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Abstract: Ludwigite ore is a typical intergrown mineral resource found in China. Reductive soda-ash
roasting followed by water leaching is an innovative process for the high-efficiency separation and
recovery of boron and iron. In this study, the co-conversion mechanism of boron activation and
iron reduction during soda-ash reductive roasting for boron-bearing iron concentrate was clarified.
When the boron-bearing iron concentrate was reduced in the presence of Na2CO3, szaibelyite
(Mg2(OH)(B2O4) (OH)) was activated to sodium metaborate (NaBO2) and, meanwhile, magnetite
(Fe3O4) was reduced to metallic iron (MFe). Boron activation promoted iron-oxide reduction effectively,
while the latter could only slightly influence the former. The promotion occurred through (1) a
facilitated generation of sodium magnesium silicate (Na2MgSiO4) and a hindering of the formation
of olivine (MgxFe2-x(SiO4)). (2) The newly generated NaBO2 promoted iron-oxide reduction. (3) The
low melting point of the NaBO2 (966 ◦C) favored particle migration, which accelerated metallic iron
particle aggregation.
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1. Introduction

Boron and its compounds are used in the chemical, medicinal, and nuclear industries [1–3]. Due to
their extensive application in areas such as electronic products, advanced materials, and new energy
vehicles, boron resources are designated as indispensable mineral resources for emerging strategic
industries [4–6]. Chinese boron reserves rank fifth globally at 24 million tons (B2O3) [7]. Despite
the high reserves, boron-bearing ore exploitation is limited because of its complex mineralogy [8],
which leads to a high reliance on imports. The gradual depletion of szaibelyite ore has led to the
development and use of ludwigite ore with abundant reserves to ensure the sustainable development
of China’s boron industry [9].

The current plan for ludwigite ore processing is to separate boron and iron magnetically with gravity
processing to yield a boron-bearing iron concentrate, boron concentrate, and uranium concentrate [10].
The boron-bearing iron concentrate is smelted in a blast furnace, the boron concentrate is used to produce
borax/boric acid, and uranium is extracted hydro metallurgically from the uranium concentrate [11,12].
However, because of the complex mineralogy in which boron, iron, and magnesium are intergrown,
boron and iron are difficult to separate completely by using physical dressing techniques, which results
in the dispersed distribution of boron compounds.
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Boron-bearing iron concentrate is a magnetic product that is produced from the magnetic separation
of ludwigite ore with a boron distribution of 30%. Pyrometallurgical processing [13–15] is usually
used for boron and iron separation in boron-bearing iron concentrate because of the high iron content.
Despite the good boron–iron separation performance, the high operating temperature (~1500 ◦C) in the
pyrometallurgical process results in B2O2 volatilization and a low boron-bearing slag activation [16].
Because of the low alkaline hydrolysis of boron, in the carbon-dioxide–soda process, 4 to 5 tons of
boron mud will be generated per ton of borax produced [17,18]. Thus, boron-bearing iron concentrate
can only be used as steel-making material, which leads to boron resource wastage. It is clear that a
low resource utilization, high solid-waste discharge, and serious environmental pollution accompany
current ludwigite ore exploitation processes. Hence, breakthrough techniques for cleaner and highly
efficient ludwigite ore utilization are required urgently.

These challenges led our research group to demonstrate that iron-oxide reduction and boron
activation could be achieved simultaneously through soda-ash introduction during direct reduction,
and, thus, a new high-efficiency boron–iron separation and recovery process based on sodium reduction
and water leaching was developed [19–21]. Compared with the existing process, the new process
separates boron and iron via magnetic separation and extracts boron and sodium from grinding
and water-leaching solutions. Furthermore, 95.70% iron was recovered as powdery metallic iron in
the magnetic concentrate at a reduction temperature of 1050 ◦C and time of 60 min with 20 wt.%
Na2CO3. Subsequently, 96.97% Na2O and 96.86% B2O3 were extracted into the leach liquor at a
leaching temperature of 200 ◦C and a liquid-to-solid mass ratio of 8:1. This approach avoided boron
mud production and excessive alkali pollution.

