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Abstract: The phase stability, compressive strength, and tribology of tungsten alloy containing low
activation elements, W0.5(TaTiVCr)0.5, at elevated temperature up to 1400 ◦C were investigated.
The spark plasma sintered W0.5(TaTiVCr)0.5 alloy showed body centered cubic (BCC) structure,
which was stable up to 1400 ◦C using in-situ high temperature XRD analysis and did not show
formation of secondary phases. The W0.5(TaTiVCr)0.5 alloy showed exceptionally high compressive
yield strength of 1136 ± 40 MPa, 830 ± 60 MPa and 425 ± 15 MPa at 1000 ◦C, 1200 ◦C and 1400 ◦C,
respectively. The high temperature tribology at 400 ◦C showed an average coefficient of friction
(COF) and low wear rate of 0.55 and 1.37 × 10−5 mm3/Nm, respectively. The superior compressive
strength and wear resistance properties were attributed to the solid solution strengthening of the alloy.
The low activation composition, high phase stability, superior high temperature strength, and good
wear resistance at 400 ◦C of W0.5(TaTiVCr)0.5 suggest its potential utilization in extreme applications
such as plasma facing materials, rocket nozzles and industrial tooling.

Keywords: high-entropy alloy; W-heavy alloy; high-entropy composite; high temperature
compression; high temperature tribology; thermal stability

1. Introduction

Tungsten (W) and its alloys possess high melting point, good mechanical properties at elevated
temperature, high hardness, low activation in radiation environment and low sputtering yield,
which makes it a potential material for various high temperature and nuclear applications [1].
Furthermore, W exhibits low coefficient of thermal expansion, good thermal conductivity and
low vapor pressure [2–4]. The advantages of W are coupled with its shortcomings, such as its
low fracture toughness, radiation-induced embrittlement, blistering at moderate temperatures by
Deuterium (D) and Helium (He), and formation of pits, holes and bubbles by Helium at higher
temperatures [5–7]. In order to overcome the shortcomings in W, new strategies on adding different
alloying elements to W, such as W-Re [8,9], W-Ta [10,11], W-V [12,13], W-Mo [14,15], W-Cr [16–18] and
W-Ti [19,20] binary alloys, W-based composites [21–25], or nanostructure-engineered W [26–28] have
been investigated. The reported W-based binary alloys have shown significant improvement in the
mechanical properties [19,20]. However, experimental analysis in different aspects of binary alloys
have revealed numerous constraints as well, such as irradiation induced embrittlement in W-Re and
W-Os, deterioration of mechanical properties due to metastable phases in W-Ti and W-V alloys [1,9].
Similarly, nanocrystalline W has been found to generate He bubble under irradiation leading to poor
mechanical properties at high temperatures [27,29]. The laminated, fiber- and net-reinforced W-based
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composites have been developed with enhanced toughness and ductility, however, these materials
have anisotropic configuration and low relative densities [24,30,31].

The shortcomings of W, W-based alloys and W-composites have made researchers look for
alternative promising materials for high temperature applications. Recently, new type of alloys
with several principal elements termed as High-Entropy Alloys (HEAs) have been developed [32–34].
The high configurational entropy of mixing in the multicomponent alloy tends to stabilize the formation
of simple solid solution of BCC and/or FCC crystal structure [32,35]. HEAs show high yield strength,
high hardness, fatigue resistance [36] and good irradiation resistance [37–40]. W-based high-entropy
alloys have been developed in the context of high temperature application, showing enhanced high
temperature mechanical properties as compared to Ni-based superalloys and nanocrystalline W
materials [29,41]. Owais et al., developed a W-based quinary HEA of Wx(TaTiVCr)1−x (x = 0.3 to 0.9)
and studied the room temperature mechanical properties [42]. The alloy showed increasing yield
strength in the range of 1206–2265 MPa with decreasing W content. Amongst these W-based alloys,
W0.5(TaTiVCr)0.5 is of particular interest for the fusion applications due to its composition consisting of
low activation elements, nearly full relative density, homogeneous microstructure, room temperature
compressive strength of ~2100 MPa and hardness of ~788 HV [42,43]. Moreover, its powder metallurgy
fabrication does not require high energy milling and make it energy efficient, cost effective and less
time consuming [42,43]. The successful application of W in lab-scale fusion devices is proven, therefore,
50 at. % in W0.5(TaTiVCr)0.5 makes it more attractive for fusion materials.

