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Abstract: Rare earth elements (REE), originally found in various low-grade deposits in the form
of different minerals, are associated with gangues that have similar physicochemical properties.
However, the production of REE is attractive due to their numerous applications in advanced materials
and new technologies. The presence of the radioactive elements, thorium and uranium, in the REE
deposits, is a production challenge. Their separation is crucial to gaining a product with minimum
radioactivity in the downstream processes, and to mitigate the environmental and safety issues. In the
present study, different techniques for separation of the radioactive elements from REE are reviewed,
including leaching, precipitation, solvent extraction, and ion chromatography. In addition, the waste
management of the separated radioactive elements is discussed with a particular conclusion that
such a waste stream can be employed as a valuable co-product.

Keywords: rare earth elements; thorium; uranium; separation methods; precipitation; solvent
extraction; leaching; membrane

1. Introduction

The REE are fifteen lanthanide elements in the periodic table with atomic numbers of 57 to 71,
including lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm),
samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho),
erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) as well as scandium (Sc) and yttrium
(Y) with atomic numbers of 21, and 39, respectively. There is a fast growth in new applications and
demand for the REE, especially in energy, environment, and high technology fields with durability,
high efficiency and low carbon emissions [1–5]. These elements are called “rare” owing to their difficult
extraction from deposits that is attributed to the similarity in the physical and chemical properties
of REE and gangue minerals and to the difficulty to find concentrated deposits. Another challenge
for REE production is the heterogeneity of these elements in the deposits [4,6–9], which plays a vital
role in configuring the unit operations regarding the geology, versatility, and composition of the
minerals [4,6]. The production of REE requires several steps of magnetic, gravity, and electrostatic
separations in addition to flotation to efficiently separate the REE from associated gangues with
similar physical properties. The individual production of the REE is very challenging owing to their
similar chemical properties, and specific extraction techniques are required to recover REE; however,
europium and cerium are exceptions, i.e., cerium can be formed as, either trivalent or tetravalent
during hydrometallurgical process where the tetravalent cerium can be separated from the trivalent
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REE [10,11]. Figure 1 shows a typical REE production process, including geology, mining, physical
beneficiation, hydrometallurgy, and separation of individual elements [6].

Figure 1. The REE general processing plant.

Since mining and refining of low-grade REE-bearing minerals are technically infeasible owing to
a lithophilic nature of the REE [12,13], high-grade REE-bearing minerals, such as bastnäsite, monazite,
and xenotime, are used for economic extraction of these elements [4,12,14–16]. Table 1 summarizes
both the low-grade and high-grade REE-bearing minerals.

Among various gangues, radioactive elements are a serious challenge in the REE production
process, regarding specific regulations for safety management in the processing units (for more details
refer to [17–19]). Thorium (Th) and uranium (U) are naturally occurring radioactive materials (NORM),
which can be found in the REE deposits (Table 1). Monazite and xenotime are the most known
REE-bearing minerals that contain radioactive elements. For instance, the REE-bearing ore at Mountain
Pass, i.e., a major bastnäsite resource in California with rare earth oxides (REO) of 8.5 wt.%, contains
thorium (Th) and uranium (U) of 0.02, and 0.002 wt.%, respectively [19]. In addition, the Bayan Obo
bastnäsite and monazite deposit in China contains minerals such as fluorite, magnetite, barite, calcite
and quartz with magnetic susceptibility, specific gravity, electrical conductivity, or floatability similar
to REE-bearing minerals [20,21].

The low concentration of radioactive elements in the upstream rare earth ore processing units, e.g.,
in physical beneficiation, results in quite low emission of radioactivity, whereas the higher concentration
of the radioactive elements in downstream separation lines requires safety measurements to be carefully
considered. For example, an exposure of a worker to an ore containing 500 ppm thorium and 50 ppm
uranium, staying 1 m away from a large mass of the ore for an entire working year, leads to a total
exposure of 2.4 mSv that is below the dose limit for a NORM worker, 20 mSv [17]. This exposure is
mainly caused by ore dust inhalation (at 1 mg/m3) and incidentally ore ingestion (at 100 mg/day).
Therefore, a step for separation of thorium and uranium is required to minimize risks associated with
REE production in terms of safety, environmental hazards, and quality of the final product [22].

In the present paper, various hydrometallurgical techniques applied during REE production
process for separating thorium (Th) and uranium (U) are reviewed, including leaching, precipitation,
solvent extraction, ion chromatography, and membrane to understand the advantages and limitations
of each technique. In addition, the process selection with regards to the feed properties, waste
management of the separated radioactive elements, and how they can be treated to produce valuable
co-products are also discussed.
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Table 1. REE-bearing minerals and gangue minerals from deposits.