The co-conversion mechanism of iron reduction and boron activation during soda-ash roasting of
boron-bearing iron concentrate is key to the development of a new process. In this study, the effect of
Na2CO3 dosage and roasting conditions on the boron activation and the reduction of iron oxides was
investigated by using a boron-bearing iron concentrate as a raw material combined with inductively
coupled plasma-optical emission spectroscopy (ICP-OES), thermogravimetry-mass spectroscopy
(TG-MS), X-ray diffractometry (XRD), and electron probe micro-analysis (EPMA). To provide sufficient
theoretical proof for high-efficiency boron–iron separation and extraction, the principles of thermal
behavior as well as phase and microstructural transformations during soda-ash roasting of the
boron-bearing iron concentrate were determined, and the synergistic relationship between boron
activation, iron-oxide reduction, and metallic iron particle growth was established.

2. Materials and Methods

2.1. Materials

The boron-bearing iron concentrate contained 52.1% Fetotal, 5.3% B2O3, 12.6% MgO, and 5.4%
SiO2, as listed in Table 1, and mainly magnetite, szaibelyite, lizardite, and magnesite, as shown in
Figure 1a. Figure 1b indicates that 91.1% of the iron was distributed in magnetite, whereas 95.9% of the
boron was distributed in szaibelyite.

Chemical reagents, including Na2CO3 (99.95%), NaBO2·4H2O (99.95%), and high-purity gases
(CO, 99.5 vol.%, N2, 99.999 vol.%) were used.

Table 1. Main chemical compositions of boron-bearing iron concentrate (mass fraction, %).

TFe FeO B2O3 SiO2 MgO CaO Na2O Al2O3 S LOI *

52.1 24.7 5.3 5.4 12.6 0.6 0.2 0.4 0.2 2.5

* LOI: loss on ignition.
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Figure 1. (a) X-Ray Diffraction pattern of boron-bearing iron concentrate. (b) Distributions of Fe, B, 
Mg, and Si in the main phases. 

2.2. Methods 

2.2.1. Soda-Ash Roasting 

The ground boron-bearing iron concentrate and Na2CO3 were mixed thoroughly for briquetting. 
Green briquettes were dried at 110 °C for 2 h in a drying oven. Soda-ash roasting tests were carried 
out in a vertical electric resistance furnace, as shown in Figure 2. CO (99.5%) and N2 (99.999%) were 
used as the reducing and protective gas, respectively. The gas flow rates were fixed at 200 L/h. N2 
was introduced into a stainless-steel tank (inner diameter of 20 mm) in the furnace and preheated to 
a set temperature. The tank was loaded with ~10 g of dry briquettes, and the atmosphere was 
converted to CO. After roasting, the gas was changed from CO to N2, and the tank was removed from 
the furnace to allow for cooling to room temperature. A portion of the roasted briquettes was ground 
to pass a 200-mesh standard sieve to determine the chemical composition and for water leaching, and 
some briquettes were mounted and polished for microstructural analysis. 

 
Figure 2. Schematic diagram of experimental device for soda-ash roasting [21]. 

2.2.2. Water Leaching 

Boron activation was determined from water leaching in a glycerin-bath autoclave, as shown in 
Figure 3. The roasted sample (particle size < 74 μm) and deionized water in a certain mass ratio were 
added into the pots and rotated at 20 rpm for leaching. When the predetermined leaching time was 

Figure 1. (a) X-Ray Diffraction pattern of boron-bearing iron concentrate. (b) Distributions of Fe, B,
Mg, and Si in the main phases.

2.2. Methods

2.2.1. Soda-Ash Roasting

The ground boron-bearing iron concentrate and Na2CO3 were mixed thoroughly for briquetting.
Green briquettes were dried at 110 ◦C for 2 h in a drying oven. Soda-ash roasting tests were carried
out in a vertical electric resistance furnace, as shown in Figure 2. CO (99.5%) and N2 (99.999%) were
used as the reducing and protective gas, respectively. The gas flow rates were fixed at 200 L/h. N2 was
introduced into a stainless-steel tank (inner diameter of 20 mm) in the furnace and preheated to a set
temperature. The tank was loaded with ~10 g of dry briquettes, and the atmosphere was converted to
CO. After roasting, the gas was changed from CO to N2, and the tank was removed from the furnace
to allow for cooling to room temperature. A portion of the roasted briquettes was ground to pass a
200-mesh standard sieve to determine the chemical composition and for water leaching, and some
briquettes were mounted and polished for microstructural analysis.
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2.2.2. Water Leaching