High temperature phase stability and mechanical performance is crucial for high temperature
applications [3]. For instance, loss of coolant accident (LOCA) in a fusion reactor [44,45] heats materials
up to 1200 ◦C for several days. Therefore, the development of alloys with high temperature phase
stability and strength is required for nuclear fusion reactor applications. The sintering mechanism,
detailed microstructural and mechanical characterization of Wx(TaTiVCr)1−x (x = 0.3 to 0.9) alloys have
been reported in the previous studies [42]. However, the compressive strength and phase stability
of W0.5(TaTiVCr)0.5 at high temperatures as high as 1400 ◦C have not been reported so far, which is
being presented in this paper. Furthermore, W-alloys are widely used to produce industrial tools
such as boring bars and grinding spindles, which require resistance to wear. The published literature
on W-based alloys lacks in investigation of room to moderate temperature wear evaluation. And,
W-alloys are considered as a potential material for novel mold material for optical glass forming due to
its high thermal properties as compared to sintered WC and CVD-SiC used in the market [46]. Thus,
we are reporting here the high temperature wear of W0.5(TaTiVCr)0.5 alloy at 400 ◦C, which is in the
operational temperature range for molding of optical glass material [47]. The influence of in-situ
formed TiC and HEA solid solution on the high temperature wear resistance of W0.5(TaTiVCr)0.5 before
the onset of oxidation is being presented for the first time. The correlation between ‘mechanical and
tribological response’ and ‘microstructural and phase evolution’ is discussed.

2. Materials and Methods

2.1. Powders Consolidation

W-based W0.5(TaTiVCr)0.5 alloy was developed using elemental powders of W (<1 µm, US
Research Nanomaterials, TX, USA), Ta (44 µm, US Research Nanomaterials, TX, USA), V (44 µm, US
Research Nanomaterials, TX, USA), Cr (44 µm, US Research Nanomaterials, TX, USA) and Ti (44 µm,
Alfa Aesar, USA). The powders were weighed in argon atmosphere and placed in a plastic vials with
Si3N4 balls in a 1:1 ratio in argon atmosphere, followed by mixing using in-house built planetary ball
milling for 1 h. The mixed powders were transferred into a graphite die with 12 mm diameter in
argon atmosphere and sintered using SPS (Dr. Sinter SPS 530ET, Fuji Electronic Industrial Co., Ltd.,
Tsurugashima, Japan). The sintering was carried out at 50 MPa pressure in vacuum of 5.6 × 10−3 mbar
at 1600 ◦C with a heating rate of 100 ◦C/min and a holding time of 10 min, followed by furnace cooling.
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2.2. Structural and Chemical Characterization

X-ray diffraction (XRD) analysis was carried out using Cu-Kα radiation in PANalytical Empyrean
operating at 40 kV and 40 mA. Scans were performed between 2θ range of 5 and 100 degrees with
10 mm divergence slit and 1◦ diffracted beam slits. For high temperature in-situ XRD analysis, HT
furnace was installed with W-heating strip. The sample was placed onto a W-heating strip and a
heating rate of 10 ◦C/min was used to increase the temperature up to 1400 ◦C, where measurements
were performed at every 100 ◦C interval after a holding time of 30 min and measurement time of
40 min. The high temperature in-situ XRD analysis was carried out in vacuum atmosphere (10−4 mbar)
using Anton Paar HTK 16N strip heater (PANalytical Empyrean, Malvern, UK). The density of the
sintered sample was measured using Archimedes’ method. In order to carry out selected-area electron
diffraction (SAED) pattern analysis, a thin lamella (~50 nm) was prepared by Focused Ion Beam (FIB)
milling using Helios Nanolab 600 Dual Beam System (Field Electron and Ion Company, Hillsboro,
Oregon, OR, USA), and examined under Transmission Electron Microscope (JEM2100F, JEOL Ltd.,
Tokyo, Japan). Surface and wear track morphology of the sintered alloy was carried out using scanning
electron microscopy (SEM, JSM-IT300LV, JEOL GmbH, Freising, Germany) and energy dispersive
X-ray spectroscopy (EDS) with an accelerating voltage of 10–20 kV and working distance of 10 mm.

