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Abstract: In this work, the effect of a turning process on fatigue performance of a
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si (TC11) titanium alloy is studied in the high cycle fatigue (HCF) and
very high cycle fatigue (VHCF) regimes. For this purpose, the surface characteristics including
surface morphology, surface roughness and residual stress were investigated. Moreover, axial fatigue
tests were conducted with an ultrasonic fatigue testing system working at a frequency of 20 kHz.
The results show that the turning process deteriorated the fatigue properties in both HCF and VHCF
regimes. The fatigue strength at 1 × 108 cycles of turned samples is approximately 6% lower than
that of electropolished ones. Fracture surface observations indicate that turning marks play a crucial
role in the fatigue damage process, especially in the crack initiation stage. It was observed that the
crack of all the turned samples originated from turning marks. In addition, the compressive residual
stress induced by the turning process played a more effective role in resisting crack propagation in
the VHCF regime than in the HCF regime.

Keywords: titanium alloy; turning surface integrity; fatigue strength; very high cycle fatigue;
damage mechanism

1. Introduction

Titanium alloys are widely used in aero-engine components, airframe structures and landing
gear parts due to their unique comprehensive performance including high strength, low density
and excellent resistance to creep, corrosion and fatigue. The service life of key components, such as
aero-engine compressor, gear and blades, are beyond 1 × 107 cycles, and thus in the very high cycle
fatigue (VHCF) regime [1]. Since unexpected fatigue failures may still occur at the imposed stresses
lower than the traditional fatigue limit, the traditional fatigue limit defined at 1 × 107 cycles is not
suitable for the fatigue design of aero-engine components working in the VHCF regime. The VHCF
properties are thus a vital indicator to assess the security of these aero-engine components. Therefore,
the VHCF performance of titanium alloys and their damage mechanisms have received extensive
attention over recent decades [2–4].

In the VHCF regime, crack initiation consumes more than 90% of total fatigue life in titanium
alloys. Under VHCF, crack initiation tends to occur at the specimen subsurface and interior, instead of
specimen surface in HCF and LCF regimes, and internal crack initiation area exhibits usually a fish-eye
pattern [5–7]. The failure mechanisms in the VHCF regime are thus different from those in the HCF
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and LCF regimes. Fractographic inspections revealed that facets are primary morphologies at the crack
initiation area in most near-α and α + β titanium alloys in the VHCF regime [7–9], and fatigue crack
initiation is ascribed to the formation of the facets. It has been reported that these facets are obtained
by α grains fractured in a transcrystalline manner [7,8]. In order to reveal how the facets are formed,
several studies have been conducted to characterize facet features such as the spatial distribution,
crystallographic orientation and micro-morphology. Based on these studies, different formation
mechanisms of various facets have been suggested [10,11]. Contrary to the presence of facet morphology,
some studies revealed however that no facets can be observed at the surface and the internal crack
initiation areas of α + β titanium alloys even in the VHCF regime [12,13]. The crack initiation in
those cases is attributed to localized plastic slips or some silicide precipitates [4,13,14]. These different
investigations can provide better knowledge of crack initiation and propagation mechanisms of
titanium alloys in the VHCF regime. However, it should be noted that these investigations were mainly
focused on the effect of inherent microstructure on VHCF damage, and little attention was paid to other
effects, for example that of surface condition. Specimens used in these studies were usually carefully
polished to avoid the effect of surface roughness, defects and residual stresses induced by a machining
process. In fact, these defects are difficult to be avoided for machined parts, especially for titanium
alloy components. Titanium alloys exhibit poor machinability due to low thermal conductivity, high
chemical reactivity and low elastic modulus, which makes it difficult to control the machined surface
integrity. The fatigue failure of aero-engine components often occurs from these surface machining
defects in the VHCF regime [1]. It is well known that the surface integrity directly affects the fatigue life
and the strength of machined components. It is thus important for the aviation engineering industry to
investigate the effect of machining surface integrity of titanium alloys on the fatigue performance as
well as the damage mechanisms in the VHCF regime.