Boron activation was determined from water leaching in a glycerin-bath autoclave, as shown in
Figure 3. The roasted sample (particle size < 74 µm) and deionized water in a certain mass ratio were
added into the pots and rotated at 20 rpm for leaching. When the predetermined leaching time was
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reached, the pots were removed for cooling. The pulp was filtered in a vacuum filter, and the leach
liquor and filtered residue chemical content were determined by inductively coupled plasma-optical
emission spectroscopy.
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2.2.3. Characterization

The main chemical compositions of boron-bearing iron concentrate were determined by X-ray
fluorescence (XRF, Axios, PANalytical B.V., Almelo, Netherlands), while the content of B2O3 was
measured using an inductively coupled plasma optical emission spectrometer (ICP-OES, 8300,
PerkinElmer, Waltham, MA, USA) and the content of metallic iron in roasted samples was determined by
chemical titration. The phase compositions of boron-bearing iron concentrate and roasted samples were
analyzed by X-ray diffraction (XRD, D8 Advance, BRUKE, Karlsruhe, Germany) with a scan speed of
5◦/min. Microstructures of roasted samples were performed by an optical microscope (Leica, DM 4500P,
Weztlar, Germany) and the elemental distributions of B, O, Si, Mg, Fe, and Na in reduced samples were
determined by an electro-probe microanalyzer (EPMA, JXA-8230, JEOL, Tokyo, Japan). Simultaneous
thermogravimetric-differential scanning calorimetry analyses (TG-DSC, STA449 F5, NETZSCH, Selb,
Germany) were performed in an α-alumina sample holder at a heating rate of 10 ◦C/min under an
argon atmosphere to evaluate the thermal behavior of the mixtures. Meanwhile, the examinations of
the mixtures were supplemented with gas analysis by using a mass spectrometry (MS, QMS 430D,
NETZSCH, Selb, Germany). The contact angles were determined by a high-temperature contact angle
measurement instrument (OCA 25LHT, Dataphysics, Stuttgart, Germany) with a maximum operating
temperature of 1700 ◦C and a heating rate of 5 ◦C/min.

3. Results and Discussion

3.1. Determination of Boron Activation

The activation of the boron components refers to the phase transformation of magnesium borate to
sodium borate during soda-ash roasting. The boron activation was defined as the percentage of boron
in sodium borate to the total boron content in the roasting products, as calculated from Equation (1).

α(w) =
V1 × c1

m0 × c0
× 100% (1)

where α(w) is the boron activation, m0 is the mass of roasting sample, c0 is the boron grade of the
roasting sample, V1 is the leach liquor volume, and c1 is the boron concentration in the leaching solution.

The chemical phase distribution of boron in the roasting sample is difficult to confirm by chemical
titration. However, a significant difference exists between the water solubility of sodium borate and
magnesium borate, as shown in Figure 4. The water solubility of NaBO2 was 4.3 mol/L at room
temperature, while the water leaching rate of B of Mg2B2O5 and Mg3B2O6 was merely 2.9% and 1.2%,
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respectively. Therefore, water leaching was used to determine the boron activation. During water
leaching, insoluble boron in magnesium borate and boron that had dissolved completely in sodium
borate were used as the criteria for boron activation.
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Based on the solubility of sodium borate and magnesium borate at different water leaching
temperatures, a water leaching temperature of 90 ◦C, leaching time of 6 h, and liquid-solid ratio of 8:1
was selected as the conditions for boron activation.

3.2. Effect of Roasting Conditions on Boron Activation

The effect of Na2CO3 dosage on the boron activation was investigated at a reduction temperature
of 1000 ◦C for a reduction time of 60 min. The results are shown in Figure 5a. As the Na2CO3 dosage
increased from 5 wt.% to 20 wt.%, the boron activation increased from 29.0% to 93.0%, respectively.
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The chemical and phase composition of the boron-bearing iron concentrate indicated that Na2CO3

reacted mainly with szaibelyite and lizardite in a reduction roasting process. The theoretical dosages
of Na2CO3 that were required for conversion of Mg2(OH)(B2O4) (OH) to NaBO2 and Mg3Si2O5(OH)4

to Na2MgSiO4 were 8.1 wt.% and 9.5 wt.%, respectively, as calculated from Equations (2) and (3).
Thus, when the Na2CO3 dosage was 5 wt.%, the boron activation was only 29.0%.