2.3. High Temperature Mechanical and Tribological Characterization

High temperature compression tests were carried out at 1000 ◦C, 1200 ◦C and 1400 ◦C using
Gleeble-3800 (DSI, New York, NY, USA) in vacuum environment with a heating rate and strain rate
of 10 ◦C/s and 10−3 s−1, respectively. For high temperature compression tests, cylindrical bars of
4 mm diameter and 6 mm in length were cut using wire electrical discharge machining (EDM) to
obtain samples with an aspect ratio of 1.5. Two tests per temperature were performed for repeatability.
Tribological tests were performed with a ball-on-disc setup at 400 ◦C in air atmosphere using universal
tribometer (Rtec, San Jose, CA, USA). W0.5(TaTiVCr)0.5 sample with 12 mm diameter and 3 mm height
was used against a counterball of Al2O3 with a diameter of 9.5 mm. The wear tests were carried out at
5 N normal load with a sliding speed of 0.1 m/s for 1 h corresponding to a sliding distance of 600 m.
Three tests were performed to examine the repeatability of wear rate and coefficient of friction (COF).
The wear depth was calculated using optical profilometry (Wyko NT1100, Bruker Inc., Billerica, MA,
US). The wear rate was calculated by the ratio of wear volume to sliding distance and normal load.

3. Results and Discussion

The phase formation and microstructure of W0.5(TaTiVCr)0.5 alloy sintered at 1600 ◦C is shown in
Figure 1. The X-ray diffractogram of the sintered alloy showed formation of BCC solid solution with a
lattice parameter of 0.314 nm, and formation of TiC phase (Figure 1a). TiC phase forms due to the
reaction of liquid Ti with the graphite die during the spark plasma sintering [42]. The relative density
of the sintered sample was measured to be 14.1 g/cm3. The microstructure of the sintered alloy showed
formation of three different phases consisting of HEA (grey region), W-rich (bright region) and TiC
(black region) phase (Figure 1b). The EDS elemental maps of the alloying elements in the sintered
alloy show distribution of elements in W-rich, HEA-phase (marked in red circles in corresponding
micrograph), and Ti-rich phase (TiC), in Figure 1c. The formation of HEA-phase (grey region) was
further confirmed using EDS point analysis from grey region and bright region, marked as 1 and 2 in
Figure 1b respectively, as presented in Table 1.
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Figure 1. (a) X-ray diffraction (XRD) analysis plot, (b) backscattered scanning electron microscopy 
(SEM) micrograph, and (c) energy dispersive X-ray spectroscopy (EDS) elemental map of sintered 
W0.5(TaTiVCr)0.5 alloy. 

Table 1. EDS analysis of W0.5(TaTiVCr)0.5 alloy in Figure 1b in at. %. 

Spot W Ta Ti V Cr 
1 25.7 11.3 9.9 31.8 19.5 
2 70.9 5.3 6.8 9.1 7.7 

The chemical nature of various regions (W-rich, TiC and HEA) in W0.5(TaTiVCr)0.5 alloy was 
investigated using transmission electron microscopy (TEM). The TEM-EDS and selected-area 
electron diffraction (SAED) patterns of different regions are shown in Figure 2. The TEM-EDS 
elemental maps showed uniform distribution of all elements except Ti-rich zone and HEA phase, as 
shown in Figure 2a. The SAED pattern analysis in W-rich zone from [011]bcc zone axis (ZA) showed 
BCC reflection with a lattice parameter of 3.14 Å (Figure 2b). The Ti-rich zone with FCC reflection 
from [111]fcc ZA and a lattice parameter of 4.30 Å (Figure 2c) confirm the formation of TiC phase, 
identified as black region in Figure 1b,c. The SAED pattern at grey phase, as shown in BSE image of 
Figure 1b,c, from [111] ZA showed BCC reflection with a lattice parameter of 3.20 Å.  

Figure 1. (a) X-ray diffraction (XRD) analysis plot, (b) backscattered scanning electron microscopy
(SEM) micrograph, and (c) energy dispersive X-ray spectroscopy (EDS) elemental map of sintered
W0.5(TaTiVCr)0.5 alloy.

Table 1. EDS analysis of W0.5(TaTiVCr)0.5 alloy in Figure 1b in at. %.

