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Abstract: Additive manufacturing is currently one of the promising methods for the fabrication of
products of complex shapes. It is also used in medical applications, thanks to technological progress,
which also enables the printing of metallic materials. However, the final products often have to
undergo a final surface treatment. In this work, the influence of surface finishing on the corrosion
behavior of the medical alloy Ti-6Al-4V prepared by the selective laser melting technique is studied.
The samples were subjected to mechanical, chemical and electrochemical treatments. Corrosion
behavior was investigated using DC and AC electrochemical techniques such as potentiodynamic
and potentiostatic curves and electrochemical impedance spectroscopy. Furthermore, the influence of
surface treatments on the possibility of localized corrosion attack was evaluated. The results showed
that the surface treatments have a positive effect on the corrosion resistance and reduce the risk of
crevice corrosion.
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1. Introduction

The manufacturing of products of specific shapes, which cannot be achieved in any other way
than 3D printing, also known as additive manufacturing, is increasingly in demand. In contrast to the
traditional method of metallic materials production (casting, forming and machining), the additive
layer-by-layer technique results in a complex structure in almost final form. This makes the production
of more complex components faster and cheaper. For this reason, 3D printing of titanium and its
alloys is also promising for medical applications [1–4]. The only key disadvantage affecting 3D
printing of metallic materials compared to traditional production is the random porosity of products,
which still cannot be reduced below 0.5% [1,5]. The Ti-6Al-4V alloy has a less dense passive layer
compared to commercially pure titanium Grade 2, but is still sufficiently corrosion resistant and is
more widely used for biomaterials due to its improved mechanical properties. Furthermore, it has
been experimentally found that the properties of this passive layer can be significantly influenced
by various surface treatments. For example, the anodic oxidation of Ti-6Al-4V alloy can increase the
thickness of the passive layer, resulting in increased corrosion resistance [6–8]. However, materials
prepared by additive methods have a different microstructure and surface geometry, which also affects
corrosion resistance [9]. Due to its microstructure, which is largely made of needle-like α‘martensite,
compared to an alloy produced by traditional technology, Ti-6Al-4V alloy produced by selective laser
melting (SLM) has a worse resistance to uneven corrosion attack in a solution containing 3.5 wt. %
NaCl. When exposed to a simulated body solution (minimum essential media), the SLM-prepared alloy
sample also had a slightly higher current density than potentiated specimens in the potentiodynamic
measurement, but the passive layer failed. Faster repassivation was also measured in samples prepared
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by the additive method [10,11]. The corrosion resistance of 3D printed materials also depends on
the orientation of the tested surface, the microstructure is different for the horizontal and vertical
section of the sample. Potentiodynamic measurements show that the XY plane resists better corrosion
attack, probably due to a higher proportion of titanium β phase [12]. Corrosion and tribocorrosion
behavior of Ti-6Al-4V processed by SLM and HP in comparison with the commercial alloy was studied
by Toptan et al. [13]. Electrochemical tests showed that decreased β phase and the formation of α′

phase affected the electrochemical response of the 3D printed alloy which formed a passive layer of
lower quality. Further, it was found that stress-relief annealing has a positive influence on corrosion
resistance of the TiAlV alloy prepared by additive manufacturing. The main effect is achieved by
reducing the micro segregations and by forming a more stable passive layer [14]. Our previous
study showed only negligible differences in corrosion behavior of 3D printed and commercial TiAlV
alloy [15]. However, the final products made by additive manufacturing often require subsequent
surface treatment. The SLM method uses metal powder to form the part, which is produced by
atomization [16]. Unfortunately, partially melted particles remain on the surface after printing. These
particles could be released and circulate through the human body. One possible way to remove
these partially melted particles from the surface is by double acid etching. A mixture of hydrofluoric
acid (HF) and nitric acid (HNO3) is used for the TiAlV alloy. A higher concentration of hydrofluoric
acid, which reacts with titanium to form a fluoro complex, speeds up the etching process. By adding
nitric acid to the mixture, it slows down the etching process and becomes more controllable, further
preventing hydrogen from entering the metal structure. The process of removing partially melted
particles from the surface is further influenced by temperature, time and flow [17,18]. Particle removal
also depends on component design. If the component is in the form of a scaffold, the size and shape of
the pores play a major role in the removal. If the pores are too small, there is insufficient flow of acids
inside and outside the scaffold. This results in insufficient removal of particles within the scaffold [19].

This study aims to compare the corrosion behavior of a TiAlV alloy prepared by selective laser
melting technique with different surface finishing.