Some research work has been conducted to investigate the effect of surface integrity on the
fatigue behavior of metal alloys and components [15–18]. Among these different surface integrity
characteristics, the fatigue life of machined specimens was mainly determined by the interaction of
surface roughness, residual stress and work hardening layer [15]. It is well known that rough surfaces
with groove traces, scratch marks and other defects are potential sites of fatigue crack initiation, and
consequently decrease fatigue life. Zhang et al. [17] investigated the effect of creep feed grinding
on fatigue performance of a Ni3Al alloy and showed that the surface roughness has a dominant
deteriorative effect on the fatigue life because of stress concentration induced by processing defects.
Nevertheless, surface compressive residual stress and the work hardening layer exhibit positive effects
on fatigue performance by delaying fatigue crack initiation and propagation, which leads to prolonged
fatigue life. Liu et al. [15] pointed out through their study that the deleterious effect of surface roughness
on fatigue performance can be overshadowed by compressive residual stress for 17-4PH stainless
steel. Javidi et al. [19] investigated the effect of surface integrity induced by turning on the fatigue
behavior of a 34CrNiMo6 alloy and indicated that the influence of residual stress on fatigue life is
more significant than the effect of surface roughness. Due to the complex interaction between surface
integrity characteristics, such as surface roughness and residual stress induced by different machining
processes, the effect of surface integrity on fatigue life and the corresponding damage mechanisms
need to be further investigated, especially in the VHCF regime.

In this work, the effect of surface integrity obtained by turning on the fatigue performance
of a Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy (TC11) was investigated in the HCF and the VHCF regimes.
The surface morphology, surface roughness and residual stress induced by the turning process were
first characterized. Then, the fatigue lives of turned samples were obtained through high-frequency
ultrasonic fatigue tests. The fatigue data and the fracture surfaces of turned samples were compared to
those of electropolished specimens obtained in our previous work in order to reveal the effect of the
turning process on fatigue life and the damage mechanisms of the TC11 titanium alloy, especially in
the VHCF regime.
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2. Materials and Methods

2.1. Material

A commercial Ti-6.5Al-3.5Mo-1.5Zr-0.3Si (TC11) titanium alloy was investigated in this work.
It is an α + β titanium alloy usually used in aeronautical structures, such as aero-engine compressors,
blades and turbine discs. This alloy has higher strength, superior creep resistance and better thermal
stability in comparison with Ti-6Al-4V alloy thanks to the addition of silicon. The small amount
of silicon can reduce dislocation mobility, which allows improving creep resistance and stabilizing
the microstructure under moderate temperature to meet the service requirements of aero-engine
components. After grinding and polishing, the microstructure of the studied TC11 alloy was observed
by scanning electron microscope (SEM). Metallographic characteristics of transverse and longitudinal
sections are shown in Figure 1a,b, respectively. The microstructure is composed of primary alpha
phase (αp) and transformed βmatrix (βt), corresponding, respectively, to the dark and bright regions
indicated in Figure 1. The volume fraction of αp is about 60%.
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Figure 1. Microstructure images of the studied TC11 titanium alloy: (a) transverse section, and (b)
longitudinal section.

2.2. Fatigue Sample and Surface Characteristics

In this work, hourglass-shaped fatigue sample was designed through analytical and finite element
methods to meet the requirements of 20 kHz ultrasonic resonant vibration. The dimensions and
the geometry of the sample are shown in Figure 2. The minimum diameter at the central reduced
section is 4 mm. Fatigue samples were machined by turning and the processing parameters are
cutting speed νc = 10 m/min, feed rate f z = 0.04 mm/rev and depth of cut αp = 0.1 mm. In order
to quantitatively analyze the influence of turning on fatigue performance of the TC11 alloy, some
samples were polished using SiC paper and then electropolished in a solution composed of HClO4

and ethanol to obtain a mirror-like surface and eliminate surface defects and residual stress induced
by turning. The electropolished samples are considered as a reference to analyze the effect of surface
integrity resulting from turning on the HCF and VHCF performance. The fatigue performance of
electropolished samples of the TC11 alloy has been investigated in our previous work [13].Metals 2020, 10, x FOR PEER REVIEW 4 of 17 
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In order to investigate the role of surface roughness and morphology in fatigue behaviour,
surface roughness profiles in the central region of both electropolished and turned samples were
measured using a contact profilometer (Mahr Marsurf M300, Carl-Mahr-Str., Göttingen, Germany).
The values of typical surface roughness parameters were determined based on EN ISO 4287 and EN
ISO 16610-21 standards. The surface morphologies of the electropolished and the turned samples were
observed using SEM to characterize surface defects and microstructure.