Spot W Ta Ti V Cr

1 25.7 11.3 9.9 31.8 19.5
2 70.9 5.3 6.8 9.1 7.7

The chemical nature of various regions (W-rich, TiC and HEA) in W0.5(TaTiVCr)0.5 alloy was
investigated using transmission electron microscopy (TEM). The TEM-EDS and selected-area electron
diffraction (SAED) patterns of different regions are shown in Figure 2. The TEM-EDS elemental maps
showed uniform distribution of all elements except Ti-rich zone and HEA phase, as shown in Figure 2a.
The SAED pattern analysis in W-rich zone from [011]bcc zone axis (ZA) showed BCC reflection with a
lattice parameter of 3.14 Å (Figure 2b). The Ti-rich zone with FCC reflection from [111]fcc ZA and a
lattice parameter of 4.30 Å (Figure 2c) confirm the formation of TiC phase, identified as black region in
Figure 1b,c. The SAED pattern at grey phase, as shown in BSE image of Figure 1b,c, from [111] ZA
showed BCC reflection with a lattice parameter of 3.20 Å.
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Figure 2. (a) Transmission electron microscopy (TEM)-energy dispersive X-ray spectroscopy (EDS) 
and selected-area electron diffraction (SAED) patterns of (b) W-rich, (c) TiC, and (d) HEA phases
observed in W0.5(TaTiVCr)0.5. 

The in-situ high temperature XRD analysis of W0.5(TaTiVCr)0.5 alloy from RT to 1400 °C is shown 
in Figure 3. The BCC solid solution phase was observed to be stable at all temperatures without the 
formation of intermetallic phases (Figure 3a). The stability of the alloy up to 1400 °C can be related to
high melting point of W, where the composition consists of more than 50 at. % W, which aids thermal
stability. Furthermore, the high concentration of other elements enhances the thermal stability 
through lattice distortion leading to low thermal diffusion in the sintered alloy and enhancing the 
stability of BCC phase. The formation of TiO2 was observed after in-situ XRD at 1200 °C, which can 
be related to softening of Ti leading to its diffusion to the surface and presence of small amount of
oxygen in the environment that reacts with Ti on the surface, as shown in Figure 3c and its respective
EDS analysis (spot 2) in Table 2 [48]. The SEM-EDS after in-situ high temperature XRD analysis
showed the W-rich phase and HEA phase to be stable after the measurement, however the oxide 
formation in all the phases is observed, as shown in Figure 3c and Table 2. The exact influence of each 
element at high temperature towards diffusion and oxide formation has yet to be determined and 
requires further investigation [49]. 

Figure 3. In-situ high temperature XRD analysis from room temperature to 1400 °C showing (a) XRD 
plot at different temperatures, (b) XRD pattern collected at 25 °C after in-situ XRD measurements at 
1400 °C and in-situ XRD pattern collected at 1400 °C and (c) SEM micrograph of surface taken from 
the specimen after heating to 1400. °C for in-situ XRD measurements. 

Figure 2. (a) Transmission electron microscopy (TEM)-energy dispersive X-ray spectroscopy (EDS) and
selected-area electron diffraction (SAED) patterns of (b) W-rich, (c) TiC, and (d) HEA phases observed
in W0.5(TaTiVCr)0.5.

The in-situ high temperature XRD analysis of W0.5(TaTiVCr)0.5 alloy from RT to 1400 ◦C is shown
in Figure 3. The BCC solid solution phase was observed to be stable at all temperatures without the
formation of intermetallic phases (Figure 3a). The stability of the alloy up to 1400 ◦C can be related to
high melting point of W, where the composition consists of more than 50 at. % W, which aids thermal
stability. Furthermore, the high concentration of other elements enhances the thermal stability through
lattice distortion leading to low thermal diffusion in the sintered alloy and enhancing the stability of
BCC phase. The formation of TiO2 was observed after in-situ XRD at 1200 ◦C, which can be related to
softening of Ti leading to its diffusion to the surface and presence of small amount of oxygen in the
environment that reacts with Ti on the surface, as shown in Figure 3c and its respective EDS analysis
(spot 2) in Table 2 [48]. The SEM-EDS after in-situ high temperature XRD analysis showed the W-rich
phase and HEA phase to be stable after the measurement, however the oxide formation in all the
phases is observed, as shown in Figure 3c and Table 2. The exact influence of each element at high
temperature towards diffusion and oxide formation has yet to be determined and requires further
investigation [49].
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Figure 3. In-situ high temperature XRD analysis from room temperature to 1400 ◦C showing (a) XRD
plot at different temperatures, (b) XRD pattern collected at 25 ◦C after in-situ XRD measurements at
1400 ◦C and in-situ XRD pattern collected at 1400 ◦C and (c) SEM micrograph of surface taken from the
specimen after heating to 1400 ◦C for in-situ XRD measurements.
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Table 2. EDS analysis of W0.5(TaTiVCr)0.5 alloy in Figure 3 after in-situ XRD measurement at 1400 ◦C
in at. %.

