4, the case with the depth of cut
of δ = 3 mm is represented.

Figure 4. Selected machining passes sequence for the machining of thin-walled parts.

3.4. Measuring the Experimental Results

As stated in the research plan, the following machining parameters were measured: machining
time—T (min), wall thickness deviation—∆a (mm), flatness deviation—∆b (mm), parallelism
deviation—∆c (mm), perpendicularity deviation—∆d (mm) and surface roughness—Ra (µm), as shown
in Figure 2.

Based on the measured machining time for different levels of alternative input parameters,
the calculation of the material removal rate (MRR) was done. It is considered an optimization criterion
that shows machining productivity according to Equation (4).

MRR =
V
T

(mm3/min) (4)

where:

• V–the volume of removed material (mm3);
• T–the machining time (min).

The measurement of the next four parameters (∆a, ∆b, ∆c, and ∆d) was done using Coordinate
Measuring Machines (CMM) Mitutoyo Strato—APEX 9166 Unimet, Kac, Serbia), Figure 5. Depending
on the type of parameter (according to Figure 2), measurements were realized in certain places
and surfaces, which is explained below for each parameter specifically. Then, the mean values
of these measurements were calculated for each parameter, which represent the output values of
these parameters.
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Figure 5. Coordinate Measuring Machines (CMM) Mitutoyo Strato—APEX 9166.

The wall thickness (a) was measured in five places at equal distances along the length of the part,
and then the mean deviation of the wall thickness (∆a) was calculated as the output parameter.

The flatness deviation (∆b) was measured for the left and the right side, as well as the horizontal
and the vertical surface. Therefore, we have the following flatness deviations: ∆bRV—right vertical
side of the wall, ∆bRH—right horizontal surface, ∆bLV—left vertical side of the wall, and ∆bLH—left
horizontal side of the wall.

The parallelism deviation (∆c) was measured for the left and right side of the wall, i.e., ∆cLV—the
parallelism deviation of the wall’s left vertical side, ∆cRV—the parallelism deviation of the right
vertical side of the wall. The perpendicularity deviation (∆d) was measured for the left and right
side of the wall, so we have ∆dLV—the perpendicularity deviation of the left vertical side of the wall,
∆dRV—the perpendicularity deviation of the right vertical side of the wall.

Measurement of the surface roughness was performed using the Mitutoyo SJ-301 device (Unimet,
Kac, Serbia), Figure 6. Roughness was measured perpendicularly to the direction of the tool movement.
Since it is a linear part, it is divided into the left and right side, so that the roughness of the left side
of the horizontal and the vertical surface RaLH and RaLV, as well as the right side RaRH and RaRV

were measured. Experimental plan matrices with measurement results (T, ∆a, ∆b, ∆c, ∆d, Ra) and
calculations (MRR) are shown in Table 2.

A more detailed analysis of the results showed that the input parameters have different effects
on the characteristics of the output results-optimization criteria, implying the need to optimize the
machining parameters for thin-walled parts using MCDM methodologies.

Figure 6. Measurement of the surface roughness (Ra) using Mitutoyo SJ-301 device: (a) Horizontal
surfaces; (b) Vertical surfaces.
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Table 2. Experimental design and the results of measurements/calculations.

No.

Input Parameters Output Parameters—Optimization Criteria

a n f δ TPS T MRR ∆a ∆b ∆c ∆d Ra
mm rpm mm/min mm - hh:mm:ss mm3/min mm mm mm mm µm