Type Mineral Formula
Average Composition (wt.%)

Ref.
REE Oxide ThO2 UO2

Carbonate
Ancylite Sr(Ce,La)(CO3)2OH·H2O 46 0–0.4 0.1 [6]

Bastnäsite (Ce,La)CO3F 74 0–0.3 <0.9 [6]
Parisite Ca(REE)2(CO3)3F2 59 0–0.5 0–0.3 [6]

Phosphate

Apatite Ca5(PO4)3(F,Cl,OH) 19 - - [4,6]
Britholite (REE,Ca)5(SiO4,PO4)3(F,OH) 56 1.5 - [4,6]
Monazite (REE,Th)PO4 35–71 0–20 0–16 [6,23]
Xenotime YPO4 61 - 0–5 [4,6]

Oxide
Brannerite (U,REE,Ca)(Ti,Fe)2O6 6 - - [6]
Perovskite (Ca,REE)TiO3 <37 0–2 <0.05 [6]

Silicate
Allanite (REE,Ca)2(Al,Fe)3(SiO4)3(OH) 30 0.3 - [4,6]

Cheralite (REE,Th,Ca)(P,Si)O4 5 <30 - [4,6]

It is worthy of mentioning that recovery of REE from secondary sources such as electronic
wastes [24,25], red mud (Bauxite) [26–29], and coal [30] has also been recently investigated.
The separation of radioactive elements during these processes is out of the scope of the present
review article and requires further study.

2. Separation by Leaching

Leaching is a process based on the different solubility of elements in a leach liquor. To separate the
radioactive elements from REE, leaching process is typically applied on, either fresh or concentrated
ore [4], in order to maximize the solubility of radioactive elements [31–34] or REE [35] in the liquor.

According to the literature, a one-step leaching process faces technical issues during separation
of thorium and uranium from REE owing to the occurrence of undesired reactions and leaching of
un-wanted components [36]. For instance, Lapidus and Doyle [33] applied a one-step leaching process
to separate radioactive elements from a monazite concentrate using oxalate reagent for leaching out
thorium oxalate in the liquid form while rare earth oxalate remains in the solid form. They observed
that either Th(HPO4)2 or Th3(PO4)4 is re-precipitated in the liquor at a pH < 3, and oxalate reagent
forms stable complexes with other metal impurities, instead of reaction with radioactive elements.
To overcome the drawbacks of this process, a two-step cracking-leaching process was proposed. In the
first step (cracking), an alkaline reagent, e.g., NaOH, cracks the concentrate of the REE-bearing mineral,
either monazite or xenotime, to produce a hydroxide cake containing the REE, thorium, uranium,
and some other impurities, reactions 1 and 2 [31,33,35]. This step eliminates the re-precipitation of
thorium phosphate resulting in the formation of hydroxide forms of the REE and thorium, which can
be separated in the second leaching step [34,37,38],

2REPO4 + 6NaOH→ 2RE(OH)3(↓) + 2Na3PO4 (1)

Th3(PO4)4 + 12NaOH→ 3Th(OH)4(↓) + 4Na3PO4 (2)

After the cracking step, acid leaching of the produced hydroxide cake is performed wherein
the acidic oxalate reagents are employed to leach the radioactive elements while the REE oxalate
is insoluble [34]. If the REE is preferred to be in the liquor solution, other acids such as nitric acid
(reaction 3) [35] or hydrochloric acid (reaction 4) [37] can be used instead of oxalate reagents; however,
the uranium also tends to leach out with the REE if the pH is not properly controlled,

RE(OH)3 + 3HNO3 → RE(NO3)3(aq) + 3H2O (3)

RE(OH)3 + 3HCl→ RECl3(aq) + 3H2O (4)
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The two-step approach can be improved by employing high-pressure leaching to stabilize products
that are unstable at atmospheric conditions. Figure 2 shows an increase in the recovery of thorium
by ammonium carbonate (250%), from 13% at atmospheric pressure to 98% at 6.5–10 atm at 70 ◦C,
while no significant change occurs in the recovery of REE [31].

Figure 2. Effect of the pressure on the recovery of thorium (Th) and REE at 70 ◦C, adapted from [31].
(Reproduced with permission from ref. [31], copyright (2002), Elsevier)

In such a high-pressure leaching process, the ammonium carbonate leaches both the thorium,
reaction 5, and uranyl hydroxides, reaction 6, while it produces a solidus complex after reaction with
REE, reaction 7 [31,32]. Typically, an excess amount of reagent is employed in either atmospheric or
high-pressure leaching owing to the consuming part of the reagent in the secondary reactions,

Th(OH)4 + 5(NH4)2CO3 → (NH4)6[Th(CO3)5] + 4NH4OH (5)

UO2(OH)2 + 3(NH4)2CO3 → (NH4)4[UO2(CO3)3] + 2NH4OH (6)

2RE(OH)3 + 4(NH4)2CO3 → RE2(CO3)3(NH4)2CO3(↓) + 6NH4OH (7)

Figure 3 illustrates a flowsheet summarizing the cracking-leaching approaches (two-step leaching
process) wherein, either REE or radioactive elements can be extracted in the leach liquor, depending on
the leaching reagent. Table 2 summarizes the experimental conditions and the overall recovery of REE,
thorium, and uranium in leach liquor for the two-step cracking-leaching process.

Table 2. Uranium and thorium separation from REE by a two-step cracking-leaching process.