Axial residual stress generated by the turning process was measured using an X-ray diffractometer
(LXRD MG2000, Proto Manufacturing Ltd. 2175 Solar Crescent Oldcastle, ON, Canada) with Cu Kα
radiation and Bragg angle of 142◦ in the {213} plane. The voltage and current were 25 kV and 30 mA,
respectively. The values of the residual stress were calculated using the sin2 ψ method. To obtain the
in-depth distribution of the residual stress, thin surface layers of the turned sample were removed
successively by electrolytic polishing in a solution composed of HClO4 and Ethanol.

2.3. Fatigue Tests and Fracture Surface Observation

Axial tension-compression fatigue tests were conducted using an ultrasonic fatigue testing system
with a frequency of 20 kHz and a stress ratio of R = −1. A pulse-pause loading mode and a compressed
air cooler were used to prevent the temperature rising of samples generated by high-frequency cyclic
loading. The temperature in the centre of tested samples was controlled to be below 30 ◦C. The applied
stress amplitudes were chosen in the range of 640–740 MPa so that the fatigue lives are in the HCF and
VHCF regimes. After fatigue tests, the fracture surfaces of the failed samples were observed using
SEM to analyze the failure mechanisms.

3. Results

3.1. Surface Roughness and Morphology

The surface profiles of the turned and the electropolished samples are illustrated in Figure 3. For the
turned sample, there is the presence of a regular fluctuating profile, and the maximum profile height
induced by turning is about 2.5 µm (Figure 3a), which is much larger than that of the electropolished
sample. The electropolished sample has a much smoother surface and the maximum profile height is
blow 0.5 µm (Figure 3b), which means that the electropolishing process effectively reduced the surface
roughness and improved the surface quality. Several typical values of surface roughness, such as
arithmetic mean roughness Ra, mean roughness depth Rz, difference in height between the highest
peak and the deepest valley Rt, and mean peak width Rsm, were calculated according to the standards
of EN ISO 4287 and EN ISO 16610-21, and the results are presented in Table 1.Metals 2020, 10, x FOR PEER REVIEW 5 of 17 
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Table 1. Values of several surface roughness parameters of the turned and the electropolished specimens.

Treatments Ra (µm) Rz (µm) Rt (µm) Rsm (µm)

Turning 0.51 3.11 4.03 46.56

Electropolishing 0.06 0.43 0.72 101.12

Considering that surface profile and roughness parameters are not sufficient to describe surface
topographical features, the surface morphologies of the electropolished and the turned samples were
observed using SEM and they are shown in Figure 4. It can be seen that the surface of the electropolished
sample presents free-defects characteristics (Figure 4a,b), and is similar to the microstructure features
highlighted at the longitudinal section shown in Figure 1b. These electropolished samples with high
surface quality would reveal the intrinsic damage mechanisms of the alloy itself and avoid the effect of
turning on the damaging process. Different from the smooth surface of the electropolished sample,
the surface obtained by turning is obviously rough, as shown in Figure 4c,d. A series of defects such
as grooves, fold and scratch markings can be observed at the turning surface. These surface turning
defects could give rise to stress concentration and promote fatigue crack initiation. Similar turning
defects were also observed by several researchers for titanium alloys [20–22]. It has been suggested
that the grooves result from the mapping of microchipping of tool cutting edges to the machined
surface [22,23], which is related to the plowing effect of the built-up edges [24,25].
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Figure 4. SEM surface morphology observations of (a,b) electropolished and (c,d) turned samples.