1 0.5 6000 600 1 1 00:36:40 2262.252 0.0420 0.03875 0.0690 0.0840 0.2500
2 0.5 6000 1200 2 2 00:11:30 7213.043 0.0240 0.12725 0.2415 0.3830 1.3100
3 0.5 6000 2400 3 3 00:19:29 4257.558 0.0260 0.04925 0.0845 0.1220 0.8300
4 0.5 12,000 600 2 3 00:21:06 3931.280 0.0160 0.04850 0.1035 0.1160 0.8425
5 0.5 12,000 1200 3 1 00:42:10 1967.178 0.0160 0.03475 0.0645 0.0925 0.3375
6 0.5 12,000 2400 1 2 00:09:16 8951.117 0.0220 0.06475 0.1085 0.1015 0.8600
7 0.5 24,000 600 3 2 00:47:16 1754.924 0.0120 0.04175 0.1160 0.1335 0.4100
8 0.5 24,000 1200 1 3 00:17:17 4799.514 0.0260 0.03375 0.0875 0.1195 0.3950
9 0.5 24,000 2400 2 1 00:08:37 9626.320 0.0380 0.03975 0.0685 0.1000 0.2925
10 1.0 6000 600 2 2 00:22:33 3631.929 0.0600 0.05750 0.1355 0.1250 1.5325
11 1.0 6000 1200 3 3 00:29:03 2819.277 0.0380 0.02525 0.1355 0.1730 0.5800
12 1.0 6000 2400 1 1 00:11:23 7194.940 0.0100 0.02050 0.1135 0.1170 0.5100
13 1.0 12,000 600 3 1 01:03:54 1281.690 0.0080 0.01150 0.0890 0.0940 0.1375
14 1.0 12,000 1200 1 2 00:17:46 4609.670 0.0560 0.02375 0.0600 0.1090 0.6325
15 1.0 12,000 2400 2 3 00:05:28 14,980.790 0.0260 0.03650 0.0905 0.1510 1.0050
16 1.0 24,000 600 1 3 00:28:03 2919.786 0.0420 0.01650 0.1305 0.1195 0.1850
17 1.0 24,000 1200 2 1 00:12:00 6825.000 0.0280 0.01550 0.0790 0.1405 0.1925
18 1.0 24,000 2400 3 2 00:23:00 3560.870 0.0360 0.02475 0.0960 0.1060 0.3050
19 1.5 6000 600 3 3 00:58:06 1391.566 0.0240 0.26175 0.0925 0.2325 0.2575
20 1.5 6000 1200 1 1 00:17:49 4537.801 0.0140 0.27300 0.2115 0.3290 0.3825
21 1.5 6000 2400 2 2 00:06:13 13,004.660 0.0660 0.31675 0.3165 0.4715 1.9800
22 1.5 12,000 600 1 2 00:31:23 2576.236 0.0400 0.28875 0.2180 0.3335 1.1600
23 1.5 12,000 1200 2 3 00:11:17 7165.647 0.0160 0.29850 0.2790 0.4590 1.3275
24 1.5 12,000 2400 3 1 00:21:59 3677.842 0.0100 0.27100 0.1790 0.2725 0.4075
25 1.5 24,000 600 2 1 00:21:33 3751.740 0.0100 0.27100 0.3480 0.3215 0.1500
26 1.5 24,000 1200 3 2 00:35:27 2280.677 0.0120 0.27875 0.2615 0.4245 0.2725
27 1.5 24,000 2400 1 3 00:08:18 9740,964 0.0120 0.27475 0.2100 0.3400 0.5050

4. Results and Discussion

4.1. Determining the Weight Coefficients of the Criteria

To determine the optimal machining parameters of the observed line-type thin-walled parts, it was
necessary to define the optimization criteria correctly and then determine their weight coefficients.
As a large amount of material is removed in the process of production of these parts, it is necessary to
achieve high productivity and, at the same time, the best possible quality and accuracy of machining.
For that purpose, the material removal rate (MRR) was chosen as the most important criterion,
followed by the dimensional accuracy of the wall thickness (∆a) and the surface roughness (Ra).
The corresponding hierarchical structure—pairwise comparison matrix (each criterion is compared
with every other)—is presented using the following decision matrix in Table 3.

Table 3. Hierarchical structure of the pairwise criteria comparison.

Parameters MRR ∆a ∆b ∆c ∆d Ra

MRR 1 3 5 5 5 3
∆a - 1 2 2 2 1
∆b - - 1 1 1 1/2
∆c - - - 1 1 1/2
∆d - - - - 1 1/2
Ra - - - - - 1

The approximation AHP method [44] consisted of four steps, was used to determine the weight
coefficients—normalized eigenvectors of the criteria. The first step refers to the definition of the
processed matrix—a table of comparison of all criteria where the values below the diagonal of the
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matrix get inverted values above the diagonal. The second step is to determine the sum of all the
column elements in the table. The results of the first two steps are shown in Table 4.