REE-Bearing Mineral Reagent
Operating Conditions Overall Recovery in

Leach Liquor (%)
Ref.

Pressure (atm) Time (h) T (◦C) Th U REE

Xenotime Nitric acid 1 - 60 <1 - >98 [35]

Concentrated monazite
(87 wt.% REE)

Ammonium
carbonate 6.5–10 1–2 80 99 95 2.5 [31]

Monazite (18.5 wt.% REE) Ammonium
oxalate 1 <2 40 100 >40 <1 [33]
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Figure 3. Leaching-cracking approaches for separation of REE from radioactive elements.

3. Separation by Precipitation

The REE can be separated from other elements in a liquor via precipitation method using an
appropriate reagent such as oxalic acid, reaction 8 [39–42],

2RE3+ + 3H2C2O4 + 10H2O→ RE2(C2O4)3·10H2O(↓) + 6H+ (8)

To separate the REE from the radioactive elements through precipitation, the most important
parameters, include the type of the liquor feed, REE concentration in the feed, the concentration of
the precipitation reagent, and the mass ratio of the reagent to REE. The pH is another parameter
that determines the performance of selective precipitation of uranium, thorium, and REE. The ideal
case is to find distinct pH values to separate radioactive elements from REE. Uranium and REE
precipitate at close pH values with a risk of co-precipitation, whereas a high recovery of thorium
is achievable since its precipitation requires a different pH [43–46]. Table 3 presents the pH ranges
required for the precipitation of uranium, thorium, and REE in both chloride and sulfate liquors. In an
acid liquor, some of alkali precipitation reagents are preferred owing to higher selectivity towards
radioactive elements [46–49]. For instance, ammonium hydroxide (NH4OH) at a pH close to 5 [50],
and sodium hydroxide [47] precipitate thorium with a small loss of REE. Whereas, potassium iodate
(KIO3) is inefficient in the precipitation of thorium due to the co-precipitation of REE [50]. In addition,
ammonium hydroxide (NH4OH) precipitates uranium at a pH close to 4.5, which is far enough from
the REE precipitation pH of about 6 [51].

Table 3. The pH ranges for precipitation of thorium, uranium and the REE in different liquors.

Elements
Precipitation pH (Approx.)

Chloride Liquor Sulfate Liquor

Th 4.8–5.8 1–2
U 5.5–7 6

REE 6.8–8 3–5.5

3.1. Types of the Liquor and Reagent

Typically, the main liquors produced through the industrial hydrometallurgical processes are
chloride and sulfate [4]. In the chloride liquor, precipitation of the radioactive elements is usually
achieved by adding an alkali reagent. If the pH is kept close to or below 5.5, the total thorium and a
part of uranium are likely precipitated and recovered while the loss of the REE is about 2% [44,45].
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A lower pH for precipitation of radioactive elements has been reported in a sulfate liquor compared to
the chloride liquor. Table 3 presents the pH range required for precipitating thorium and uranium
from chloride and sulfate liquors. For example, 100% thorium is precipitated from sulfate liquor at a
pH close to 1 using ammonium hydroxide. However, REE (44.7% La, 63.5% Ce, and 63.2% Nd) are also
co-precipitated under such a highly acidic condition [43,46].

In some cases, nitrate liquor has also been studied for separation of uranium from REE [51,52]
wherein the uranium was precipitated by 90% using hydroxide reagents at a pH of 4.5 [51]. Further,
a higher efficiency has also been obtained for a precipitation pH between 6 to 8, at which almost total
recovery of uranium is achieved in the form of β–UO2(OH)2 [52].

The type of reagent is another critical parameter that determines which elements, e.g., thorium,
uranium, or REE, are precipitated, while the others remain in the aqueous phase. A double sulphate
reagent produces the REE precipitate in the form of MRE(SO4)2 with M representing sodium, potassium
or ammonium, leaving radioactive elements in the aqueous phase, reaction 9 [53]. Precipitation of the
trivalent REE is attributed to the low solubility of the REE sulfate in water, resulting in the separation
from the radioactive elements and tetravalent REE, i.e., cerium (IV):

RE(SO4)3 + Na2SO4 + 2H2O→ Na2SO4RE2(SO4)3·2H2O ↓ (9)

3.2. Multi- or Single-Step Precipitation

The precipitation for separation of radioactive elements and REE can be conducted in either
multi-steps or a single step, regarding the types of the liquor and reagents. A secondary purification
step is necessary when the reagent is selective to one of the radioactive elements, while the other one
remains with REE. For instance, a 30% concentrated oxalic acid precipitates 99% thorium along with
98% REE at 30 ◦C, leaving uranium in the solution according to reactions 10 to 13 [35,39,46,54]. Next,
a mixed alkali solution of Na2CO3 and NaHCO3 selectively leaches and recovers 99% thorium from
the oxalate cake, reaction 14, while the REE remains in the solid form as carbonates [39]:

RE2(SO4)3 + 3H2C2O4 → RE2(C2O4)3 ↓ +3H2SO4 (10)

UO2SO4 + H2C2O4 → UO2(C2O4) + H2SO4 (11)