2. Experimental

2.1. Materials

The samples were manufactured at ProSpon s.r.o. by selective laser melting technique from
Ti-6Al-4V powder in an M2 fusing machine (Concept Laser GmbH, Lichtenfels, Germany) of following
parameters: the energy of a laser beam was 200 W, beam width was 200 µm, raster distance (distance
between individual scanning rows/scanning distance) was 80 µm and the laser moved with the speed
of 1250 mm s−1. The build platform was preheated up to 473 K. An average grain size was 15–45 µm
and layers were 30 µm thick. The whole process was carried out in a working chamber containing
argon atmosphere (oxygen was present in a concentration lower than 0.5 vol. %). To minimize internal
stresses, finished parts underwent heat treatment in a vacuum furnace. After 4 h of heating, the parts
were kept at the temperature of 1093 K for 90 min and cooled down slowly. The two groups of
specimens were tested. The first one was based on a compact surface (Figure 1a). This surface was
tested with the following treatments: as printed (original, O), anodized (O 24 V), turned (T), etched
(E), turned and anodized (T 24 V), etched and anodized (E 24 V). The second group has a trabecular
structure on the top of the specimen (Figure 1b). The surface finishing was the same as for the compact
specimens except turning. The surface finishing will be abbreviated in figures: original (trab), original
and anodized (trab 24 V), etched (trab E), and etched and anodized (trab E 24 V).
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Figure 1. 3D printed specimens used for corrosion measurement: (a) compact surface, (c) detail of the 
compact surface, (b) trabecular specimen and (d) single trabecula beam detail. 
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For the surface etching, the mixture of HNO3 (65%), HF (38%) and H2O (20 mL, 2 mL, 78 mL) 
was used. Specimens were etched for 6 min in the ultrasonic bath followed by ultrasonication for 10 
min in deionized water. The specimens were degreased in ethanol and acetone before the following 
treatment. The surface anodization was realized in 1 mol/L H2SO4 for 10 min at 24 V. The final color 
of the anodized samples was a vivid blue. 

2.3. Electrochemical Measurement 

The electrochemical behavior was studied in the physiological solution with 0.9 wt. % NaCl at 
37 °C. Samples were cleaned with ethanol and acetone before the exposure. Standard three-electrode 
setup with glassy carbon counter electrodes and Ag/AgCl with 3 mol/L KCl (abbreviated as SSCE) as 
a reference electrode was used for electrochemical measurements. The open-circuit potential (OCP) 
was stabilized for 12 h. The electrochemical impedance spectra were measured in the frequency range 
from 60 kHz to 1.6 mHz with 10 mV/OCP AC amplitude after that. The measurement setup was 
finished by potentiodynamic scan from −0.05 V/OCP to 1 V/SSCE with a polarization rate of 1 mV/s. 
The susceptibility to non-uniform corrosion attack according to ASTM F746 standard was further 
measured for all samples. The samples were polarized to 0.85 V/SSCE for 900 s after one-hour 
stabilization of the OCP. The current density was monitored during the polarization. The material 
was subsequently polarized to a lower potential value (0.4 V/SSCE) and the repassivation potential 
was determined in the case of stable localized corrosion attack. As opposed to the standard 
measurement, no artificial crevice was created on the sample, so that only the effect of the non-
homogeneity of the surface was observed. The exposure area was entered as a geometrical area 3 cm2. 
All electrochemical experiments were realized with Reference 600 potentiostat (Gamry, Warminster, 
PA, USA). The impedance spectra were evaluated in Echem Analyst 6.32 software (Gamry, 
Warminster, PA, USA). 
  

Figure 1. 3D printed specimens used for corrosion measurement: (a) compact surface, (c) detail of the
compact surface, (b) trabecular specimen and (d) single trabecula beam detail.

2.2. Surface Finishing

For the surface etching, the mixture of HNO3 (65%), HF (38%) and H2O (20 mL, 2 mL, 78 mL)
was used. Specimens were etched for 6 min in the ultrasonic bath followed by ultrasonication for
10 min in deionized water. The specimens were degreased in ethanol and acetone before the following
treatment. The surface anodization was realized in 1 mol/L H2SO4 for 10 min at 24 V. The final color of
the anodized samples was a vivid blue.