3.2. Residual Stress Measurement

The in-depth axial residual stress profile of the turned sample is shown in Figure 5. Considering
the residual stress relaxation induced by iterative removal of material, the measured values of residual
stress were corrected using a mathematical method proposed by Moore and Evans [26]. The depth of the
compressive residual stress field generated by the turning is about 30 µm. The maximum compressive
residual stress is located at the turned surface and the corresponding value is about −420 MPa.
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3.3. Fatigue Life Analysis

The fatigue test results of both electropolished and turned samples of the TC11 alloy are presented
in the form of an S-N plot, as shown in Figure 6. It should be noted that the fatigue life data and
the fracture surface observation of electropolished samples were obtained in our previous work,
and they are presented in this paper as a reference to analyze the effect of turning on fatigue life
and damage mechanism. The fatigue lives of the electropolished and the turned samples exhibit
different tendencies depending on the applied stress amplitudes. The fatigue life of the turned samples
continuously increases with the decrease in applied stress and presents a lower scatter in comparison
with the electropolished samples. It seems that there is no transition between the HCF regime and
the VHCF regime for the fatigue data obtained with the turned samples. The fatigue datapoints
obtained for the turned samples can be fitted using an S-N curve which was determined by a linear
regression model according to the ASTM standard [27]. However, the S-N curve of the electropolished
samples exhibits multi parts with different slopes between the two regimes. The SEM observations
of the fracture surfaces indicate that fatigue failure of all the turned samples occurred at sample
surface, whereas subsurface-induced or interior-induced failure occurred in the VHCF regime for
the electropolished samples. The difference in fatigue life distribution between electropolished and
turned samples could be ascribed to the different damage processes, which will be discussed in the
following sections.
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As shown in Figure 6, the obtained fatigue lives of turned samples vary from about 2 × 104 cycles
to 3.29 × 108 cycles under the applied stress amplitudes ranging from 740 to 640 MPa. The limited
fatigue life data of turned and electropolished samples seem to show that the turned samples exhibit
lower fatigue resistance than the electropolished ones in both HCF and VHCF regimes, especially in
the fatigue life range of 1 × 106–2 × 108 cycles. The fatigue strengths of turned and electropolished
samples at 108 cycles (σ(10

8
)) were calculated based on a failure probability of 50%. The values of

fatigue strength at 108 cycles for the electropolished and the turned samples are 690 and 651 MPa,
respectively. The fatigue strength σ(10

8
) of the turned samples is approximately 6% lower than that

of the electropolished ones. For the turned samples, the synergetic effect between applied stress
amplitude and surface characteristics is responsible for the reduced fatigue strength.

3.4. Fracture Surface Observation

The fracture surfaces of both electropolished and turned samples were observed using SEM to
reveal the effect of turning surface on the fatigue properties of the studied TC11 alloy. Considering
that the crack initiation and early propagation process consumes the majority of fatigue life in HCF
and VHCF regimes, SEM observation of fracture surfaces was mainly focused on the crack initiation
and early propagation areas.

Fracture surface observations indicate that for the electropolished samples, fatigue crack initiated
from surface in the HCF regime, whereas it initiated from the subsurface or interior in the VHCF
regime. Two representative fracture surfaces of electropolished samples failed at σa = 730 MPa with
Nf = 6.39 × 105 in the HCF regime and at σa = 680 MPa with Nf = 1.81 × 108 in the VHCF regime are
presented in Figures 7 and 8, respectively. Under high applied stress amplitudes, the electropolished
samples failed from surface. The crack initiation source started from a small surface area, as shown in
Figure 7a–c. The area near the surface crack initiation site exhibits a rough appearance with the presence
of dimples, grooves and particles, but without facets, as shown in Figure 7c,d. It was revealed in our
previous work [13] that these particles in the crack initiation region are silicides. The crack initiation in
the HCF regime is attributed to local stress concentration induced by large silicides. Under low applied
stress amplitudes, the fatigue crack of electropolished samples initiated from subsurface or interior.
The internal crack initiation area exhibits a fish-eye pattern, as shown in Figure 8. It is generally
reported that in the VHCF regime, the internal crack initiation of α + β titanium alloys is ascribed to
facet clusters of αp grains [8,9], and thus the fracture surface commonly presents brittle characteristics.
However, in the present study, the internal crack initiation area with fish-eye pattern is covered by
dimples, grooves and peak-like features instead of facets, as shown in Figure 8c,d. This means that the
fracture surface of this TC11 alloy exhibits typical ductile damage appearance. At ultra-high resolution
SEM, several nano-silicides were observed in the dimples at the fish-eye region, as shown in Figure 8d.
In this case, the internal crack initiation is attributed to microvoids nucleation around nano-silicides.