UO2(C2O4) + 3H2SO4 → UO2SO4 + 2CO2 + 3H2O (12)

Th(SO4)2 + 2H2C2O4 → Th(C2O4)2 ↓ +2H2SO4 (13)

Th(C2O4)2 + 4Na2CO3 + 2NaHCO3 → Na6Th(CO3)5 + 2Na2C2O4 + CO2 + H2O (14)

Vijayalakshmi et al. [46] also reported a multi-step separation of radioactive elements from REE
wherein the thorium is initially precipitated from a sulfate liquor by adding ammonium hydroxide
(NH4OH). Then, REE was separated from uranium in a secondary precipitation step in the form
of REE oxalate. They suggested employing an excess amount of oxalic acid to lower the pH of the
solution, and adjust it between 1 and 2 to avoid co-precipitation of impurities, e.g., aluminum and iron,
with REE [40]. In such a multi-step separation of radioactive elements and REE, control of pH is more
comfortable during the process, and the efficiency of the recovery is high. However, a large amount of
reagent is required, which is economically infeasible.

To overcome the drawbacks of the multi-step precipitation, various studies were conducted to
recover either the REE or both thorium and uranium in a single-step process. Kul et al. [41] applied a
double-salt single-step approach and reported 98% recovery of REE in the precipitate while only 15%
thorium is co-precipitated. The hydroxide reagents have the potential for a single-step recovery of
the radioactive elements from a chloride liquor [48,49,55]. For instance, the hydrated lime, Ca(OH)2,
precipitates thorium at a pH of 2.5, while the loss of REE through co-precipitation is minimized [48].
Yu et al. [49] employed the hydrated lime to extract the thorium and uranium from a chloride liquor
which was produced from the processing of monazite and REE carbonatite minerals from the Montviel
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deposit in the North West of Quebec in Canada. They demonstrated that the addition of hydrogen
peroxide (H2O2) is necessary to oxidize the iron and facilitate its precipitation. They reported recovery
of 99% Th, 80% U, and over 90% iron and phosphate impurities, while minimizing the co-precipitation
of REE to less than 2%. The advantage of the single-step separation process is a small amount of reagent
required for the precipitation, whereas adjusting a proper pH for selective precipitation is difficult.

The flowsheet in Figure 4 [39,46,48], illustrates various potential precipitation pathways to separate
radioactive elements from REE in a sulfate or chloride liquor that would be produced in the upstream
hydrometallurgical processes. Table 4 summarizes the recovery yield of the radioactive elements
obtained from different precipitation processes.

Figure 4. Process flowsheet for separation of Th and U from REE by precipitation.

Table 4. Uranium and thorium separation from REE by precipitation technique.

Original Ore Upstream
Liquor Feed

Precipitation Reagent Final pH
Precipitation Recovery (%)

Ref.
Th U REE

Monazite Sulfate
1st step: Oxalic acid 0.7 98 - 99

[39]2nd step: Alkali leaching - >99 - <1

Synthesized
solution Nitrate KOH and NH4OH 4.5 - 90 low [51]

Monazite,
Apatite Chloride Hydrated lime and

NH4OH 2.5 >99 - 5 [48]

Monazite, REE
carbonate Chloride Lime and H2O2 - 99 >80 <2 [49]

Bastnäsite,
Monazite

Hydroxide
cake HCl 5.8 >99 >99 2.3 [56]

Xenotime Sulfate
1st step: NH4OH 1.5–1.9 >99 - <6

[46]2nd step: Oxalic acid - - - >98

4. Separation by Solvent Extraction

The solvent extraction technique has received significant attention for separation of thorium and
uranium from REE by using appropriate extractants, which can be dissolved into an organic solvent to
provide an immiscible phase and enough interface with the aqueous liquor of the REE.

This process is typically conducted by two main groups of extractants, including amine and
organophosphorus extractants. The amine group can be divided into primary and tertiary types
where the primary amine is highly selective towards the thorium in either sulfate or chloride liquors,
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and the tertiary amine is selective towards the uranium in sulfate liquors. The organophosphorus
extractants are usually divided into acid and neutral types, which are applicable to nitrate, chloride
and sulfate liquors.

4.1. Solvent Extraction with Amine Extractants

Amine extractants have been employed in the AMEX process, which was developed in the late
1950s, for extracting radioactive elements from REE-bearing minerals. In this process, the amine
extractants are mixed with a sulfate leach liquor produced from monazite sands [57]. Thorium is first
extracted with a primary amine (reaction 15) followed by a nitric acid stripping step. Then, uranium is
extracted with a tertiary amine (reaction 16) and stripped with sodium carbonate,

4RNH2H+HSO−4 (org) + [Th(SO4)4]
4−
(aq) →

(
RNH2H+

)
4
[Th(SO4)4]

4−
(org) + 4HSO−4(aq) (15)

4R3NH+HSO−4 (org) + [UO2(SO4)3]
4−
(aq) →

(
R3NH+

)
4
[UO2(SO4)3]

4−
(org) + 4HSO−4(aq) (16)

Table 5 lists some amines employed for solvent extraction of radioactive elements from the
REE [58–60].