Table 4. Steps 1 and 2 of the approximation Analytic Hierarchy Process (AHP) methodology for
determining weight coefficients.

Parameters MRR ∆a ∆b ∆c ∆d Ra

MRR 1.0000 3.0000 5.0000 5.0000 5.0000 3.0000
∆a 0.3333 1.0000 2.0000 2.0000 2.0000 1.0000
∆b 0.2000 0.5000 1.0000 1.0000 1.0000 0.5000
∆c 0.2000 0.5000 1.0000 1.0000 1.0000 0.5000
∆d 0.2000 0.5000 1.0000 1.0000 1.0000 0.5000
Ra 0.3333 1.0000 2.0000 2.0000 2.0000 1.0000

Sum 2.2667 6.5000 12.0000 12.0000 12.0000 6.5000

In the third step, each column’s elements are divided by the sum of the values of that column,
which was obtained in the previous step. In the fourth step, each row’s sum is determined, followed
by the mean value of that row. The column consisting of these mean values represents the normalized
eigenvector of the criterion (column Wj), i.e., the weight coefficients of the criterion Wj. The results of
the third and fourth steps are given in Table 5, and the calculated values of weight coefficients are as
follows: WMRR = 0.43571, W∆a = 0.15913, WRa = 0.15913, W∆b = 0.08201, W∆c = 0.08201, W∆d = 0.08201
and the sum of these values ΣWi = 1.00.

Table 5. Steps 3 and 4 of the approximation Analytic Hierarchy Process (AHP) methodology for
determining weight coefficients.

Parameters MRR ∆a ∆b ∆c ∆d Ra Sum Wj λi

MRR 0.4412 0.4615 0.4167 0.4167 0.4167 0.4615 2.6143 0.43571 6.0147
∆a 0.1471 0.1538 0.1667 0.1667 0.1667 0.1538 0.9548 0.15913 6.0051
∆b 0.0882 0.0769 0.0833 0.0833 0.0833 0.0769 0.4921 0.08201 6.0028
∆c 0.0882 0.0769 0.0833 0.0833 0.0833 0.0769 0.4921 0.08201 6.0028
∆d 0.0882 0.0769 0.0833 0.0833 0.0833 0.0769 0.4921 0.08201 6.0028
Ra 0.1471 0.1538 0.1667 0.1667 0.1667 0.1538 0.9548 0.15913 6.0051

- - - - - - - Σ =
1.0000

λmax =
6.0147

To determine the decision-maker’s consistency, the one who defines the level of errors when
comparing the criteria, the calculation of the consistency ratio was performed. The consistency index
CI according to Equation (5), is defined first, followed by the consistency ratio CR according to
Equation (6), where the random index RI = 1.24 is adopted based on the number of criteria in the
model (n = 6) [44].

CI =
λmax− n

n− 1
=

6.0147− 6
6− 1

= 0.0029 (5)

CR =
CI
RI

=
0.0029

1.24
= 0.0024 (6)

The value of the consistency ratio equals CR = 0.0024 ≤ 0.1, which means that the decision-makers
error when estimating the comparison of the criteria is very small, based on which we can conclude
that the comparison of the criteria was performed adequately.



Metals 2020, 10, 1570 13 of 22

4.2. Applying the MCDM Methods

4.2.1. Results of Applying MCDM Methods

Table 6 shows the resulting coefficients obtained by applying 14 MCDM methods based on
which the ranking of alternative levels of the machining parameters for milling of thin-walled parts
was performed. The designations and names of these coefficients for all applied MCDM methods
are given below: GRA (GRG—gray relational grade), AHP (Fi—composite normalized vector),
MOORA (Yi—normalized assessment value of alternatives, TOPSIS (CCo—relative closeness to
the “ideal” solution), ROV (Ui—mean value of the utility function of alternatives), COPRAS
(Uj%—degree of utility alternatives), ARAS (Ui%—degree of utility alternatives), WASPAS (Qj—overall
relative importance of the alternative), VIKOR (Qi—minimum distance from “ideal“ solutions),
OCRA (Pi—overall performance rating), EDAS (Si—values of appraisal scores), MABAC (Si—values
of criteria function of alternatives), SAW (Si—overall ranking index of i-th alternative) and SPW
(Si—overall ranking index of i-th alternative).