Typical fracture surfaces of turned samples failed in the HCF and the VHCF regimes are presented
in Figure 9. The fracture surface morphology and the crack initiation site for turned samples are
different from those of electropolished ones. The crack initiation sites of turned samples are all located
at the surface, and no internal crack initiation was observed even in the VHCF regime. With the
decrease in applied stress, the crack initiation region extends to a larger area along the sample surface
and the corresponding arc length of crack sources becomes larger. To highlight the difference in the
microscopic topography of the fracture surface induced by the turning process, more detailed SEM
observations of the surface initiation area were conducted and the representative morphologies of
turned samples that failed in both HCF and VHCF regimes are shown in Figures 10 and 11.
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Figure 7. Fracture surface of an electropolished sample tested atσa = 730 MPa, failed after Nf = 6.39 × 105

cycles in the HCF regime: (a) overall view showing the surface crack initiation, (b) magnified image of
the rectangular area in (a), (c) magnified image of the rectangular area in (b) showing the surface crack
initiation morphology, (d) magnified image of the rectangular area in (c) revealing the morphology of
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cycles in the VHCF regime: (a) overall view showing the internal crack initiation, (b) magnified
image of the fish-eye pattern in (a), (c) central area of the fish-eye pattern in (b) showing ductile
damage appearance, (d) detailed morphology of the rectangular area in (c) showing dimples, silicides,
grooves and peaks.
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Figure 9. Typical macroscopic fracture surfaces of turned specimens failed at different fatigue lives:
(a) σa = 740 MPa, Nf = 1 × 105, (b) σa = 700 MPa, Nf = 1.5 × 106 cycles, (c) σa = 660 MPa, Nf = 6 × 107

cycles and (d) σa = 640 MPa, Nf = 3.29 × 108 cycles.

Figure 10 shows the fracture surface and the morphology of cracks on the surface of a sample
tested at σa = 700 MPa and failed with a number of cycles to failure of Nf = 1.5 × 106 cycles in the
HCF regime. The fatigue crack initiation occurred at surface turning marks, as shown in Figure 10a,b.
The arc length occupied by the crack initiation area at the sample surface is about 0.6 mm. No apparent
dimples, grooves and silicide particles were observed in the crack initiation region. Friction-induced
markings are the main microscopic appearance of the crack initiation area of turned samples failed in
the HCF regime, as shown in Figure 10b. The formation of friction-induced markings may be attributed
to contact between the two separated surfaces due to repeated tension-compression loading. From the
surface morphology shown in Figure 10c, no secondary cracks along turning marks below the crack
initiation site can be observed. It could be inferred that the HCF crack initiation occurred at a specific
turning mark. Once a surface fatigue crack initiated, it propagated preferably along a specific turning
mark and formed a quite flat surface crack path, as shown in Figure 10d.
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Figure 10. Fracture surface and surface morphology of a turned sample tested at σa = 700 MPa and
failed with Nf = 1.5 × 106 in the HCF regime: (a) fracture surface showing surface crack initiation,
(b) magnified image of the rectangular area in (a) revealing that the crack initiated from a turning mark,
(c,d) morphological features near the crack initiation site on the turned surface revealing that the crack
seemingly initiated from a specific turning mark and propagated rapidly along another turning mark.