Table 5. Performance of amine extractants for uranium and thorium separation from REE.

Amine Experimental Conditions Extraction (%)
Ref.

Type Name Liquor Ore pH Time (min) Thorium Uranium REE

Primary

Primene JM-T Sulfate Monazite - 5 95.4 8.8 0.32 [58]

N1923 Sulfate Bastnäsite - - >97 - ECe: 3–8 [60]

Octylamine Sulfate Monazite 4 15 70–80 50–60 - [59]

Secondary N-methylaniline Sulfate Monazite 4 15 70–80 5–10 0 [59]

Tertiary

Alamine 336 Sulfate Monazite - 5 3.1 82.4 0.02 [58]

N,N-dimethylaniline Sulfate Monazite
4 15 70 15–20 ECe, Eu, Y: 0 [59]

7 30 0 55 ECe, Eu, Y: 0 [59]

Mixture Primene JM-T and
Alamine 336 Sulfate Monazite - 5 45.5 58.8 0.04 [58]

The Primene JM-T is the most applied primary amine to extract thorium, and the Alamine 336 is a
tertiary amine that has been employed for uranium extraction from the REE-bearing minerals [58,61,62].
The N1923, i.e., (CnH2n+1)2CHNH2 (n = 9–11), is an alternative primary amine for this process, which
has been employed in Baotou and Sichuan in China [60,63–65]. The N1923 extractant is characterized by
low solubility in water and a high separation factor between thorium and the REE, especially in sulfate
liquors [66]. For instance, the selectivity of the N1923 for thorium is 600 times higher than for cerium in
a sulfate liquor produced from the bastnäsite and monazite concentrates [60,66]. The reaction between
the N1923 and thorium takes place in the interfacial zone, and it is controlled by the thorium mass
transfer [67]. Figure 5 [60] shows a flowsheet for the recovery of thorium from REE-bearing minerals,
where a thorium recovery of over 99% is achievable in an organic phase using a primary amine in a
multi-step process, including solvent extraction, scrubbing, and precipitation [60].

Employing a mixture of primary and tertiary amines is a promising method for the simultaneous
extraction of thorium and uranium from the REE, which is economically and technically favored due
to a decrease in the number of steps in the solvent extraction process. For instance, simultaneous
separation of Th and U has been reported from sulfate liquor during the processing of monazite using
a mixture of Primene JM-T (i.e., a primary amine) and Alamine 336 (i.e., a tertiary amine), wherein
the optimized process conditions (concentration of amines, contact time, and pH) resulted in the
extraction of 99.9 and 99.5% thorium and uranium, respectively, while the extraction of REE was less
than 0.1% [58].
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Figure 5. Process of separating Th from REE of Baotou bastnäsite leaching.

4.2. Solvent Extraction with Phosphorous Extractants

Phosphorous extractants are alternative for amines to extract the radioactive elements [4,68–72].
This group of extractants includes phosphate esters and amines. Table 6 presents the performance of
different types of organophosphorus extractants during the solvent extraction process for separating
Th and U from different REE-bearing liquors.

Table 6. Phosphorous extractants for uranium and thorium separation from REE.

Type of
Extractant

Feed Liquor Phosphorous Extractant
Extraction (%)

Ref.
Th U REE

Acid
Acidic Cyanex 272 83 - 12 [69]
Nitrate DEHEHP 20 Ce: 95 [65]
Nitrate Mixture of HEH and EHP in kerosene 95 - Ce: 99 [73]

Neutral
Nitrate TiAP (2 solvent extraction steps) 99 95 <2 [74]
Nitrate p-phosphorylated calixarene 99 - 5 [75]
Nitrate TEHP in n-paraffin 50–77 2.5 Y: 0.17 [68]

Other
Nitrate Aliquat 336 97 54 <3 [32,76]
Nitrate polyaramide 90 - >48 [77]

4.2.1. Acid Organophosphorus Extractants

Acidic organophosphorus extractants such as di-(2-ethylhexyl)-phosphoric acid (DEHP),
(2-ethylhexyl) 2-ethylhexyl-phosphonic acid (EHEHP), and di-(2-ethylhexyl) 2-ethylhexyl phosphonate
(DEHEHP), have been proposed as promising reagents to separate radioactive elements from
REE [64,65,78,79]. Reaction 17 shows absorption of thorium during treatment with DEHEHP [64],

Th(NO3)
3+ + 3NO3

− + L(aq) → Th(NO3)4·L2(org) (17)

where L is the ligand or extractant. The acid organophosphorus extractants are efficient, especially for
the extraction of radioactive elements from highly acidic sulfate solutions. In addition, DEHP, EHEHP,
and DEHEHP can be employed for individual separation of the REE [80], since these extractants have
a low affinity to extract trivalent REE while cerium(IV) is simultaneously extracted with thorium and
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uranium [65]. Nonetheless, to avoid a high loss of the tetravalent cerium, it would be individually
recovered in a downstream stripping. Moreover, cerium(IV) can be recovered by applying a second
solvent extraction process to the organic phase, owing to a high separation factor of cerium (IV) over
thorium, which is 36.