4.2.2. Integrative Multi-Criteria Ranking of the Alternative Levels of Machining Parameters

Based on the results from Table 6, which refer to the individual evaluation and ranking of
alternative levels of high-speed machining process parameters based on fourteen different MCDM
methods, a comprehensive comparison and ranking of twenty-seven levels of parameters according
to the experiment plan was performed using the integrated assessment methodology. To obtain a
comprehensive final ranking of the machining parameter levels based on the results of applying the
MCDM methods, the agreement of the obtained values of the correlation ratios with the set limit values
was tested.

Table 7 provides an overview of the ranks of alternative levels, values of standard deviation
by levels (σi), while the lower part of the table gives the following values: maximum standard
deviation (σmax), average standard deviation (σav), Kendall’s rank correlation coefficient (W), and the
average Spearman rank correlation coefficient (R). Table 8 shows the values of Spearman’s correlation
coefficients of the ranks of alternative parameter levels of all applied MCDM methods by pairs.

After the first iteration, it was stated that the results obtained by applying these 14 MCDM
methods could not be used for integrative ranking of the alternative parameter levels because the
limit values of the first given criterion are not met (0.9 ≤ Ri ≤1), i.e., there are several combinations of
methods where Spearman’s rank correlation coefficient Ri is less than the limit value of 0.9.

Since the set criteria were not met within the first iteration, it was necessary to approach the
second iteration, which is presented below with the corresponding results.

Second Iteration

After analyzing the results in Table 8, it was concluded that there is a group of MCDM methods
that meet all the criteria which are proven through the introduction of the second iteration. The second
iteration includes the integrated application of the following five methods: MOORA, ROV, EDAS,
MABAC, and SPW.

The results of comparing the ranks of the alternative levels of parameters are given in Table 9,
and the values of Spearman’s rank correlation coefficients are presented in Table 10.
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Table 6. Resulting coefficients of applying multi-criteria decision making (MCDM) methods and the rank of the alternative levels.

No.
Exp.

MCDM Method

GRA AHP MOORA TOPSIS ROV COPRAS ARAS WASPAS VIKOR OCRA EDAS MABAC SAW SPW

GRG Rank Fi Rank Yi Rank CCo Rank Ui Rank Uj% Rank Ui% Rank Qj Rank Qi Rank Pi Rank Si Rank Si Rank Si Rank Si Rank