2.3. Electrochemical Measurement

The electrochemical behavior was studied in the physiological solution with 0.9 wt. % NaCl at
37 ◦C. Samples were cleaned with ethanol and acetone before the exposure. Standard three-electrode
setup with glassy carbon counter electrodes and Ag/AgCl with 3 mol/L KCl (abbreviated as SSCE) as
a reference electrode was used for electrochemical measurements. The open-circuit potential (OCP)
was stabilized for 12 h. The electrochemical impedance spectra were measured in the frequency
range from 60 kHz to 1.6 mHz with 10 mV/OCP AC amplitude after that. The measurement setup
was finished by potentiodynamic scan from −0.05 V/OCP to 1 V/SSCE with a polarization rate
of 1 mV/s. The susceptibility to non-uniform corrosion attack according to ASTM F746 standard
was further measured for all samples. The samples were polarized to 0.85 V/SSCE for 900 s after
one-hour stabilization of the OCP. The current density was monitored during the polarization. The
material was subsequently polarized to a lower potential value (0.4 V/SSCE) and the repassivation
potential was determined in the case of stable localized corrosion attack. As opposed to the
standard measurement, no artificial crevice was created on the sample, so that only the effect of
the non-homogeneity of the surface was observed. The exposure area was entered as a geometrical
area 3 cm2. All electrochemical experiments were realized with Reference 600 potentiostat (Gamry,
Warminster, PA, USA). The impedance spectra were evaluated in Echem Analyst 6.32 software (Gamry,
Warminster, PA, USA).
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3. Results and Discussion

Images of untreated surfaces (Figure 1) show residues of partly melted powder present on the
surface of 3D printed materials. The bond strength between the material and this particle might
not be high enough and there is a significant risk of loosening. This phenomenon is particularly
evident in trabecular systems. The surface of both types of specimens after etching is shown in
Figure 2. The partially melted particles of the powder were etched off during 6 min exposure.
The compact sample surface after etching consists of the approx. 50 µm valleys surrounded by local
sharp peaks (Figure 2a,b). The thickness of the trabecular single beams was reduced from 322 ± 21 µm
to 243 ± 21 µm. It is clear that this treatment changes the surface morphology and also causes the
dimensional changes that must be taken into account when using this treatment.
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Figure 2. Specimens after 6 min etching in acids mixture: (a,b) compact surface (plain and side view),
(c) trabecula beams.

The open-circuit potential time dependences for all surfaces are summarized in Figure 3.
The dependences were smooth without any sharp changes which could indicate corrosion attack.
The open-circuit potential was stabilized during 12 h of exposure. Its values indicate a passive state of
all samples [20]. The anodization caused the shift of potential to more noble values, especially in the
case of etched samples.
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anodization, (b) anodized surfaces.

Impedance spectra measured after 12 h OCP stabilization are summarized in Figure 4.
The impedance spectra of the compact specimen showed typical shape for the passive surface
of titanium alloys [21,22]. The phase angle was near −83◦ at the middle frequencies and rose at low
frequencies. The impedance modulus increased linearly in the region of middle and low frequencies.
There was another time constant at high frequency in the case of the trabecular surfaces (Figure 4a).
The impedance spectra of the anodized surfaces (Figure 4b) were more complicated. Even though the
anodized surface should act as an almost ideal capacitor, the impedance response does not match this
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behavior. There is a combination of the highly non-ideal surface and relatively thick surface oxide.
The phase shift increases at low frequencies.Metals 2020, 10, x FOR PEER REVIEW 5 of 12 
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identified an equivalent circuit (EC) was used for spectra fitting. The goodness of fit was evaluated 
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Figure 4. The electrochemical impedance spectra of specimens after 12 h in physiological solution
(symbols—data, line—fit): (a) surfaces without anodization, (b) anodized surfaces.

Figure 5 shows the equivalent circuits used to evaluate the impedance spectra. In these circuits,
the constant phase element (CPE) is used instead of a capacitor, which considers the non-ideal behavior
of the system. The impedance of the constant phase element is defined as Z = [C.(jω)α]−1, where α
∈ 〈0;1〉; if α = 1, the CPE acts as a pure capacitor and if α = 0, it acts as a pure resistor [23]. The CPE
also describes diffusion control when the α is near 0.5 [23,24]. Even the simplest spectra contain
two time constants. This is because the passive layer on titanium consists of an inner fully compact
part and an outer porous part. This implies the meaning of the individual elements as follows:
Rel—electrolyte resistance, CPEout and Rout—capacitance and resistance of the outer part of passive
layer, CPEin and Rin—capacitance and resistance of the inner part of passive layer (this equivalent to
charge transfer). [25–27]. The elements CPEs and Rs represent the capacitance and resistance of the
surface inhomogeneity such as high roughness and big pores [28–30] and CPEdiff describes diffusion
through the oxide layer [31,32].
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surface, (b) equivalent circuit for porous surface with diffusion element, (c) equivalent circuit for
porous surface with surface inhomogeneity, (d) equivalent circuit for porous surface with surface
inhomogeneity and diffusion. R = resistance, CPE = constant phase element.
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Table 1 summarizes the results of the impedance spectra evaluation. The second column identified
an equivalent circuit (EC) was used for spectra fitting. The goodness of fit was evaluated by chi-square
interaction and errors reach the values in order of 10−4 and better. The validity of the steady-state
impedance data was confirmed with the help of the Kramers–Kronig transformation (chi-square error
10−6). The α coefficients were approaching 1 in all cases except the CPEdiff element coefficient where
the values α were close to 0.5. The resistance elements analysis showed that the main contribution to
overall resistance was achieved by Rin.