Mg2(OH)(B2O4) (OH)(s) + Na2CO3(s) = 2NaBO2 (s)+ CO2 (g)+ H2O (g)+ 2MgO(s) (2)

Mg3Si2O5(OH)4(s) + 2Na2CO3(s) = 2Na2MgSiO4(s) + 2CO2 (g)+ 2H2O(g) + MgO(s) (3)

When the Na2CO3 dosage was increased to 10 wt.%, the boron activation was 53.7%. Although the
theoretical stoichiometric dosage of Na2CO3 for the activation of boron components had been exceeded,
the boron component activation was low. Figure 6 shows the main conversion reactions during
reductive soda-ash roasting. Standard Gibbs free energies of the related reactions were calculated using
FactSage 7.2 in the temperature range 400–1400 ◦C. Our previous studies [22] indicated a szaibelyite
dehydroxylation product of Mg2B2O5 could be converted easily into Mg3B2O6 in the presence of
Na2CO3, as shown in Figure 6 (Equation (4)). Since the reaction tendency of Mg2SiO4 with Na2CO3
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exceeded that of Mg3B2O6, as shown in Figure 6 (Equations (5)–(7)), a lizardite dehydroxylation
product of Mg2SiO4 would react preferentially with Na2CO3, which hindered further conversion
of Mg3B2O6 to NaBO2 when the Na2CO3 dosage was insufficient. When the Na2CO3 dosage was
increased to 20 wt.%, the boron activation reached 93.0%.

3Mg2B2O5 (s)+ Na2CO3(s) = 2NaBO2(s) + 2Mg3B2O6(s) + CO2(g) (4)

Mg2SiO4 (s)+ Na2CO3(s) = Na2MgSiO4(s) + MgO(s) + CO2(g) (5)

Mg2B2O5 (s)+ Na2CO3 (s)= 2NaBO2(s) + 2MgO(s) + CO2(g) (6)

Mg3B2O6 (s)+ Na2CO3(s) = 2NaBO2 (s)+ 3MgO(s) + CO2(g) (7)
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The effect of the reduction temperature on the boron activation is shown in Figure 5b for a fixed
Na2CO3 dosage of 20 wt.% and a reduction time of 60 min. The boron activation increased from
48.9% to 90.1% as the reduction temperature increased from 600 ◦C to 800 ◦C. When the temperature
exceeded 800 ◦C, the activation changed only slightly.

For a constant reduction temperature of 1000 ◦C and an Na2CO3 dosage of 20 wt.%, the influence
of reduction time on the boron activation is shown in Figure 5c. The boron activation was affected
less by the reduction time. The boron activation reached 90.2% when the reduction time was 5 min.
The boron activation varied only slightly with the roasting atmosphere. When the boron-bearing
iron concentrate was roasted at 1000 ◦C for 60 min with 20 wt.% Na2CO3, the boron activation was
94.5%, 93.3%, and 93.0% in air, pure nitrogen, and pure carbon oxide, respectively, which indicates
that iron-oxide reduction had little effect on the boron component activation. This behavior occurred
because the boron phase in the boron-bearing iron concentrate existed mainly in szaibelyite and only
4.1% of the boron occurred in ludwigite, as shown in Figure 1b.

In conclusion, the boron activation was influenced significantly by the Na2CO3 dosage and
reduction temperature. For the boron activation to exceed 90%, the Na2CO3 dosage should exceed
20 wt.% and the reduction temperature should exceed 800 ◦C. Furthermore, magnesium borate could
be activated rapidly to sodium borate for a reduction temperature up to 1000 ◦C.

3.3. Effect of Roasting Conditions on Iron-Oxide Reduction

3.3.1. Iron-Oxide Metallization

The variation of iron-oxide metallization was investigated in the boron component activation.
The effect of Na2CO3 dosage on the iron metallization was explored for a reduction temperature
of 1000 ◦C and a reduction time of 60 min. The results are shown in Figure 7a. Since the iron
phase in the boron-bearing iron concentrate existed mainly as easily reduced magnetite, the iron
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metallization was 84.4% in the absence of Na2CO3. With Na2CO3 addition, the iron metallization
increased. According to the above results, 9.5 wt.% Na2CO3 was required for the transformation
from Mg3Si2O5(OH)4 to Na2MgSiO4, whereas Na2MgSiO4 formation was beneficial for the iron-oxide
reduction by impeding the reaction between FeO and Mg2SiO4. Thus, iron metallization reached
91.0% when the Na2CO3 dosage was increased to 10 wt.%. No evident changes resulted with a further
increase in Na2CO3 dosage.
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(b) sodium borate dosage; (c) Reduction temperature; (d) Reduction time. 
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To investigate the influence of boron component activation on the reduction of iron oxides,
the effect of NaBO2·4H2O dosage on iron metallization at a constant reduction temperature of 1000 ◦C
and a reduction time of 60 min was studied, and the results are shown in Figure 7b. NaBO2·4H2O
addition could promote iron-oxide reduction during the roasting of boron-bearing iron concentrate.
When the NaBO2·4H2O dosage was 4 wt.%, the iron metallization exceeded 90%. Studies have shown
that borax with sodium ion and borate anion groups could accelerate the reduction of iron oxide and
reduce the reaction activation energy during reduction [23].