1 0.5764 3 0.0323 16 −0.0360 17 0.3293 23 0.2413 16 0.4786 19 51.1608 16 0.3178 16 0.7653 22 3.9233 12 0.4453 16 −0.0052 16 0.3613 15 0.2742 19
2 0.2316 25 0.0323 17 −0.0374 19 0.4472 8 0.2309 19 0.5260 14 51.1481 17 0.3006 21 0.5648 8 2.4153 22 0.4340 18 −0.0261 19 0.3253 22 0.2759 18
3 0.3898 16 0.0306 21 −0.0212 12 0.3603 16 0.2623 12 0.5123 15 48.4040 21 0.3171 17 0.6418 11 3.6446 14 0.4940 12 0.0368 12 0.3330 19 0.3013 14
4 0.4056 14 0.0317 19 −0.0176 10 0.3617 15 0.2683 10 0.5299 13 50.1936 19 0.3282 15 0.6459 12 3.7772 13 0.5046 10 0.0488 10 0.3463 16 0.3101 13
5 0.5987 2 0.0337 14 −0.0178 11 0.3465 19 0.2688 9 0.6426 9 53.2646 14 0.3341 14 0.7317 18 4.3339 6 0.5044 11 0.0497 9 0.3795 12 0.2887 15
6 0.4126 13 0.0451 8 0.0420 4 0.5925 5 0.3378 4 0.7384 6 71.2942 8 0.4425 6 0.3067 3 4.0542 11 0.7056 4 0.1878 4 0.4714 7 0.4136 5
7 0.4446 12 0.0297 22 −0.0277 13 0.3374 21 0.2551 13 0.5564 11 46.9321 22 0.2905 22 0.7642 21 4.1475 9 0.4707 13 0.0225 13 0.3271 21 0.2540 21
8 0.4508 11 0.0364 11 0.0044 7 0.4126 10 0.2916 7 0.6372 10 57.4954 11 0.3769 8 0.5681 9 4.3114 7 0.5841 7 0.0954 7 0.3858 11 0.3680 7
9 0.5478 5 0.0532 3 0.0638 2 0.6424 2 0.3603 2 0.8387 3 84.1570 3 0.5277 2 0.2387 2 4,7149 5 0.7832 2 0.2328 2 0.5527 3 0.5028 3
10 0.2827 23 0.0230 26 −0.0958 26 0.2392 26 0.1667 26 0.3419 26 36.3544 26 0.2303 25 0.8316 24 1.9776 24 0.2374 26 −0.1544 26 0.2490 26 0.2116 25
11 0.3517 17 0.0257 24 −0.0483 21 0.3112 25 0.2243 20 0.4200 23 40.6486 24 0.2572 23 0.7696 23 3.6094 15 0.4058 21 −0.0392 20 0.2667 24 0.2478 23
12 0.5381 6 0.0510 5 0.0465 3 0.5317 6 0.3450 3 0.8320 4 80.6140 5 0.5145 4 0.3718 5 4.8477 2 0.7245 3 0.2023 3 0.5277 5 0.5013 4
13 0.7522 1 0.0539 2 −0.0115 8 0.3569 18 0.2770 8 0.9177 2 85.2771 2 0.4474 5 0.7480 20 4.7919 3 0.5257 8 0.0661 8 0.5661 2 0.3286 9
14 0.5216 7 0.0351 12 -0.0325 15 0.3594 17 0.2436 15 0.4814 18 55.4603 12 0.3470 12 0.6580 13 3.5684 16 0.4596 15 −0.0007 15 0.3763 13 0.3176 11
15 0.4750 10 0.0632 1 0.1144 1 0.8358 1 0.4231 1 1.0000 1 100.000 1 0.5693 1 0.0000 1 4.7259 4 0.9478 1 0.3583 1 0.6323 1 0.5063 1
16 0.4937 8 0.0379 10 −0.0306 14 0.3464 20 0.2450 14 0.4957 17 59.9038 10 0.3520 10 0.7300 17 4.1193 10 0.4668 14 0.0023 14 0.3860 10 0.3180 10
17 0.5595 4 0.0525 4 0.0385 5 0.5125 7 0.3313 5 0.7951 5 82.9977 4 0.5170 3 0.4115 6 4.8665 1 0.7010 5 0.1747 5 0.5298 4 0.5043 2
18 0.4781 9 0.0345 13 −0.0175 9 0.3639 14 0.2635 11 0.5478 12 54.5216 13 0.3469 13 0.6704 14 4.1701 8 0.5100 9 0.0392 11 0.3650 14 0.3287 8
19 0.3448 19 0.0239 25 −0.0634 24 0.3122 24 0.2028 23 0.3526 24 37.7680 25 0.2251 26 0.8691 26 2.4285 21 0.3402 24 −0.0822 23 0.2649 25 0.1854 26
20 0.3086 22 0.0314 20 −0.0348 16 0.3917 11 0.2325 18 0.4646 20 49.6901 20 0.3075 19 0.6800 15 2.5104 20 0.4390 17 −0.0228 18 0.3278 20 0.2873 16
21 0.2103 26 0.0456 7 −0.0576 23 0.5986 4 0.1909 24 0.7290 7 72.0641 7 0.3477 11 0.5108 7 0.0000 27 0.3489 23 −0.1060 24 0.4417 8 0.2537 22
22 0.1829 27 0.0161 27 −0.1191 27 0.2094 27 0.1285 27 0.2783 27 25.4879 27 0.1650 27 0.9429 27 0.7382 26 0.1485 27 −0.2307 27 0.1721 27 0.1579 27
23 0.2370 24 0.0336 15 −0.0556 22 0.4410 9 0.2039 22 0.5006 16 53.0725 15 0.3031 20 0.6126 10 1.2713 25 0.3616 22 −0.0799 22 0.3403 18 0.2659 20
24 0.3477 18 0.0322 18 −0.0365 18 0.3693 13 0.2341 17 0.4494 21 50.9218 18 0.3131 18 0.7152 16 2.5758 19 0.4316 19 −0.0196 17 0.3442 17 0.2821 17
25 0.4016 15 0.0407 9 −0.0445 20 0.3823 12 0.2171 21 0.4311 22 64.2962 9 0.3665 9 0.7407 19 2.6001 18 0.4070 20 −0.0535 21 0.4213 9 0.3116 12
26 0.3297 21 0.0275 23 −0.0703 25 0.3310 22 0.1861 25 0.3444 25 43.4779 23 0.2562 24 0.8583 25 2.2118 23 0.3170 25 −0.1156 25 0.2911 23 0.2212 24
27 0.3345 20 0.0474 6 0.0313 6 0.6367 3 0.3115 6 0.7059 8 74.9848 6 0.4359 7 0.3165 4 2.9813 17 0.6602 6 0.1352 6 0.4798 6 0.3919 6
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Table 7. Results of comparing the ranks of the alternative parameter levels of the applied MCDM methods.