The Cyanex is another type of acid organophosphorus extractant that is widely employed for
thorium and uranium separation from REE [69,81–83]. The mechanism of metals extraction by Cyanex
is the cation exchange [69], where the strength of the acid determines the performance of the Cyanex
extractants. The commonly used Cyanex extractants are the Cyanex 272 (di-2,4,4-trimethyl phosphonic
acid), Cyanex 301 (bis-2,4,4-trimethylprntyl phosphonic acid) [84], and Cyanex 302 [69]. The Cyanex
272 shows higher efficiency compared to the Cyanex 302 for separating thorium from lanthanides
due to the higher strength of the latter acid [83]. In addition, applying a mixture of extractants, e.g.,
a mixture of HEH and EHP in kerosene, is a promising approach to increase the efficiency of the solvent
extraction for separating thorium from REE (Table 6).

4.2.2. Neutral Organophosphorus Extractants

The tri-n-butyl phosphate (TBP) is the most common neutral organophosphorus extractant
for separating thorium and uranium from REE that is especially efficient in a nitrate medium.
Tris(2-ethylhexyl) phosphate (TEHP), and tri-iso-amyl phosphate (TiAP) are other neutral
organophosphorus extractants, which are usually dissolved in n-paraffin or in xylene [68,74,85–87].
In terms of efficiency, the TEHP has a special affinity to uranium, which leads to the loss of some
thorium in the aqueous phase. Therefore, the TEHP should be employed in a two-step solvent
extraction (Figure 6) to recover uranium and then thorium [68].

Figure 6. Separation of thorium and uranium from REE by solvent extraction method with TEHP
in n-paraffin.

Calixarene is another group of neutral organophosphorus extractants appropriate for recovering
radioactive elements from REE [71,73,75,88]. For instance, 5,11,17,23-tetra(diethoxyphosphoryl)-
25,26,27,28-tetrapropyloxy calixarene and p-phosphorylated calixarene have been employed, either
as a resin in chromatography to concentrate thorium and uranium [88] or as a solvent extractant to
recover thorium and uranium from the REE nitrate liquors [71,75]. The efficiency of thorium extraction
(reaction 18) would vary with the concentration of nitric acid used in the upstream process. It is
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reported that around 85% of thorium is extracted using 2 mol/L nitric acid while the extraction of REE
(Gd, La, and Yb) is less than 10% [75],

Th4+ + 4NO−3 + 3Calixarene→ Th(NO3)4·3Calixarene. (18)

4.2.3. Improvement of Solvent Extraction Process

Although various types of extractants have been applied in the solvent extraction process to
separate radioactive elements from REE [32,76,77,89], the selection of an appropriate extractant is a
function of its cost, selectivity towards one of the radioactive elements, and the feed liquor (sulfate,
nitrate or chloride). For instance, Cyanex extractant shows poor metal extraction, is costly and requires
high acidic environments, which make it infeasible for industrial applications.

Employing a mixture of acid and neutral organophosphorus extractants potentially improves the
solvent extraction process that would result in a higher separation efficiency than using each extractant
separately. For instance, although the selectivity in uranium extraction by acid organophosphorus
PC88A (mono (2-ethyl hexyl) ester) showed better performance than the neutral organophosphorus
TBP, the best result was obtained with a mixture of both, where the distribution of uranium was 0.1,
1.1, and 2.3 after 20 min treatment with TBP, PC88A, and their mixture (0.15 M TBP and 0.15 M PC88A
in xylene), respectively [86,90]. This enhancement in performance is attributed to the role of TBP,
which dehydrates uranium, resulting in an enhancement in the hydrophobic nature of the species and
improving the extraction by the mixture.

In addition, solvent extraction is typically followed by a stripping step to separate the recovered
radioactive element(s) from the accompanying reagent. Recovery of the radioactive elements is usually
over 90% after stripping [74,82]. For the stripping step, an appropriate acidic reagent is employed
depending on the feed of the solvent extraction [69,74,85,86,90]. For instance, for a feed of sulfate
solution, nitric or sulfuric acid is employed as the stripping reagent [58]. For a feed of nitrate liquor,
the stripping reagent is usually hydrochloric acid or sulfuric acid [69,76,82].

5. Separation by Ion Chromatography

5.1. Cation Exchange Resin

Cation exchange column has been employed to investigate chromatography principles on the
separation of radioactive elements from REE [91–94]. In ion chromatography, it is possible to employ
an active stationary phase or an active mobile phase, circulating in a neutral chromatography column.
A configuration of a silica gel resin impregnated with ammonium nitrate (NH4NO3) in mobile phases
of HDEHP (di-(2-ethylhexyl)-dithiophosphoric acid) and HDiBDTP (di(iso-butyl)dithiophosphoric
acid) resulted in the separation of metal ions and the individual REE [94,95]. This method is based on
different retention times of thorium, uranium, and REE in the column, which is affected by the employed
resin [91]. For this purpose, various resins have been employed such as transUranic-Element Specific
(TRU Spec), i.e., a resin composed of TBP and octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine
oxide (CMPO) and supported on an inert polymer substrate [93], and the Dionex, i.e., a column for the
separation of transition and lanthanide metals from contaminated water [92].