As shown in Figure 7c,d, the iron metallization increased visibly with an increase in reduction
temperature and an extension of reduction time. With a fixed Na2CO3 dosage of 20 wt.% and a
reduction time of 60 min, the iron metallization was only 1.5% at a reduction temperature of 600 ◦C,
which indicates that the magnetite in the boron-bearing iron concentrate had not been reduced to
metallic iron. At an increased reduction temperature of 800 ◦C, the iron metallization was 61.0%,
which showed a significant improvement when compared with that at 700 ◦C. When the reduction
temperature was increased to 1000 ◦C, the iron metallization reached 91.7%. At a constant reduction
temperature of 1000 ◦C and an Na2CO3 dosage of 20 wt.%, the iron metallization was only 20.8%
when the reduction time was 5 min. Compared with the conversion of boron components, the boron
activation reached 90.2% under the same roasting conditions, which shows that the reduction of iron
oxide had little effect on the boron component activation. Since the reduction time was extended to
60 min, the iron metallization reached 91.7%.

3.3.2. Metallic Iron Particle Growth

The activation of boron components and the metallic reduction of iron oxides was the foundation
for the simultaneous separation of boron and iron in soda-ash roasting, whereas metallic iron particle
growth was key to the efficient separation of boron and iron in subsequent magnetic separation because
the average size of the metallic iron particles influenced the iron grade and iron concentrate recovery
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directly. At a fixed reduction temperature of 1000 ◦C and a reduction time of 60 min, the effects of
Na2CO3 dosage on the growth of metallic iron particles are shown in Figure 8.
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Figure 9. TG-MS results of mixture of boron-bearing iron concentrate and graphite with carbon: iron 
molar ratio of 2:3 in argon (a) in the absence of Na2CO3 and (b) in the presence of 20 wt% Na2CO3. 

Figure 8. Microstructures of polished cross-section and volume frequency distribution of metallic iron
particles of reduced boron-bearing iron concentrate pellets obtained at 1000 ◦C for 60 min for different
Na2CO3 dosages (a) 0 wt.% Na2CO3 dosages; (b) 5 wt.% Na2CO3 dosages; (c) 10 wt.% Na2CO3 dosages;
(d) 15 wt.% Na2CO3 dosages; (e) 20 wt.% Na2CO3 dosages; (f) volume frequency.

Figure 8 shows that the increase of Na2CO3 favored metallic iron particle growth. When the
boron-bearing iron concentrate was reduced without Na2CO3, the metallic iron particles were fine,
and the distribution interval was 0–133 µm with the proportion of largest particle size being only
2.6%. When the Na2CO3 dosage was increased to 10 wt.%, the boron activation was 53.6% and the
metallic iron particles began to agglomerate but remained intergrown with other gangue minerals.
The microstructure changed significantly as the Na2CO3 dosage increased to 15 wt.%. The size of the
metallic iron particles increased and aggregated into rings with a corresponding boron activation of
81.1%. The continuous increase of Na2CO3 dosage highlighted the ring-shaped metallic iron particles in
the microstructure image. The distribution interval of metallic iron particles was extended to 0–204 µm
and the volume frequency of 204 µm was 8.6% in the presence of 20 wt.% Na2CO3, which created an
excellent condition for subsequent grinding and magnetic separation.

3.4. Mechanisms in Co-Conversion of Iron and Boron Components

3.4.1. TG-MS/DSC Analysis

To identify the interaction between the activation of boron components and the reduction of iron
oxides in roasting, boron-bearing iron concentrate, and graphite were mixed in a carbon: iron molar
ratio of 2:3 in the absence/presence of Na2CO3, and TG-MS analysis was performed on the mixtures in
argon with the results shown in Figure 9.