Figure 11 shows the fracture surface of a sample tested at σa = 640 MPa and failed after
Nf = 3.29 × 108 cycles in the VHCF regime. The VHCF crack also initiated from turning marks, but the
fracture surface morphology exhibits a significant difference with respect to that of the sample failed in
the HCF regime. It seems that the VHCF crack initiation resulted from several turning marks, instead
of one single specific turning mark in the HCF regime, as shown in Figure 11a,d,e. The corresponding
arc length of surface crack initiation area increases obviously and the value is more than 4 mm. A bright
band boundary (indicated by a white arrow in Figure 11a) near the sample surface and several tear
ridges can be observed at the macroscopic fracture surface. At high magnification, the bright band
boundary shows more likely tearing steps, as shown in Figure 11b,c. The regions on both sides of
the boundary show completely different fracture morphologies. For the convenience of presentation,
the area outside and inside the bright band boundary is defined as Region I and Region II, respectively,
as shown in Figure 11b. The thickness of Region I is in a range of 20–25 µm, which is consistent with the
depth of the compressive residual stress layer (Figure 5). Several step cracks and numerous microcracks
can be observed in Region I. These step cracks are attributed to the junction of adjacent surface
cracks which initiated from different surface turning marks. The direction of intensive microcracks is
approximately parallel to the turning marks and perpendicular to the crack propagation direction.
The presence of microcracks in Region I can be attributed to the slow growth of surface cracks in the
layer where the compressive residual stress is present. The bright band boundary indicates that the
surface crack tips did not continuously propagate inward, and it can be inferred that the surface crack
tips stopped propagating temporarily at the bright band boundary. When adjacent surface cracks
both propagated at the bright band boundary, they coalesced to form a larger surface crack and then
continued to propagate until failure.
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Figure 11. Fracture surface and surface morphology of a turned sample tested at σa = 640 MPa and
failed after Nf = 3.29 × 108 cycles in the VHCF regime: (a) fracture morphology of the surface crack
initiation area, (b,c) magnified image of the local crack feature on the surface, (d,e) several cracks along
turning marks below the crack initiation site on the turned sample surface.

The VHCF crack initiation and propagation scenario described above depends on the applied
stress amplitude and the sample state including surface roughness, turning marks and residual stress
induced by the turning process. These elements will be discussed in the next section.

4. Discussion

The microstructure played a determining role in fatigue crack initiation for electropolished samples
in both HCF and VHCF regimes. Silicides are the main micro-defects affecting the fatigue properties
of the TC11 alloy. The fatigue crack of electropolished samples initiated from large micro-silicide
particles or clusters, as shown in Figures 7d and 8d. The crack initiation site and the fracture surface
morphology are closely related to the morphology of silicides and the applied stress amplitude.

For the turned samples, the surface integrity features overcame the effect of silicides on fatigue
cracking and dominated the crack initiation process. All the cracks of turned samples initiated from
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surface without exception, even in the VHCF regime, as shown in Figures 10 and 11. The difference in
fracture morphology and fatigue cracking process between turned samples and electropolished ones
are attributed to the surface integrity.

Among different surface integrity indicators, it has been reported that the fatigue properties of
machined samples mainly depend on complex interaction between surface roughness and residual
stress [15]. Surface roughness and defects are treated as a deleterious factor, as they generate
local stress concentration, which induces surface crack nucleation and thus decreases the fatigue
properties [28]. The SEM observation of the fracture surface revealed the multiple crack initiation
sites on the turned sample surface. These multiple crack initiation sites are typical characteristics of
notched samples. The rough surface and defects can be considered as micro-notch, and the negative
effect on fatigue performance can be quantified by geometrical stress concentration factor Kt. It has
been proposed that the stress concentration factor of rough surface can be determined by the relation
Kt = 1 + 4.0 (Rt/Rsm )1.3 [29]. The stress concentration factor of the turned rough surface obtained
using the relation is 1.16. The steep stress gradient resulting from the notch effect provides more critical
sites for crack initiation.