The analysis of the equivalent circuit elements shows that the corrosion resistance increases in
the case of anodized specimens in comparison with the original surface. The turned surface shows
the highest values of the overall resistance. However, there is a significant difference between the
geometrical area (which is used for R and CPE values calculations) and the real surface of the not turned
specimens. The higher real area compared to the entered value caused a decrease in the calculated
resistance. The specimen etching has a negative influence on the corrosion resistance, this effect is
long term, as was mentioned in our previous study [33]. Nevertheless, the subsequent anodization
increased the corrosion resistance to the same level or higher as for the original surface. The CPEout

values indicate the thickening of the surface oxide layer and based on the analysis of the CPEdiff also
diffusion control of the corrosion process.

The potentiodynamic curves measured after 16 h of exposure are summarized in Figure 6.
The current density increases gradually from corrosion potential up to 0.4 V/SSCE in the case of surfaces
without anodization (Figure 6a). This typical behavior of titanium alloys results from the passive layer
reconstruction [7,11,22]. When the polarization rise stops, the current drops to a value corresponding
to the actual passivation current. This phenomenon is further described below. Sharp peaks are also
present on all types of non-anodized surfaces (except turned) indicating susceptibility to localized
corrosion attack. It is also apparent from these data that the trabecular materials need to undergo
surface modification because inhomogeneities on the surface resulting from the manufacturing process
could also lead to a localized corrosion attack and it is not possible to machine the surface mechanically
with such types of materials. Etching further amplifies this effect since the susceptible sites are already
etched to form preferential places. Nevertheless, even in these cases, there are no stable active pits,
which is evident from the fact that transients, even at higher potentials, do not result in a sudden
and sustained increase in current density. The highest values of current densities were measured on
trabecular samples; this was caused by higher real exposed surface relative to the geometrical area.
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Table 1. Impedance spectra evaluation according to the used equivalent circuit (EC).

Specimen
EC

Rel Rout Rin Rs CPEout αout CPEin αin CPEs αs CPEdiff αdiff Goodness

(Ω cm2) (Ω cm2) (Ω cm2) (Ω cm2) (S sα cm−2) (S sα cm−2) (S sα cm−2) (S sα cm−2) of Fit

original A 21.9 7.77 × 105 1.18 × 106 - 4.64 × 10−5 0.999 8.32 × 10−5 0.910 - - - - 8 × 10−4

turned A 21.6 226.4 1.12 × 107 - 2.12 × 10−5 0.893 4.84 × 10−6 0.878 - - - - 2 × 10−4

etched A 23.6 1.08 × 106 2.24 × 106 - 2.16 × 10−5 0.912 9.57 × 10−6 0.825 - - - - 1 × 10−4

original + 24 V B 22.0 714.4 1.54 × 106 - 7.73 × 10−6 0.869 8.42 × 10−6 0.745 - - 6.36 × 10−6 0.474 4 × 10−5

turned + 24 V B 21.1 1.44 × 103 4.76 × 106 - 9.56 × 10−7 0.934 6.68 × 10−6 0.705 - - 1.64 × 10−6 0.404 2 × 10−4

trabecular C 22.0 1.03 × 105 7.31 × 105 7.6 2.29 × 10−4 0.945 3.23 × 10−5 0.792 1.58 × 10−4 0.813 - - 1 × 10−5

trabecular etched C 21.4 7.90 × 104 8.85 × 104 5.3 4.09 × 10−4 0.932 1.09 × 10−4 0.924 2.89 × 10−4 0.775 - - 4 × 10−5

trabecular + 24 V C 32.9 2.45 × 104 9.12 × 105 105.8 6.72 × 10−5 0.792 5.48 × 10−6 0.952 1.44 × 10−4 0.661 - - 6 × 10−5