The mixture without Na2CO3 addition (Figure 9a) had two clear mass loss peaks in the DTG
curve during roasting, and the total mass loss was 22.6%. A mass loss occurred around 621 ◦C from
magnesite decomposition and lizardite and szaibelyite dehydroxylation, whereas the mass loss at
1073 ◦C resulted because of the reduction of iron oxides. The actual mixture mass loss was 75.5% of
the theoretical value, and the temperature range for iron-oxide reduction was 950–1150 ◦C.

As shown in Figure 9b, four mass loss peaks and three CO2-evolution peaks were observed
when the mixture was heated from 25 ◦C to 1400 ◦C with the addition of 20 wt.% Na2CO3. The total
mass loss was 29.7%, which was 93.7% of the theoretical value and 18.2% higher than that without
Na2CO3. A mass loss peak of 1.6% at 108 ◦C resulted because of crystallization water dehydration.
The second mass loss peak of 11.4% was distributed between 470 ◦C and 770 ◦C with the release of
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CO2. To ascertain which reactions corresponded to the mass loss, TG-DSC of a mixture of lizardite
(purity 96.2%), szaibelyite (purity 94.3%), and sodium carbonate with a molar ratio of 1:1:3 was carried
out with the result shown in Figure 10.
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Figure 9. TG-MS results of mixture of boron-bearing iron concentrate and graphite with carbon: iron 
molar ratio of 2:3 in argon (a) in the absence of Na2CO3 and (b) in the presence of 20 wt% Na2CO3. 
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Figure 10. TG-DSC result of lizardite, szaibelyite, and sodium carbonate mixture with molar ratio of 
1:1:3 in argon. 
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was 450–750 °C, which explains the second mass loss peak in Figure 9b. Our previous research proved 
that the reaction between the dehydroxylation products of lizardite and Na2CO3 were dependent on 
the melting of Na2CO3 (851 °C) [22]. Nevertheless, the mixture mass loss ended at ~750 °C in the 
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lizardite and Na2CO3, which favored iron-oxide reduction. 
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Figure 10. TG-DSC result of lizardite, szaibelyite, and sodium carbonate mixture with molar ratio of
1:1:3 in argon.

In Figure 10, three clear mass loss peaks occur in the DTG curve during roasting with three
corresponding endothermic peaks in the DSC curve. The mass loss peak of 4.7% at 94 ◦C resulted mainly
because of crystallization water dehydration. According to the mixture molar ratio, the theoretical mass
loss from lizardite and szaibelyite dehydroxylation was 2.4% and 4.7%, respectively. The reactions
between dehydroxylation products and Na2CO3 was the other reason for the mass loss of 12.5% at
584 ◦C. The mass loss of 10.0% occurred at 714 ◦C because of the continuing sodium reactions. Hence,
the temperature interval for the reactions between lizardite/szaibelyite and Na2CO3 was 450–750 ◦C,
which explains the second mass loss peak in Figure 9b. Our previous research proved that the reaction
between the dehydroxylation products of lizardite and Na2CO3 were dependent on the melting of
Na2CO3 (851 ◦C) [22]. Nevertheless, the mixture mass loss ended at ~750 ◦C in the presence of
szaibelyite, which indicates that szaibelyite activation facilitated the reaction between lizardite and
Na2CO3, which favored iron-oxide reduction.

As the temperature increased, a mass loss with CO2 release appeared at 843 ◦C owing to the excess
Na2CO3 decomposition with a thermal decomposition temperature of 851 ◦C in Figure 9b. The mass
loss started at 880 ◦C and ended at 1015 ◦C with massive CO2 and CO gas emissions because of the
reduction of iron oxides, which showed that Na2CO3 addition could reduce the iron-oxide reduction
temperature. Therefore, boron activation (450–750 ◦C) took precedence over iron-oxide reduction
(880–1015 ◦C) of born-bearing iron concentrate during reductive soda-ash roasting, which could
provide a favorable condition for iron-oxide reduction.
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3.4.2. Phase Transformation

The Na2CO3 dosage and roasting temperature had a significant impact on the phase transformation
of reduced boron-bearing iron concentrate, as shown in Figure 11.
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Figure 11. (a) Effect of Na2CO3 dosage on phase transformation of reduced boron-bearing iron 
concentrate at 1000 °C for 60 min. (b) Effect of roasting temperature on phase transformation of boron-
bearing iron concentrate reduced for 60 min with 20 wt% Na2CO3. Ff-Forsterite ferroan (MgxFe2-

x(SiO4)), Mfo-Magnesium ferrous oxide ((MgO)x(FeO)1-x), M-Magnetite (Fe3O4), Fo-Forsterite 
(Mg2SiO4), F-Ferrous oxide (FeO), I-Iron (Fe), Ic-cementite (Fe3C), Ko-Kotoite (Mg3B2O6), Dm-
Magnesium disodium silicate (Na2MgSiO4), P-Magnesia (MgO), and Sb-Sodium metaborate (NaBO2). 