These columns adsorb all the elements of interest and separate them using different eluent.
Once adsorbed, the order of elements elution can vary in function of the column resin. By employing
appropriate eluents, thorium and uranium can thus be recovered individually with an efficiency of
over 90% [91,93]. For instance, Figure 7 [91] shows that the elements of interest, i.e., thorium, uranium,
and the REE, are adsorbed in the Ion Pac CS 5 column, then recovered separately with a mixture of
hydrochloric acid and ammonium sulfate as eluent. Accordingly, uranium is initially recovered in the
form of UO2Cl−, then thorium is recovered as ThSO4

2+ [91]. Another chromatographic investigation
showed over 95% recovery of the light REE, which was adsorbed in a transuranic-element specific
resin (TRU Spec), using a LN Spec resin column by a nitric acid elution; later, thorium and uranium
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were recovered, respectively, by hydrochloric acid and a mixture of hydrochloric and hydrofluoric
acids [93,96].

Figure 7. Cation exchange extraction with Dionex Ion Pac CS5 column.

In addition, a combination of different chromatographic columns with different resins can achieve
a higher recovery and purity of the products, in addition to the separation of REE from one to
another [97,98]. However, the low flow rate of the eluent, e.g., 0.25 to 1.5 mL/min, in the cation
exchange resin columns hinder their industrial application. This technique might be suitable in a
downstream step where high purity is required.

5.2. Anion Exchange Resin

The anion exchange column is an alternative process for separating metal ions from the
contaminating elements where chelating resins such as Dowex [99] and Amberlite [100–106] are
employed. The efficiency of the separation depends on both the anion exchange resin and the type
of acidic eluent [99–101,106]. A malonic acid eluent in methanol is employed to circulate impurities
through the Dowex ion-exchange column, resulting in the adsorption of uranium with an efficiency
of over 99%. However, thorium recovery was inefficient, and it remained with REE in the eluate.
The Amberlite XAD-4 is another anion exchange resin that is applicable in a wide range of pH [100]
and could achieve 99% recovery of uranium [107]. Compared to the XAD-4, the Amberlite XAD-2 has
less surface area and larger pore diameter, and extracts uranium when impregnated with Cyanex 302;
however, it also partially co-extract thorium (separation factor U/Th = 1.2 × 104) [101]. In some cases,
methanol is employed to elute the collected uranium in the column [101,107].

The anion exchange resin column is effective for uranium separation from REE, whereas it is
inefficient for thorium separation [108]. Therefore, it can be used as the last step of REE purification.
The Amberlite IRA 402 Cl resin was applied as a final purification step in a successive separation of
thorium and uranium by precipitation. The low concentration uranium remained with the REE was
then separated by anion chromatography, where REE recovery of 99% was achieved by the elution
with NaCl. Next, 99% of uranium was recovered by water elution, Figure 8 adapted from [106].

In terms of the potential for the scale-up, in anion exchange resins, similar to cation exchange
resins, the small flow rate of the feed solution, e.g., around 1 mL/min, is a significant limitation for an
industrial-scale application [99,100,106].
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Figure 8. Flow diagram of uranium removal from REE.

6. Separation by Membranes

Membranes have emerged as a new method for recovering thorium and uranium from the
REE. At first glance, membranes were used due to their selectivity to individually recover thorium
and uranium from other metal ions in liquid solutions [109–111], e.g., recovery of thorium by either
graphene oxide (GO) or a silica membrane [112,113]. Such a recovery occurred by the formation of
a complex between the element of interest and the membrane. In general, membranes have proved
to be efficient and selective in acidic conditions at a pH of 4 to 5.5 for recovery of uranium and
lower than 4 to recover thorium. However, to increase the recovery of radioactive elements, it is
required to functionalize the membrane using an additive with a higher selectivity towards target
elements [114–119]. Membrane functionalization is done by polymer adsorption at the membrane
surface. Several functionalization methods are described in detail by Xu et al. [120]. The functionalized
membrane has two main purposes, increasing the membrane resistance to the acid media, i.e., at pH
lower than 4, and allowing for a better affinity of the membrane toward some ions by modifying some of
the membrane parameters, e.g., surface rugosity, conductivity or hydrophobicity [120,121]. In this case,
membrane functionalization is thus synonym of a increasing the selectivity of the membrane towards
thorium and uranium versus REE (neodymium, europium, and samarium) at ambient conditions
and pH below 2. For instance, Li et al. [109] functionalized graphene oxide with PDA (GO-PDA) and
showed that, as in Figure 9 adapted from [109], it is more efficient for simultaneous recovery of thorium
and uranium as compared with a graphene oxide membrane. The selectivity increase was caused by
the surface modification of the functionalization that generated porous channels in the membrane that
allowed the REE to pass through at low pH while being impermeable to thorium and uranium [109].