etched 24 V D 22.6 2.16 × 105 4.05 × 105 1.29 × 103 1.00 × 10−6 0.945 1.09 × 10−6 0.900 8.28 × 10−6 0.960 2.89 × 10−6 0.542 1 × 10−4

trabecular etched 24 V D 22.1 1.40 × 104 1.26 × 106 3.8 4.38 × 10−5 0.803 6.67 × 10−6 0.718 9.52 × 10−7 1.000 3.13 × 10−5 0.487 5 × 10−5
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The situation was different in the case of anodized surfaces. It is obvious from both potentiodynamic
curves (Figure 6b) and summarize results (Table 2) obtained from potentiodynamic curves measurement.
The anodic Tafel slope was over 120 mV in all cases, this suggests a passive surface. The current
densities at passivity decreased almost by two orders after anodization. The lowest changes were
recorded in the case of specimens with trabecular structure. This is caused by difference in the real and
geometrical surface area, which partly overlaps differences, especially in this case.

Table 2. Potentiodynamic curves evaluation.

Specimen Anodic Slope (mV/dec) jcor (A/cm2) jpas (A/cm2)

original 199 3.05 × 10−8 1.3 × 10−5

original + 24 V 286 2.50 × 10−8 7.4 × 10−7

turned 246 1.30 × 10−8 5.3 × 10−6

turned + 24 V 1273 1.50 × 10−8 1.0 × 10−7

etched 243 3.05 × 10−8 6.6 × 10−6

etched + 24 V 2024 2.00 × 10−8 4.2 × 10−8

trabecular 220 9.70 × 10−8 2.9 × 10−5

trabecular + 24 V 177 6.50 × 10−8 5.8 × 10−6

trabecular etched 138 1.55 × 10−7 4.3 × 10−5

trabecular etched + 24 V 219 5.50 × 10−8 4.3 × 10−6

It is also evident from the development of current dependence on the potential change that in the
case of turned and etched surfaces, which are subsequently anodized, the passive layer is fully stable
and is not further reconstructed. The anodic slope over 1 V suggests a thick oxide layer, which blocks
charge transfer. Comparing the current densities across the entire polarization region of the original,
turned, and etched surfaces show that etching is a pretreatment that leads to a general reduction in
current density for anodized materials. This effect is caused by the dissolution of the original layer,
reduction in morphological inhomogeneities and subsequent formation of a new more compact layer
after the etching process.

Transient peaks do not appear on any type of surface after anodization, and this significantly
reduces the risk of non-localized corrosion attack. The corrosion current density of all alloys
also decreases.

To verify the susceptibility to non-uniform forms of corrosion, a potentiostatic exposure was
performed, at which a significant anodic polarization occurred first, which aims to induce a stable
development of the localized attack. This part is followed by a phase with a reduced potential
while observing the ability of repassivation as expressed by the current drop. The potentiostatic
curves, measured after one-hour stabilization of the open circuit potential, are summarized in Figure 7.
All curves showed the typical behavior of the passive surfaces. In the first part of polarization,
the current densities exponentially decrease throughout whole duration of polarization. Some peaks
were indicating the local breakdown of the passive layer. However, the stable development of
the localized corrosion attack was not detected in any case. As discussed above, in the absence
of breakdowns at such potentials, the passive layer on titanium alloys is finished, which is very
gentle anodization. The overall differences of the passive current densities are mainly due to the
different actual exposed area. In the case of non-anodized materials, the current density has dropped
sharply each time the potential is reduced, which is due to the charging current. Subsequently,
after polarization of the interface, the current density value is completely stable. This indicates that
there are no significant changes in the passive layer. For non-etched anodized alloys, the situation is
similar to that of non-anodized alloys. Different behavior occurs in etched and subsequently anodized
alloys. There is a markedly longer polarization time of the interface, resulting in slower current
response and higher overall charge required for polarization. A current density is not stabilized on
the etched anodized surface for the entire second part of polarization. This is due to the quality of
the passive layer created by this combination of treatments. This layer almost completely blocks
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charge transfer, providing excellent material protection and the current course represents a capacitor
(thick oxide layer) discharge.Metals 2020, 10, x FOR PEER REVIEW 9 of 12 
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4. Conclusions

The corrosion resistance of the additively manufactured Ti-6Al-V alloy with different surface
finishes was described. The as-printed surface with partially melted powder particles shows potential
susceptibility to localized corrosion attack. The surface finishes attained by turning or etching minimize
this risk. The surface anodization significantly increased corrosion resistance. The surface etching
followed by anodization seems to be the best surface treatment from the practical point of view.
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