Therefore, the original phases of magnetite (Fe3O4) and szaibelyite (Mg2(OH)(B2O4) (OH)) in the 
boron-bearing iron concentrate could transform simultaneously into metallic iron and sodium borate 
by controlling the roasting temperature and Na2CO3 dosage during direct reduction. The phase 
compositions of boron-bearing iron concentrate that was reduced at 1000 °C for 60 min in the 
presence of 20 wt% Na2CO3 were metallic iron (MFe), sodium borate (NaBO2), magnesium disodium 
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The wetting ability can be described as the ability for phases to bond or adhere at the point of 
interfacial contact, which is quantified through the contact angle (θ) that forms at the solid/liquid 
interface. A contact angle that varies between 0° and 90° implies a strong wettability, whereas a 
contact angle that exceeds 90° implies a weak wettability [24]. To investigate the effect of sodium 
products on the growth of metallic iron particles, contact angle measurements with a shape fit-
differential method [25,26] of NaBO2-Fe and Na2MgSiO4-Fe were conducted. The results are shown 
in Figure 12. 

Figure 11. (a) Effect of Na2CO3 dosage on phase transformation of reduced boron-bearing iron
concentrate at 1000 ◦C for 60 min. (b) Effect of roasting temperature on phase transformation
of boron-bearing iron concentrate reduced for 60 min with 20 wt.% Na2CO3. Ff-Forsterite
ferroan (MgxFe2-x(SiO4)), Mfo-Magnesium ferrous oxide ((MgO)x(FeO)1-x), M-Magnetite (Fe3O4),
Fo-Forsterite (Mg2SiO4), F-Ferrous oxide (FeO), I-Iron (Fe), Ic-cementite (Fe3C), Ko-Kotoite (Mg3B2O6),
Dm-Magnesium disodium silicate (Na2MgSiO4), P-Magnesia (MgO), and Sb-Sodium metaborate
(NaBO2).

Figure 11a shows that reduction transformed the original magnetite (Fe3O4) phase in the
boron-bearing iron concentrate to olivine (MgxFe2-x(SiO4)) and metallic iron (Fe) in the presence
of 0 wt.% or 5 wt.% Na2CO3. The formation of olivine (MgxFe2-x(SiO4)) was the main reason for the
low iron metallization. An increase of Na2CO3 dosage to 10 wt.% led to the disappearance of forsterite
ferroan (MgxFe2-x(SiO4)) with the generation of magnesium ferrous oxide ((MgO)x(FeO)1-x) and
magnesium disodium silicate (Na2MgSiO4), which was favorable for iron-oxide reduction. Figure 11b
shows XRD patterns of boron-bearing iron concentrate that was reduced at various temperatures in
the presence of 20 wt.% Na2CO3. At low temperatures (≤700 ◦C), cementite (Fe3C) was the main iron
component phase, which impeded the iron-oxide reduction. When the reduction temperature exceeded
800 ◦C, the cementite (Fe3C) phase disappeared with more and stronger metallic iron diffraction peaks.
Kotoite (Mg3B2O6) was the main boron component phase when the Na2CO3 dosage was less than
10 wt.% and the reduction temperature was lower than 700 ◦C during roasting. With an increase of
Na2CO3 dosage and roasting temperature, kotoite was transformed into sodium metaborate (NaBO2).
Thus, a key point of boron component activation was the phase transformation from Mg3B2O6 to
NaBO2 of boron-bearing iron concentrate during direct reduction.

Therefore, the original phases of magnetite (Fe3O4) and szaibelyite (Mg2(OH)(B2O4) (OH)) in
the boron-bearing iron concentrate could transform simultaneously into metallic iron and sodium
borate by controlling the roasting temperature and Na2CO3 dosage during direct reduction. The phase
compositions of boron-bearing iron concentrate that was reduced at 1000 ◦C for 60 min in the presence
of 20 wt.% Na2CO3 were metallic iron (MFe), sodium borate (NaBO2), magnesium disodium silicate
(Na2MgSiO4), and magnesia (MgO).