No.
Exp. GRA AHP MOORA TOPSIS ROV COPRAS ARAS WASPAS VIKOR OCRA EDAS MABAC SAW SPW

Average
Value of
Ranks

Final
Rank of

Alternative

σi—Stand
Deviation

1 3 16 17 23 16 19 16 16 22 12 16 16 15 19 16.33 15 4.721
2 25 17 19 8 19 14 17 21 8 22 18 19 22 18 16.83 17 4.877
3 16 21 12 16 12 15 21 17 11 14 12 12 19 14 14.06 14 3.371
4 14 19 10 15 10 13 19 15 12 13 10 10 16 13 12.67 11 3.082
5 2 14 11 19 9 9 14 14 18 6 11 9 12 15 12.00 10 4.551
6 13 8 4 5 4 6 8 6 3 11 4 4 7 5 5.67 5 2.894
7 12 22 13 21 13 11 22 22 21 9 13 13 21 21 16.67 16 5.014
8 11 11 7 10 7 10 11 8 9 7 7 7 11 7 8.39 7 1.805
9 5 3 2 2 2 3 3 2 2 5 2 2 3 3 2.61 2 1.051
10 23 26 26 26 26 26 26 25 24 24 26 26 26 25 24.94 26 1.008
11 17 24 21 25 20 23 24 23 23 15 21 20 24 23 20.89 23 2.872
12 6 5 3 6 3 4 5 4 5 2 3 3 5 4 4.00 3 1.231
13 1 2 8 18 8 2 2 5 20 3 8 8 2 9 8.72 8 5.908
14 7 12 15 17 15 18 12 12 13 16 15 15 13 11 13.61 13 2.818
15 10 1 1 1 1 1 1 1 1 4 1 1 1 1 1.67 1 2.476
16 8 10 14 20 14 17 10 10 17 10 14 14 10 10 13.06 12 3.539
17 4 4 5 7 5 5 4 3 6 1 5 5 4 2 4.44 4 1.541
18 9 13 9 14 11 12 13 13 14 8 9 11 14 8 11.17 9 2.301
19 19 25 24 24 23 24 25 26 26 21 24 23 25 26 23.83 25 1.979
20 22 20 16 11 18 20 20 19 15 20 17 18 20 16 17.50 20 2.828
21 26 7 23 4 24 7 7 11 7 27 23 24 8 22 17.72 21 8.939
22 27 27 27 27 27 27 27 27 27 26 27 27 27 27 26.61 27 0.267
23 24 15 22 9 22 16 15 20 10 25 22 22 18 20 19.00 22 4.957
24 18 18 18 13 17 21 18 18 16 19 19 17 17 17 17.17 18 1.785
25 15 9 20 12 21 22 9 9 19 18 20 21 9 12 17.17 18 5.229
26 21 23 25 22 25 25 23 24 25 23 25 25 23 24 23.78 24 1.311
27 20 6 6 3 6 8 6 7 4 17 6 6 6 6 7.28 6 4.781

Maximum standard deviation σmax = 8.939
Average standard deviation σav = 3.227

Kendall’s rank correlation coefficient W = 0.786
Average Spearman rank correlation coefficient R = 0.770
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Table 8. Spearman’s rank correlation coefficients of the applied MCDM methods.