Spot W Ta Ti V Cr O

1 13.1 5.4 7.3 13.1 10.1 5.8
2 0.3 0.1 30.9 2.4 1.0 65.4
3 45.3 4.1 6.3 4.1 6.1 34.0

The engineering stress-strain curves from high temperature compression tests are shown in
Figure 4. The sintered alloy showed the highest yield strength of 1136 ± 40 MPa at 1000 ◦C, followed
by yield strength of 830 ± 60 MPa at 1200 ◦C, and finally yield strength of 425 ± 15 MPa at 1400 ◦C
(Figure 4b). The high temperature compressive strength of W0.5(TaTiVCr)0.5 alloy was found to be
more than twice that of pure W (~200 MPa at 1350 ◦C) [50], and higher than previously reported RHEA
of NbMoTaW (548 MPa, 506 MPa and 421 MPa at 1000 ◦C, 1200 ◦C and 1400 ◦C, respectively) [51],
TaNbHfZrTi (295 MPa and 92 MPa at 1000 ◦C and 1200 ◦C, respectively) [52], NbTaTiV (437 MPa
at 1000 ◦C) [53], TaNbVTiAl (~360 MPa and 142 MPa at 1000 ◦C and 1200 ◦C, respectively) [54],
and VCrFeTaW (182–371 MPa at 1000 ◦C) [55] due to solid solution strengthening and precipitation
strengthening (from in-situ formed TiC phase) [42,56]. The decrease in the yield strength with
increasing temperature can be related to the diffusion of Ti, as shown in Figure 3c [49]. The ductility
was observed to increase from 6% to 10% with increasing temperature due to thermal softening [57],
and Ti diffusion due to its low melting point. Furthermore, the yield strength of W0.5(TaTiVCr)0.5

alloy at all temperatures was found to be 3–4 times higher than the previous reported W-based heavy
alloys [58,59].
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Figure 4. (a) High temperature compressive stress-strain plots, and (b) yield strength and ultimate
tensile strength (UTS) plot of W0.5(TaTiVCr)0.5 alloy at different temperatures.

The fracture surface morphologies of specimens after high temperature compression tests are
shown in Figure 5 and EDS point analysis from different locations, spot 1–7, marked on fracture
surfaces in Figure 5 are presented in Table 3. The fracture surface of the specimen fractured at 1000 ◦C
during compression showed inter-granular fracture around W-rich phase, as shown in Figure 5a,b.
The high strength at 1000 ◦C can be related to the presence of solid solution strengthening and TiC
phases (marked as red arrows in Figure 5b and EDS spot 2 in Table 3), which can significantly enhance
the impediment of crack propagation [60,61]. A total strain of 0.1 was observed at 1000 ◦C compression
test, higher than total compression strain at RT observed in earlier work [42]. Similar fracture mode
was observed at 1200 ◦C along with a slightly more softening, as shown in Figure 5c,d. However,
Ti-rich zone was observed using EDS at grain boundary, as shown in EDS spot 4 in Table 3. A further
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increase in the ductility and wetting behavior were observed for the alloy at 1400 ◦C (Figure 5e,f),
which can be due to further softening of HEA-phase, as shown in EDS spot 6 and 7 in Table 3 [62].Metals 2020, 10, x FOR PEER REVIEW 7 of 12 
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Figure 5. SEM micrographs of fractured surfaces from compression test at (a,b) 1000 ◦C, (c,d) 1200 ◦C,
and (e,f) 1400 ◦C.

Table 3. EDS analysis on fracture surface in Figure 5 in at. %.