As regards the influence of residual stress, it is clear that compressive residual stresses can delay
crack initiation and propagation, which can reduce or compensate the negative effects of rough surface
on fatigue properties. It has been reported that a deep compressive residual stress belt with large values
can prevent crack initiation from occurring at sample surface and can consequently improve fatigue
strength [30]. In the present study, all the cracks initiated from turned surface due to a high stress
concentration factor generated by deeper turning marks. In the HCF regime, a high applied stress
can promote the crack to initiate from a turning mark, as illustrated in Figure 12a,b. The compressive
residual stress is not high enough to prevent the crack initiation from occurring at deep turning marks
where the stress is strongly concentrated, but can only delay the crack initiation and early propagation.
Therefore, the fatigue crack propagated continuously from the surface initiation sites until the final
fracture, as shown in Figure 12c. However, the role played by compressive residual stress to delay crack
initiation and early propagation seems to be more obvious in the VHCF regime. This is because more
extended surface crack initiation and an early propagation area can be observed in the annular belt
with compressive residual stress. The thickness of the annular crack initiation and early propagation
zone (Region I, as shown in Figure 11b,c) is in a range of 20–25 µm, which is consistent with the
depth of the compressive residual stress layer. Due to the effect of compressive residual stress on
delaying crack initiation and early propagation, it is difficult for initial surface cracks to coalesce to
form/join the main crack. As fatigue damage accumulated, several cracks initiated from turning marks,
as shown in Figure 12d,e. When the cracks’ tips were in the turning affected region, these surface
cracks propagated slowly along the depth direction and simultaneously tended to propagate along
the surface direction. These cracks coalesced, which gave rise to the formation of an annular crack
initiation and propagation area. Once these cracks broke through the compressive residual stress
layer, they would further coalesce and propagate more rapidly along the depth direction until the final
failure, as described in Figure 12f.
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Figure 12. Schematic description of crack initiation and early propagation of turned samples at high
applied stress in the HCF regime (a–c), and at low applied stress in the VHCF regime (d–f): (a) and
(d) surface turning marks and compressive residual stress induced by the turning process, (b) crack
initiating from a deep surface turning mark at high applied stress, (c) surface crack breaking through the
compressive residual stress belt and rapid propagation until final fracture, (e) several cracks initiating
from turning marks and tending to coalesce along the surface direction at low applied stress, (f) these
cracks slowly propagating and coalescing to an annular notch in the compressive residual stress belt,
and then rapidly propagating until final fracture.

5. Conclusions

In this work, the effect of turning surface integrity on fatigue performance of a
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was investigated using an ultrasonic fatigue testing system. The surface
integrity parameters including surface morphology, surface roughness and residual stress were
characterized. SEM fracture surface observations of electropolished and turned samples were
conducted to reveal the difference in damage mechanisms between the electropolished and the turned
samples. Some primary conclusions can be drawn as follows:

(1) The turning process generates rough surface with a series of grooves, fold and scratch marks.
The maximum compressive residual stress induced by turning is located at the sample surface
and the value is about −420 MPa. The depth of the compressive residual stress field of turned
samples is about 30 µm;

(2) The turning surface has a deteriorating effect on the fatigue properties of the studied TC11 alloy
in the VHCF regime, especially in the fatigue life range of 1 × 106–2 × 108 cycles. The fatigue
strengths σ(10

8
) of turned samples is approximately 6% lower than that of electropolished ones in

the VHCF regime. From an engineering perspective, more attention should be paid to the turning
deteriorating effect on the fatigue performance of the titanium components, which are subjected
to fatigue loading in the range of 1 × 106–2 × 108 cycles in their working service.

(3) Turning marks play a dominant role in the fatigue damage process. All cracks of turned samples
initiated from turning marks and no internal crack initiation was observed for the turned samples
in both HCF and VHCF regimes. Optimizing turning process and decreasing deep turning marks
is the key to improving the HCF and VHCF properties of titanium components;

(4) Under high applied stresses, the cracks initiated from a single deep turning mark and then
propagated continuously until the final fracture. On the contrary, under low applied stresses,
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cracks initiated from several turning marks and coalesced to form an annular crack initiation and
early propagation area, roughly in the compressive residual stress belt. The compressive residual
stress played a more effective role in resisting crack propagation in the VHCF regime than in the
HCF regime.
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