Despite the encouraging performance of the functionalized membranes for simultaneous recovery
of radionuclides from the REE, further study is essential to evaluate the effect of various functionalized
groups towards selectivity or the regeneration capability of the membranes, especially at high
acidic conditions.
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Figure 9. Separation factor of actinides/Nd by graphene oxide (GO) and functionalized graphene
oxide with PDA (GO-PDA) membranes. (Reproduced with permission from ref. [109], copyright
(2012), Elsevier).

7. Selection of a Separation Process and Potential Waste Management Approaches

Selection of an appropriate process from the presented methods for separating radioactive
elements from REE requires various considerations such as the composition of the fresh ore, the applied
upstream processes, operating conditions of the reagent, temperature and pH, scale of the process,
purification range, and economy of the process, as well as advantages and limitations in each separation
techniques. Table 7 summarizes these considerations for leaching, precipitation, solvent extraction,
and ion chromatography.

As the separation of the radioactive elements from the REE is required in the REE supply chain,
a new problem appears after this step since the presence of radioactive elements in tailings issues a
waste management problem. Even though several waste management techniques exist such as water
dilution [122], used when thorium and uranium are in the aqueous phase, or the safe storage when
they are in the solid phase [123], those seem unreasonable due to high water or space occupation as
well as health problem they may generate. One of the most recent propositions was to use thorium as
a co-product of the REE industry as it would reduce the waste management problems, and could be
used as a feed in the new generation of nuclear reactors [124,125]. As a matter of the fact, thorium is
already a co-product of the titanium industry, and its recovery from the REE industry would represent
the third most important thorium resource after titanium and uranium [124,126].
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Table 7. Advantages and disadvantages of different methods for separating radioactive elements from REE.

Table Advantages Limitations Recovery (%) Scalability 4

Leaching

• Simultaneous recovery of Th & U
from REE;

• Use of cost-effective reagents;

• Must have a particle size of ore/cake similar or smaller than
liberation-equivalent size to avoid higher loss of REE 1;

• Feed (REE-radioactive mixture) must be in solid phase;

Th: >98 3a

U: 65–95 3a +++

Precipitation

• Simultaneous recovery of Th & U
from REE;

• Being pH dependent, possible
individual precipitation of Th or U
from REE;

• Use of cost-effective reagents;

• Highly dependent on reagent, pH and
sometimes temperature;

• Possible co-precipitation of REE with Th & U if right pH is
not maintained 2;

• Difficult to separate both Th & U simultaneously from REE
with high recovery in one single step2 although it can
be possible;

Th ≥ 98
U > 80 3a

Th > 98
U > 90 3b

++

Solvent Extraction

• High selectivity towards Th & U;
• High recovery of Th & U in individual

separation steps;

• Low recovery of Th & U in simultaneous separation;
• Multiple separation steps required for individual separation

of Th & U;
• Use of chemicals: cost of reagents and

environmental impact;

Th ≥ 70
U ≈ 55 3a

Th > 95
U > 95 3b

+++

Ion chromatography

• Extraction of Th & U in one step;
• High recovery of both

radioactive elements;

• Low flow rates;
• Selection of the scale-up technology and configuration

(batch, column, expanded/fluidized-bed or suspended bed);
• Anion exchange only extracts U (with the presence of ppm);

Th: 90–99
U: 90–99 ++

1 Liberation-equivalent size is the optimum size to separate the desired REE minerals off the ore grain, normally found in physical beneficiation steps. 2 Normally pH should be below 6.5 to
avoid co-precipitation of REE with radioactive elements, but in fact, pH is dependent on the liquor and reagent. 3a Simultaneous separation of Th & U from REE; 3b Individual separation of
Th & U from REE; 4 Scalability factors: +++: easy scale-up (process continuous, well-known or developed in other industries); ++: scale-up with some difficulties (process semi-continuous
or discontinuous or difficulty to separate two phases). References: ([127,128]); Leaching ([129,130]); Precipitation ([131,132]); SX ([130,133–135]); Ion chromatography ([136–138]).
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8. Conclusions

Radioactive elements (thorium and uranium) are commonly associated with REE-bearing minerals,
where the concentration depends on the mineral, the formation of the rocks, and the geographical
position of the deposit. The presence of radioactive elements causes various problems in the
environment and waste management. The extraction of thorium and uranium is necessary to ensure
having a low radioactive product, while the loss of REE is minimized. The utilization of conventional
hydrometallurgical processes such as selective precipitation, leaching, and solvent extraction for the
extraction of radioactive elements is often conducted using complex industrial processes. There is
a new trend of investigating new separation processes, such as the ion-exchange chromatography
and membrane separation. These processes are yet at lab-scale development stage, but they seem
to result in a more selective separation of Th and U from REE. Further research and development
activities are required to maturate such processes and to evolve new technologies for economically
viable applications at an industrial scale.

The most critical parameters to be controlled in these methods are the operating conditions (pH,
and temperature), reagent type, and upstream processes. Depending on the process requirements and
limitations, either one- or multi-steps processing would be applied to efficiently separate radioactive
elements from REE. Considering the efficiency and the cost of the process, a specific process can be
selected with regard to the advantages and limitations in each process.
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