Spot W Ta Ti V Cr

1 41.3 14.8 10.1 19.7 14.2
2 1.9 0.8 94.3 2.3 0.7
3 62.5 14.2 9.2 8.2 5.9
4 14.3 5.1 69.0 6.6 5.0
5 53.1 13.0 10.0 9.6 14.4
6 36.8 15.9 15.4 17.7 14.2
7 44.1 10.3 26.4 12.5 6.7

The high temperature sliding wear test of W0.5(TaTiVCr)0.5 alloy at 400 ◦C against alumina
counterball was performed to study the wear behavior before the start of oxidation, as shown in
Figure 6. The sliding wear test showed an average COF of 0.55 after an initial run-in period up to
200 m of sliding distance (Figure 6a). The alumina counterball showed a wear scar diameter of 2 mm
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arising from high wear induced by W0.5(TaTiVCr)0.5 alloy, as shown in Figure 6b. The EDS analysis on
alumina counterball showed mostly W transfer layer (spot 1 in Table 4). The wear track morphology of
W0.5(TaTiVCr)0.5 alloy is shown in Figure 6c,d. The sliding wear showed mild adhesive wear behavior
and high amount of alumina counterball transfer, as shown in EDS data of spot 2 and 3 in Table 4.
The sliding wear of W0.5(TaTiVCr)0.5 alloy against alumina counterball resulted in an average wear
rate of 1.37 × 10−5 mm3/Nm, which was found to be three times lower than the wear rate of pure
tungsten (5 × 10−5 mm3/Nm) at 500 ◦C as reported by Jiang et al. [63]. Recently, Zhou et al. developed
a (FeCoCrNi)1−x(WC)x (x = 3–11, at. %) composite HEA using SPS to increase the wear properties of
FCC based HEA [64]. The study showed enhancement of wear resistance up to 5 at. % WC addition
against GCr15 steel counter ball. However, the wear resistance decreased for higher WC content due
to lower bonding between reinforcement and HEA matrix phases. In contrast, formation of in-situ TiC
reinforcement in HEA matrix has been found to be better for the wear resistance [65–67]. The formation
of in-situ carbide reinforcement enhances the mechanical and tribological properties due to stronger
bonding between the ceramic reinforcement and metal matrix [68]. Similarly, in this work, formation
of in-situ TiC reinforcement, as marked in Figure 6d, coupled with the high hardness (788 HV [36])
from BCC solid solution in W0.5(TaTiVCr)0.5 alloy enhanced the wear resistance even at 400 ◦C.
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Table 4. EDS analysis on counterball and wear track in Figure 6 in at. %.

Spot W Ta Ti V Cr Al O

1 9.3 2.8 1.6 1.5 1.9 27.9 54.7
2 9.2 2.8 2.6 2.5 2.5 26.0 54.5
3 17.2 5.5 3.5 3.2 5.6 27.6 37.3

The high temperature studies of W0.5(TaTiVCr)0.5 alloy showed high temperature stability of
BCC phase up to 1400 ◦C, high yield strength up to 1400 ◦C compared to previously reported values,
and superior wear resistance at 400 ◦C. The resulting behavior of W0.5(TaTiVCr)0.5 alloy at high
temperature shows its promising application in aerospace and fusion plasma facing material. In order
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to ensure safety in applications of W0.5(TaTiVCr)0.5 alloy, it is required to study its resistance to
irradiation, oxidation and erosion as well, which are the topics of our forthcoming studies.

4. Conclusions

In this work, we have studied the elevated temperature performance of spark plasma sintered
W0.5(TaTiVCr)0.5 alloy. The study of high temperature phase stability using in-situ XRD revealed stable
BCC solid solution up to 1400 ◦C without formation of intermetallic phases. However, formation of
TiO2 was observed after 1200 ◦C due to higher diffusion rate of Ti compared to other elements at high
temperatures. The high temperature compression tests showed high yield strength of 1136 ± 40 MPa at
1000 ◦C, 830 ± 60 MPa at 1200 ◦C and 425 ± 15 MPa at 1400 ◦C due to the presence of in-situ formed TiC
phase and solid solution strengthening in W-rich phase and HEA phase. High temperature tribological
test at 400 ◦C showed superior wear resistance due to combination of in-situ TiC phase and HEA
solid solution. The wear loss in the alloy was caused mostly by high amount of transfer layer from
alumina counterball.
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