Methods GRA AHP MOORA TOPSIS ROV COPRAS ARAS WASPAS VIKOR OCRA EDAS MABAC SAW SPW

GRA 1 0.5543 0.6862 0.0739 0.7118 0.5427 0.5543 0.6343 0.1752 0.8993 0.6935 0.7118 0.6245 0.6368
AHP - 1 0.7473 0.7643 0.7295 0.8419 1.0000 0.9634 0.7375 0.6148 0.7503 0.7295 0.9823 0.8529

MOORA - - 1 0.6361 0.9945 0.8590 0.7473 0.8492 0.7320 0.8669 0.9988 0.9945 0.7961 0.9316
TOPSIS - - - 1 0.6013 0.7320 0.7643 0.7369 0.9457 0.2784 0.6319 0.6013 0.7186 0.7131

ROV - - - - 1 0.8516 0.7295 0.8327 0.7082 0.8803 0.9945 1.0000 0.7839 0.9115
COPRAS - - - - - 1 0.8419 0.8370 0.7778 0.7167 0.8639 0.8516 0.8486 0.7808
ARAS - - - - - - 1 0.9634 0.7375 0.6148 0.7503 0.7295 0.9823 0.8529

WASPAS - - - - - - - 1 0.7527 0.7204 0.8492 0.8327 0.9829 0.9328
VIKOR - - - - - - - - 1 0.3834 0.7326 0.7082 0.7057 0.7723
OCRA - - - - - - - - - 1 0.8700 0.8803 0.6795 0.7790
EDAS - - - - - - - - - - 1 0.9945 0.7961 0.9292

MABAC - - - - - - - - - - - 1 0.7839 0.9115
SAW - - - - - - - - - - - - 1 0.8724
SPW - - - - - - - - - - - - - 1
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Table 9. Results of comparing the ranks of the alternative parameter levels—the second iteration.

No.
Exp. MOORA ROV EDAS MABAC SPW

Average
Value of
Ranks

Final Rank
of the

Alternative

σ—Stand.
Deviation

1 17 16 16 16 19 16.80 16 1.3038
2 19 19 18 19 18 18.60 19 0.5477
3 12 12 12 12 14 12.40 12 0.8944
4 10 10 10 10 13 10.60 10 1.3416
5 11 9 11 9 15 11.00 11 2.4495
6 4 4 4 4 5 4.20 4 0.4472
7 13 13 13 13 21 14.60 15 3.5777
8 7 7 7 7 7 7.00 7 0.0000
9 2 2 2 2 3 2.20 2 0.4472
10 26 26 26 26 25 25.80 26 0.4472
11 21 20 21 20 23 21.00 21 1.2247
12 3 3 3 3 4 3.20 3 0.4472
13 8 8 8 8 9 8.20 8 0.4472
14 15 15 15 15 11 14.20 14 1.7889
15 1 1 1 1 1 1.00 1 0.0000
16 14 14 14 14 10 13.20 13 1.7889
17 5 5 5 5 2 4.40 5 1.3416
18 9 11 9 11 8 9.60 9 1.3416
19 24 23 24 23 26 24.00 24 1.2247
20 16 18 17 18 16 17.00 17 1.0000
21 23 24 23 24 22 23.20 23 0.8367
22 27 27 27 27 27 27.00 27 0.0000
23 22 22 22 22 20 21.60 22 0.8944
24 18 17 19 17 17 17.60 18 0.8944
25 20 21 20 21 12 18.80 20 3.8341
26 25 25 25 25 24 24.80 25 0.4472
27 6 6 6 6 6 6.00 6 0.0000

Maximum standard deviation σmax = 3.8341
Average standard deviation σav = 1.0729

Kendall’s rank correlation coefficient W = 0.9728
Average Spearman rank correlation coefficient R = 0.9708

Table 10. Spearman’s rank correlation coefficients—the second iteration.