The wetting ability can be described as the ability for phases to bond or adhere at the point of
interfacial contact, which is quantified through the contact angle (θ) that forms at the solid/liquid
interface. A contact angle that varies between 0◦ and 90◦ implies a strong wettability, whereas a contact
angle that exceeds 90◦ implies a weak wettability [24]. To investigate the effect of sodium products
on the growth of metallic iron particles, contact angle measurements with a shape fit-differential
method [25,26] of NaBO2-Fe and Na2MgSiO4-Fe were conducted. The results are shown in Figure 12.
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Figure 12. Contact angles at different roasting temperatures. (a) NaBO2-Fe and (b) Na2MgSiO4-Fe.

Figure 12 shows that the contact angle (θ) between NaBO2 and Fe decreased with an increase in
roasting temperature, especially when the roasting temperature exceeded 900 ◦C. The contact angle
between NaBO2 and Fe decreased to 47.3◦ as the temperature increased to the melting point of NaBO2

(966 ◦C). The contact angle decreased sharply to 24.3◦, when the roasting temperature was increased to
1000 ◦C.

Figure 12b shows that the contact angle between Na2MgSiO4 and Fe also decreased with an
increase in roasting temperature, and this decrease was rapid when the temperature exceeded 1300 ◦C.
The contact angle between Na2MgSiO4 and Fe decreased to 68.1◦ as the temperature increased to
1340 ◦C. As the temperature increased to 1450 ◦C, the contact angle decreased rapidly to 30.8◦.

In comparison, the wettability of NaBO2 to Fe was much better than that of Na2MgSiO4. Therefore,
the activation of boron components was the fundamental reason for the acceleration of metallic iron
particle growth during direct reduction of boron-bearing iron concentrate in the presence of Na2CO3,
which implied that the metallic iron particles were fine when the boron activation was low, as shown
in Figure 8.

3.4.3. Microstructure

To verify the above analysis, the elemental distributions of B, O, Si, Mg, Fe, and Na in the
boron-bearing iron concentrate pellets that were reduced at 1000 ◦C for 60 min with/without Na2CO3

were determined by electron probe micro-analysis, as shown in Figure 13. The distribution of B and Si
was consistent with that of Mg in the absence of Na2CO3, and agreed with the phase compositions in
Figure 13a. The intergrown distribution of metallic iron particles with the high-melting-point minerals
(Mg3B2O6: 1350 ◦C, Mg2SiO4: 1890 ◦C) was the dominant reason for the fine metallic iron particles.

The elemental distribution changed significantly in the presence of 20 wt.% Na2CO3, as shown
in Figure 13b. The distribution of B and Si agreed with that of Na with the formation of NaBO2 and
Na2MgSiO4. The low-melting-point sodium metaborate (NaBO2: 966 ◦C) was distributed along the
ring-shaped metallic iron particles and facilitated particle migration and diffusion.
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Figure 13. Elemental mapping of reduced boron-bearing iron concentrate pellets (a) without and
(b) with 20 wt.% Na2CO3 by EPMA analysis.

4. Conclusions

Boron activation took precedence over iron-oxide reduction of ludwigite ore during reductive
soda-ash roasting. It was affected by the Na2CO3 dosage, while being less influenced by the roasting
time and atmosphere. When Na2CO3 dosage was 20 wt.%, the boron activation was 90.2% at a
reduction temperature of 1000 ◦C and for a reduction time of 5 min. The high-efficiency activation
of magnesium borate favored the boron extraction in the subsequent grinding and water leaching,
avoiding the boron mud production. Iron-oxide reduction was promoted by boron activation through
a facilitated reaction between lizardite and soda-ash and a hindering of the formation of olivine.
A szaibelyite activation product of NaBO2 could accelerate iron-oxide reduction and metallic iron
particle growth. When the sodium-metaborate dosage increased from 0% to 4%, the iron metallization
increased from 84.4% to 90.1%. The contact angle between NaBO2 (melting point of 966 ◦C) and Fe was
24.3◦ at the roasting temperature of 1000 ◦C, implying a strong wettability to the metallic iron particle.
When the boron activation was 93.0%, the iron metallization was 91.7% and the distribution interval of
metallic iron particles widened to 0–204 µm with a volume frequency at 204 µm of 8.6%, facilitating
iron separation and recovery. On the basis of reductive soda-ash roasting, the main valuable elements
of boron and iron in ludwigite ore can be separated and recovered effectively by magnetic separation
and water leaching.
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