Methods MOORA ROV EDAS MABAC SPW

MOORA 1 0.9945 0.9988 0.9945 0.9316
ROV - 1 0.9945 1.0000 0.9115

EDAS - - 1 0.9945 0.9292
MABAC - - - 1 0.9115

SPW - - - - 1

Based on the obtained results shown in Tables 9 and 10, it can be concluded that for the combination
of the MCDM methods MOORA, ROV, EDAS, MABAC, and SPW:

1. The first criterion is met—the Spearman’s rank correlation coefficient is for all combinations of
methods within the limit value 0.9 ≤ Ri ≤ 1 (Rmin = 0.9115),

2. The second criterion is met—Kendall’s rank correlation coefficient is in the range of 0.9 ≤ W
(W = 0.9728),

3. The third criterion is met—average Spearman rank correlation coefficient is in the range of 0.9 ≤ R
(R = 0.9708) and

4. The fourth criterion is met—the average standard deviation is within the limit value σav ≤ 1.5
(σav = 1.0729)
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Since all the correlation criteria for the integrative application of MCDM methods are met,
the optimal rank of the alternative levels of process parameters is given in Table 9. Table 11 shows the
five best-ranked levels with values of machining parameters (a, n, f, δ, and TPS) and the values of the
obtained optimization criteria (MRR, ∆a, ∆b, ∆c, ∆d, and Ra). Figure 7 presents the ranking chart of
the top 5 alternative experiments according to the selected MCDM methods.

Table 11. The optimal alternative levels of the high-speed process parameters for line-type
thin-walled parts.

No
Exp.

a n f δ TPS MRR ∆a ∆b ∆c ∆d Ra
Rank

mm rpm mm/min mm - mm3/min mm mm mm mm µm

15 1.0 12,000 2400 2 3 14,980.790 0.0260 0.03650 0.0905 0.1510 1.0050 1
9 0.5 24,000 2400 2 1 9626.320 0.0380 0.03975 0.0685 0.1000 0.2925 2

12 1.0 6000 2400 1 1 7194.940 0.0100 0.02050 0.1135 0.1170 0.5100 3
6 0.5 12,000 2400 1 2 8951.117 0.0220 0.06475 0.1085 0.1015 0.8600 4

17 1.0 24,000 1200 2 1 6825.000 0.0280 0.01550 0.0790 0.1405 0.1925 5

Figure 7. Ranking chart of the 5 best alternative experiments for the selected MCDM methods.

5. Conclusions

In this study, the machining parameters for milling of line-type thin-walled parts made of
aluminum alloy Al 7075 were analyzed. The influence of wall thickness (a), number of revolutions (n),
feed rate (f), depth of cut (δ), and tool path strategy (TPS) was examined on machining time (T)/material
removal rate (MRR), wall thickness deviation (∆a), surface flatness deviation (∆b), surface parallelism
deviation (∆c), surface perpendicularity deviation (∆d) and surface roughness (Ra), all of them
representing the optimization criteria.

Considering the characteristics of the process of high-speed milling of thin-walled parts,
a comparison of optimization criteria using the AHP method was made, where the highest
weight coefficient was obtained by the material removal rate (MRR), as a productivity opponent
WMRR = 0.43571, then weight coefficients of the wall thickness accuracy and surface roughness
W∆a = 0.15913, WRa = 0.15913, and finally the accuracy of form and accuracy of surface position
W∆b = 0.08201, W∆c = 0.08201 and W∆d = 0.08201. Twenty-seven experiments were conducted using
the standard Taguchi orthogonal sequence L27, and multi-criteria optimization was performed using
14 MCDM methods (GRA, AHP, MOORA, TOPSIS, ROV, COPRAS, ARAS, WASPAS, VIKOR, OCRA,
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EDAS, MABAC, SAW and SPW) According to this, the optimal alternative levels of input parameters
for the defined objective function and their ranking were obtained.

Afterward, the obtained results were compared using correlation analysis based on Spearman’s
and Kendall’s rank correlation coefficients and the standard deviation of the ranks of the alternative
levels. At the output, the integrative decision on selecting the optimal level of high-speed machining
parameters based on 5 MCDM methods (MOORA, ROV, EDAS, MABAC and SPW) that met the limits
of correlation coefficients was made. The optimum machining parameter level is experiment No.15
with the following varying input parameters a = 1 mm, n = 12,000 rpm, f = 2400 mm/min, δ = 2 mm,
TPS 3 and the output machining parameters as the optimization criteria: MRR=14,980.790 mm3/min,
∆a = 0.0260 mm, ∆b = 0.03650 mm, ∆c = 0.0905 mm, ∆d = 0.1510 mm and Ra = 1.0050 µm.
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